MPPC at T2K

南野彰宏(京都) 第3回次世代光センサーに関するワークショップ @名古屋大学 Dec. 18, 2010

The T2K collaboration

•• >

:

Canada	Italy	Poland	Spain	
TRIUMF	INFN, U. Roma	A. Soltan, Warsaw	IFIC, Valencia	STFC/RAL
U. Alberta	INFN, U. Napoli	H.Niewodniczanski,	U. A. Barcelona	STFC/Daresbury
U. B. Columbi	iaINFN, U. Padova	Cracow		
U. Regina	INFN, U. Bari	T. U. Warsaw	Switzerland	USA
U. Toronto U. Victoria York U.		U. Silesia, Katowice	U. Bern	Boston U.
	Japan	U. Warsaw	U. Geneva	B.N.L.
	ICRR Kamioka	U. Wroclaw	ETH Zurich	Colorado S. U.
France	ICRR RCCN			Duke U.
CEA Saclay	KEK	Russia	United Kingdom	Louisiana S. U.
IPN Lyon	Kobe U.	INR	Imperial C. London	Stony Brook U.
LLR E. Poly. LPNHE Paris	Kyoto U.		Queen Mary U. L.	U. C. Irvine
	Miyagi U. Edu.	S. Korea	Lancaster U.	U. Colorado
Germany	Osaka City U.	N. U. Chonnam	Liverpool U.	U. Pittsburgh
U. Aachen	U. Tokyo U. Dongshin	Oxford U.	U. Rochester	
		U. Sejong	Sheffield U.	U. Washington
		N. U. Seoul	Warwick U.	-

U. Sungkyunkwan

The T2K experiment

- Long baseline neutrino oscillation experiment in Japan
- J-PARC: Intense proton accelarator (design value = 750kW)
 K2K: 5.2kW, NuMI for MINOS: 400kW, CNGS: 500kW
- Super-Kamiokande: Large water cherenkov detector
 - Fiducial volume = 22.5 kton (c.f. MINOS = 5.4 kton)

T2K goals

- Measure last unknown mixing angle $\theta_{\rm 13}$ using $\nu_{\mu} {\rightarrow} \nu_{\rm e}$ appearance
 - Potentially open up δ_{CP} search in lepton sector
- Measure precisely the atmospheric parameters θ_{23} and Δm_{32}^2 using $v_{\mu} \rightarrow v_{\mu}$ disappearance
 - Is there a symmetry between 2nd and 3rd generation?

T2K schematic

• Beam monitoring

- Primary beam monitors (intensity, position, profile)
- Muon monitor (MUMON) after the decay pipe
- On-axis neutrino detector (INGRID) at 280 m from the target
- Beam characterization and cross section measurements
 (2.5°) off-axis neutrino detectors at 280 m from the target
- Neutrino flavor and flux measurement at far site
 - Super-K at 295 km from the target (2.5° off-axis)

T2K status

Accumulated protons

• First run (January to June 2010)

- ~50 kW stable operation; 3.23×10^{19} protons for physics analysis

- Second run started on Nov. 16
 - Rapid ramp up to current 115 kW

T2K events in Super-K (1)

Jan-June 2010	# of events
Fully-Contained (FC)	33
+ fiducial volume cut	23
+ visible E > 30 MeV (FCFV)	

Vertex and direction (FC, Evis>30MeV)

Points: Reconstructed event vertex, Arrow: 1st-ring direction

T2K events in Super-K (2)

single-ring μ -like

multi-ring µ-like

 $P\mu = 1061 \text{ MeV/c}$

Pμ = 1438 MeV/c

1 decay-electrons

2 decay-electrons

Expect first results by winter 2011 conferences.

T2K near detectors and MPPC

INGRID on-axis neutrino detector

- On-axis detector is crucial for off-axis measurements
 - Monitor beam direction, intensity and mean energy
 - Beam coverage ~ $10 \times 10 \text{ m}^2$
 - Off-axis angle measurement accuracy goal is 1 mrad (< 15 MeV shift on off-axis peak energy)
 - 10k v interactions per day at full power (750 kW)

INGRID "cross" is formed with 14 identical modules + 2 diagonal modules made of plastic scintillator planes and iron targets surrounded by VETO planes.

INGRID measurements

🔆 statistical error only

100

200

300

x[cm] from INGRID center

400

500

sourth

0

-300 -200 -100

N_{obs.}

6000

4000

2000

north

-800

-400

Six bunch beam structure

Beam profile center X

T2K off-axis near detectors

- The off-axis near detectors provide
 - Off-axis beam measurement based on CCQE
 - Beam v_e contamination
 - Super-K background measurements (NC π^0)
 - Precise cross-section measurements with very large statistics

Off-axis near detectors measurements

ND280 photosensor requirements

- **Operational in magnetic field B=0.2T** (UA1 magnet)
- Very tight space constraints
 - Compact
- Low light yield at the end of Y-11 fibre (λ_{att} = 3.5 m) — Photo detection efficiency > PMT @ 550 nm
- Large number of channels (56000)
 - Low price
- Detector operation for five years

MPPC development for T2K: a fast R&D!

- **2004-2005**: First study of photon-sensor options
 - MA-PMT, MCP-PMT, APD, GM-APD arrays
 - First tests of MRS-APD from CPTA by ND280 groups
- End of 2005: Decision to use GM-APD arrays
 - In November, we met with Hamamatsu Photonics K.K.
- 2006: R&D of MPPC by Japanese groups (T2K, ILC etc)
 Other SiPM candidates were also tested
- 2007: First MPPC on Hamamatsu catalogue (1 × 1mm²)
- End of 2007: 1.3 × 1.3mm² 50μm pitch (667 pixels) ceramic package type MPPC is adopted for all ND280
 - Delivery of 63500 MPPCs (inc. spares) was completed in Feb. 2009!

T2K MPPC specifications

ltem	Spec	
Active area	1.3 x 1.3 mm ²	
Pixel size	50 x 50 μm²	
Num. of pixels	667	
Operation voltage	70 V (typical)	
PDE @ 550nm	~ 25 %	
Dark count	< 1.35 Mcps	
(Gain = 7.5 x 10 ⁵)	@ 25 deg.	
	(Thre. = 0.5 p.e.)	
Num. of device	56,000	

<u>S10362-13-050C</u> Developed for T2K

Produced by Hamamatsu Photonics

MPPC in T2K near detectors

Connectors for INGRID/FGD

- Basic element of the near detector scintillator subsystem (INGRID, POD, FGD, ECAL, SMRD)
 - Extruded scintillator bar with embedded Y-11 fibre read out by individual MPPC in coupler
 - 56000 channels in total

Connectors for POD/ECAL/SMRD

Readout electronics

Trip-T electronics

- 64 Hi/Lo gain ADC and TDC
- Individual HV trim (8bit, 5V range)
- On board charge injection circuit
- Temperature sensors

Kyoto large scale test (17686 MPPCs)

Device uniformity itself is considered to be much better.

Bad channels (after ~2 year operation)

System	Channels	Bad channels	Fraction
ECAL (DSECAL)	22336 (3400)	35 (11)	0.16% (0.32%)
SMRD	4016	7	0.17%
POD	10400	7	0.07%
FGD	8448	20	0.24 %
INGRID	10796	18	0.17 %
Total	55996	87	0.16 %

Bad channel does not necessarily mean problem with the MPPC, it could be electronics, cable or connection problem as well. 21

MPPC characterization

Gain and temperature dependence

- Gain proportinal to overvoltage
- Breakdown voltage changes with temperature

Dark count rate

- Dark count is proportional with overvoltage
- Increase exponentially with temperature

Photon detection efficiency

- PDE was measured at different wavelength using Poisson zero probability method
 - Insensitive to crosstalk and afterpulse
- PDE=20-25% for green light at nominal gain
- Good agreement in variation with wavelength with Hamamatsu

What next?

Once we find finite θ_{13} ,

Next goal: Discovery of CP violation in lepton sector

• $\nu_{\mu} \rightarrow \nu_{e}$ in LBL most promising channel

- Two strategies
 - I. Compare neutrino and anti-neutrino
 - 2. Compare 1st and 2nd oscillation maxima

Summary

- Development, commercialization and large production of MPPC for T2K near detectors completed
 - Very fast R&D and delivery on schedule of 62500 MPPC for T2K by Hamamatsu with <0.1% of devices rejected by QA
 - T2K near detectors are the first large scale application of MPPC to a real experiment
- Operation at T2K has been very stable for ~2 years
 - Very small number of bad channels (<0.2%)

Backup

T2K θ_{13} sensitivity (normal hierarchy)

90% C.L. sensitivity

 $sin^2 2\theta_{23} = 1.0$ is assumed. 5×10²¹ POT ~ 5 years@ full intensity

+ Syst. error for BG subtraction (10%)

T2K atm. parameters sensitivity

Narrow band spectrum centered on oscillation maximum
 Good sensitivity to atmospheric parameters

INGRID on-axis neutrino detector

- On-axis detector is crucial for off-axis measurements
 - Monitor beam direction, intensity and mean energy
 - Beam coverage ~ $10 \times 10 \text{ m}^2$
 - Off-axis angle measurement accuracy goal is 1 mrad (< 15 MeV shift on off-axis peak energy)
 - 10k v interactions per day at full power (750 kW)

PIAnO

- Measure charged π cross section with 10% sys. errors
 - Traker size: $5 \times 5 \times 5$ cm³
 - 1.5 mm scintillation fibers + MAPMTs
 - 150–300 MeV π beam at TRIUMF

M. Ikeda @ NNN10, Dec. 13-16, 2010, Toyama

Pixel to pixel cross talk

