A2課題演習

ポジトロニウムの寿命測定

内海武尊 川本大志 浅野有香 中西泰一 戸田朔 吉田匠志

・はじめに…

実験目的:ポジトロニウムによる電子e-と陽電子e+の対消滅反応の寿命 を、Nalシンチレーターを用いて測定し、QEDにおける理論 値との比較・考察を行うことを目的とした。

 ・ポジトロニウム(Ps)とは…
電子、陽子、中性子以外の粒子を 含んだ原子
電子(e-)と陽電子(e+)が対になっているエキゾチック原子の1つ

質量:2m_e 半径:2r_H 電荷:0 イオン化エネルギー:1/2E_H=6.8eV

対消滅をしγ線を放出 ← 計測

(<u>https://tabletop.icepp.s.u-tokyo.ac.jp/Tabletop_experiments/Positronium.htmlより</u>)

・ポジトロニウムの種類

ポジトロニウムはそのスピンSにより2種類に分けられる

①パラポジトロニウム(p-Ps)…S=0でシングレット¹Sの状態。荷電共役変換に対し偶である。 偶数個の光子に崩壊する。(p-Ps $\rightarrow 2\gamma$ など)

②オルソポジトロニウム(o-Ps)…S=1でトリプレット³Sの状態。荷電共役変換に対し奇である。 奇数個の光子に崩壊する。(o-Ps → 3 γ など)

代表的なファインマンダイアグラム

(過去のA2課題演習より)

※1個の光子への崩壊は運動学的に禁止されて おり、また、4個以上の光子に遷移する確率は QEDより小さいとされているためどちらも考慮 しない。

Introduction - QED

• QED = (spin1/2 fermion とmassless boson のU(1)相互作用)

$$\mathscr{L} = \bar{\psi}(i\gamma^{\mu}\partial_{\mu} - m)\psi - \frac{1}{4}(F_{\mu\nu})^{2} + e\bar{\psi}\gamma^{\mu}A_{\mu}\psi$$

Coupling constant

$$\alpha = \frac{e^2}{4\pi} = \frac{1}{137}$$

Introduction - Positronium

 ポジトロニウムは電子と陽電子の束縛状態 NRのQMと近似 $|Ps\rangle = \sqrt{2M} \int \frac{d^3k}{(2\pi)^3} \tilde{\psi}(k) \frac{1}{2m} |e^+\rangle |e^-\rangle$ $\tilde{\psi}(k) = \frac{8\pi C\kappa}{(\kappa^2 + k^2)^2}$ H原子の波動関数

Introduction- o-Ps とp-Ps

- o Ps の寿命 → 摂動二次以上
- p-Ps の寿命 → 摂動三次以上

o-Ps の反応がeffective $d\Gamma = \frac{dN_{out}}{N_{in}}$ $= \frac{1}{2M} (2\pi)^4 \delta(\sum_f P_f - \sum_i P_i) |\mathscr{M}_{fi}|^2 \prod_f \frac{\epsilon_f d^3 p_f}{(2\pi)^3 2p_f^0}$

Introduction- 散乱断面積と寿命

以上のセットアップより

$$\Gamma = \lim_{p \to 0} \sigma(e^+ e^- \to 2\gamma) v_{rel} 4E_1 E_2 \frac{2}{M^2} |\psi(0)|^2$$

+

• ファインマンダイアグラム

Introduction - 結果

²²Na線源: $^{22}_{11}Na \rightarrow ^{22}_{10}Ne + e^+ + \nu_e$

シリカパウダー(主成分SiO₂): e^- を多く含む \rightarrow Psの生成

Psの崩壊→γ線

Nal1, 2, 3→γ線を検出し、信号を出す

セットアップ

鉛:コンプトン散乱等による放射線を検出しないように

セットアップ

遮光用ビニール: P.S.に光が入ってe⁺の信号が紛れるのを防ぐ

使用したモジュール

<u>divider</u>	分ける
<u>discriminator</u>	信号がthreshold超える→NIM信号
delay	遅らせる
gate generator	信号が入る→ある一定時間のNIM信号
coincidence	同時にすべての端子に信号→信号
FAN	どれか1つに信号→信号

TDC (time to digital converter) startとstopの時間差に比例した値 <u>ADC</u> (analog to digital converter) gate内のアナログ信号の積分に比例 回路

データについて

次の2種類のデータを取った.

2019/7/30~2019/8/19
真空ポンプ使用,1384620 event

今後、「前半データ」と呼ぶ

2019/8/19~2019/9/26
真空ポンプ不使用,2453670 event

今後,「後半データ」と呼ぶ

後半データの解析は当初9/5までのデータで行っていたので,本発表ではその解析結果が残っている場合があります.

横軸はTDC CH, 縦軸はevent数の対数

CH 0 CH 1 CH 2 CH 3 t0 {phase==3} t1 {phase==3} t2 {phase==3} t3 {phase==3} htemp htemp Entries 1384620 htemp htemp Entries 1384620 1384620 Entries 1384620 10⁶ 10⁶ Entries 10⁶ 2943 2816 1747 2822 1748 Mean Mean 2812 Mean Mean 1748 Std Dev 571.2 Std Dev Std Dev Std Dev 105 104 10⁵ 10⁵ 104 104 104 前 半 10³ 10³ 10³ 10³ 104 10² 10² 10² 10 10 10 10 1000 1500 2000 2500 3000 1 3500 4000 500 500 500 0 t0 {phase==4} t1 {phase==4} t2 {phase==4} t3 {phase==4} htemp htemp htemp htemp Entries 2453670 Mean 2839 Std Dev 1739 105 Entries 2453670 Entries 2453670 Entries 2453670 2959 528.9 10⁶ 10⁶ 2815 1747 10⁶ Mean Mean Std Dev 2800 Mean 1754 Std Dev Std Dev 104 105 10⁵ 10⁵ 104 =-104 10⁴ 後半 10³ 10³ 10³ 10³ 10² 10² 10² 102 10 10 10 10 1 3500 400 1500 2000 2500 1500 2000 2500 500 1000 1500 2000 2500 3000 500 1000 3000 4000 3500 4000 3500 4000 4000 3000 500 1000 500 3500

27

※今回較正するのは TDC0 のみ.

- ・TDC0 は寿命に直接関連する時間を計測する.
- ・他の3つは一定値であることを確認できればよい.

TDC較正用の回路図

TDC較正用の回路図

TDC較正用の回路図

遅延ごとのTDCピークのFitting. 横軸はTDC CH, 縦軸はevent数

較正 - TDC

遅延[ns]	TDCの値[CH]
735	$3.46 \times 10^3 \pm 4.78 \times 10^{-2}$
630	$2.97 \times 10^3 \pm 7.79 \times 10^{-2}$
525	$2.53 \times 10^3 \pm 4.70 \times 10^{-2}$
420	$2.08 \times 10^3 \pm 4.25 \times 10^{-2}$
315	$1.60 \times 10^3 \pm 4.27 \times 10^{-2}$
210	$1.14 \times 10^3 \pm 3.74 \times 10^{-2}$
105	$7.84 \times 10^2 \pm 3.34 \times 10^{-1}$
0	$9.22 \times 10^{1} \pm 2.87 \times 10^{-2}$

 $delay [ns] = p_0 + CH \times p_1$

Fitting結果

 $p_0 = 3.53 \pm 2.10 \times 10^0$ $p_1 = 0.243 \pm 1.47 \times 10^{-3}$

時間の反転を考慮し,扱いやすいように CH = 4095 で time = 0 となるように定めると

$$time [ns] = 995 - 0.243 \times CH_0$$

後から時刻の原点を別の方法で定めるので、ここでは係数だけが重要

横軸はTDC CH0の較正済み時間,縦軸はevent数の対数

前半

ADCの出力(CHの値)は入力電圧の時間積分に対応する0~4095の値となる.

粒子のエネルギーとの対応はシンチレータ・PMTの種類や電圧によって変わるので分からない.

ADC CH1,8/10のデータ

ADC CH1, 前半のデータ

ADC CH1, 前半のデータ 511keV付近を拡大

較正 - ADC

一定であるはずのピークが変動している!

- ・実験装置の温度変化?
- ADCの時間変化?

理由は不明だが、変化は緩やかであるとみなして データを1日ごとに較正

一日ごとにデータを分割してフィッティング

較正 - ADC

一日ごとにデータを分割してフィッティング

data	adc1		adc2		adc3	
uate	p0	p1	p0	p1	p0	p1
210	-188.0	1.029	-208.8	0.977	-155.0	0.894
211	-193.9	1.035	-204.8	0.962	-158.1	0.897
212	-197.6	1.049	-201.0	0.949	-158.5	0.899
213	-198.5	1.055	-199.7	0.942	-158.9	0.901
214	-198.6	1.065	-200.4	0.943	-161.0	0.907
215	-204.7	1.080	-199.9	0.942	-161.2	0.910
216	-200.7	1.075	-199.7	0.941	-160.5	0.909
217	-205.7	1.085	-199.2	0.938	-161.4	0.910
218	-203.2	1.084	-201.0	0.943	-161.9	0.914
219	-204.6	1.088	-201.5	0.946	-161.9	0.912
220	-205.9	1.092	-201.9	0.947	-158.3	0.903
221	-207.3	1.098	-201.8	0.946	-162.3	0.915
222	-204.3	1.090	-201.6	0.948	-163.3	0.919
223	-207.8	1.101	-201.6	0.946	-163.3	0.918
224	-208.6	1.103	-202.1	0.948	-162.8	0.921
225	-208.3	1.106	-203.5	0.953	-163.8	0.922
226	-208.7	1.109	-203.8	0.953	-163.9	0.924
227	-209.3	1.113	-204.2	0.956	-164.2	0.925
228	-213.5	1.121	-204.5	0.957	-164.8	0.929
229	-211.0	1.122	-206.1	0.962	-164.9	0.929
230	-212.4	1.120	-204.6	0.960	-163.6	0.925

一日ごとにデータを分割してフィッティング

	date	adc1		adc2		adc3	
		p0	p1	p0	p1	р0	p1
	230	-210.2	1.117	-204.1	0.957	-162.5	0.928
	231	-214.0	1.126	-205.8	0.962	-163.3	0.926
	232	-213.6	1.126	-206.1	0.964	-165.1	0.932
	233	-215.1	1.134	-206.6	0.966	-165.3	0.933
	234	-216.6	1.139	-207.4	0.967	-164.4	0.931
	235	-217.0	1.140	-208.4	0.968	-159.4	0.915
	236	-217.1	1.142	-209.5	0.972	-165.4	0.936
	237	-218.0	1.145	-212.1	0.975	-166.5	0.938
	238	-217.8	1.149	-222.0	0.975	-166.1	0.940
	239	-219.0	1.153	-216.6	0.976	-166.7	0.942
	240	-218.7	1.154	-217.9	0.982	-166.8	0.941
	241	-219.6	1.158	-218.0	0.983	-167.0	0.940
	242	-219.2	1.157	-218.8	0.988	-167.9	0.944
	243	-219.8	1.161	-219.4	0.989	-167.0	0.942
	244	-222.1	1.169	-219.8	0.992	-166.5	0.940
	245	-222.2	1.170	-220.3	0.994	-167.6	0.944
	246	-223.4	1.176	-220.9	0.998	-167.6	0.945
	247	-220.6	1.168	-220.6	0.997	-166.8	0.944

 $E[keV] = p_0 + p_1 \times CH$

較正後のエネルギーの時間変化

データの選択

較正を行ったデータから,以下のような条件を満たすイベントだけを取り出し解析を行った.

• Nalの内1つだけが反応し、それがTDC0を作動させた信号である

3つのTDCのうちある1つのTDCがほぼ決まった値(TDC毎 に異なる)を返し,他の2つが4095である

•TDC入力がないPMTに対し、ADCが0に近いエネルギーである

TDCが4095である2つのPMTに対し, ADC出力が-30~30

データの選択

較正を行ったデータから、以下のような条件を満たすイベントだけを取り出し解析を行った.

• 宇宙線などの非常にエネルギーが高いものの除外

ADCの値が4095ではない

•崩壊が遅すぎるなど、時間が計測できていないものを除外

TDC0 の値が4095ではない

データの選択

較正を行ったデータから、以下のような条件を満たすイベントだけを取り出し解析を行った. 具体的な条件は次の通り.

条件	前半 Nal1	前半 Nal2	前半 Nal3	後半 Nal1	後半 Nal2	後半 Nal3
TDC1	420~440	4095	4095	425~440	4095	4095
TDC2	4095	420~440	4095	4095	425~440	4095
TDC3	4095	4095	415~435	4095	4095	420~430
Energy1	ADC1 < 4095	-30~30	-30~30	ADC1 < 4095	-30~30	-30~30
Energy2	-30~30	ADC2 < 4095	-30~30	-30~30	ADC2 < 4095	-30~30
Energy3	-30~30	-30~30	ADC3 < 4095	-30~30	-30~30	ADC3 < 4095

データ

較正と抽出により得られたデータの、エネルギーと時間の2次元分布図は次のようになった.

 $遅れ\Delta T をエネルギーEの関数として求める <math>\rightarrow TQ$ 補正関数の作成

- 今求めたいのは、Psの発生時刻(P.S.が反応した時刻)からの正しい経過時間
- Psがすぐに崩壊した場合が時間の原点となる.
- p-Psなどすぐに崩壊するものは時間がたってから崩壊するもの より多いと考えられる.
 TDCの時間分解能は0.2ns程度

TDCの時間分解能は0.2ns程度 p-Psの寿命は0.1ns程度

エネルギーごとに、最もイベントの多い時間の値が時刻0となるように時間を補正する。

TQ補正関数の作成:簡単な例

波の高さはエネルギーの関数で、ピーク位置 t_0 と波の幅 t_{end} はエネルギーによらない.

三角形の面積*S*について

100,120,140,…,1380 [keV] のそれぞれ±10keVの範囲で,時間のヒストグラムを書き,ピー クをgaussianでフィットして,meanをピーク時刻とした.

最多時間とエネルギーの関係をFittingで求めた. TQ補正関数の形は

$$\Delta T(E) = \frac{p_0}{(E)^{p_1}} + p_2$$

を採用した.

TQ補正関数のFittingの様子

TQ補正

 $\Delta T(E) = \frac{p_0}{(E)^{p_1}} + p_2$

Fittingの結果得られた係数の値は次の通り.

	p_0	p_1	p_2
前半 1	9.44605E+05	1.76551E+00	2.36879E+02
前半 2	2.76160E+05	1.59102E+00	2.37181E+02
前半 3	6.35742E+05	1.71550E+00	2.33956E+02
後半 1	3.80111E+06	1.97652E+00	2.37649E+02
後半 2	5.81106E+05	1.70209E+00	2.37250E+02
後半 3	8.61028E+05	1.75703E+00	2.33317E+02

TQ補正が済んだ時点でのエネルギーと時間の2次元分布図は次のようになった.

66

時間に対するイベント数の減少を
Count =
$$p_0 \times \exp\left(-\frac{Time}{p_1}\right) + p_2$$

でFittingする

 $Count = p_0 \times \exp\left(-\frac{Time}{p_1}\right) + p_2$

前半, Nal1, 400keV以下を抽出

種類	寿命 [ns]
前半 Nal1	134.8 ± 23.2
前半 Nal2	102.1 ± 21.2
前半 Nal3	113.3 ± 24.9
後半 Nal1	147.9 ± 18.1
後半 Nal2	130.1 ± 16.5
後半 Nal3	119.7 ± 16.6

o-Ps の寿命:前半と後半を合わせる

 $143.1 \pm 14.4 \text{ [ns]}$ $120.9 \pm 12.8 \text{ [ns]}$ $117.7 \pm 13.7 \text{ [ns]}$

o-Ps の寿命:3つのNalで合わせる

前半データ

120.4 ± 13.7 [ns]

132.0 ± 9.7 [ns]

o-Ps の寿命: 全データ合計

128.0 ± 7.9 [ns]

理論値(139ns)より少し低い

Pick Off補正

4.2 Pick Off補正

見たい反応: $o-Ps \rightarrow 3\gamma$ エネルギー:511keVより小さい

しかし、o-Psはこの反応以外に陽電子が周囲の電子と相互作用 することで以下の崩壊をすることがある

- $o-Ps \rightarrow p-Ps \rightarrow 2\gamma$
- e⁺ (o-Ps内部) + e⁻ (周囲の物質) → 2γ

これらの反応による2 γ は511keVのエネル ギーを持つが、そのコンプトン散乱は511keV より小さいエネルギーを持つので3 γ への崩 壊と見分けることができない

・Pick Off反応

・スピン交換反応

511keVピークの高さとそれによるコンプトン散乱の高さの比は一定 と仮定する

・時間が0に近いところでは陽電子・電子の直接の対消滅やp-Psの 崩壊による511keVのエネルギー(とそのコンプトン散乱)だけが見 えるはずである

そこからピークとコンプトンの比を求め,時間の各点に おいてピークの高さを調べてそこから予想されるコンプ トン効果を差し引くことでo-Psの崩壊のみが見えるよう にする

補正の方法

実際の補正では以下のように補正関数を用いて行う

時刻tでのo-Psの相互作用における崩壊とo-Psの3 γ への崩壊の検出数をそ れぞれ $\Delta N_{pick-off}(t), \Delta N_{ortho}(t)$ と書き、pick-off補正関数f(t)を $f(t) \equiv \frac{\Gamma_{pick-off}}{\Gamma_{ortho}} = \frac{\Delta N_{pick-off}(t)}{\Delta N_{ortho}(t)}$

と定める.

ここでΓは崩壊幅を表す 崩壊幅は1つの粒子が単位時間に崩壊する確率と解 釈できる

(崩壊幅: $\frac{dN(t)}{dt} = -\Gamma N(t)$ この λ が崩壊幅で寿命の逆数)

先ほどピークの高さとコンプトンの高さの比は一定としたので

$$\Delta N_{pick-off}(t) = \frac{y_{peak}(t)S(0)}{y_{peak}(0)}$$
ここで $y_{peak}(t)$ は時刻tでのピークの高さ
 $S(t)$ は時刻tでのイベントの総数

これを前の
$$f(t)$$
の定義式に代入して

$$f(t) = \frac{\Delta N_{pick-off}(t)}{\Delta N_{ortho}(t)} = \frac{\Delta N_{pick-off}(t)}{S(t) - \Delta N_{pick-off}(t)}$$

$$= \frac{y_{peak}(t)S(0)}{y_{peak}(0)S(t) - y_{peak}(t)S(0)}$$

50nsごとに区切った区間でのf(t)の値を求めてそれを $f(t) = p_0 \exp\left(-\frac{t}{p_1}\right) + p_2$ の関数でフィッティングを行ってパラメータ p_0, p_1, p_2 を求めて補間する

以上の操作で補正関数f(t)を求めることができた →このf(t)を用いてpick-off補正された寿命を決定する

補正の方法

各時刻tで、観測にかかるo-Psの崩壊の崩壊幅を
$$\Gamma_{obs}$$
とすると
 $\Gamma_{obs} = \Gamma_{pick-off} + \Gamma_{ortho} = \Gamma_{ortho} \times \left(1 + \frac{\Gamma_{pick-off}}{\Gamma_{ortho}}\right) = \frac{1+f(t)}{t_{ortho}}$
ここで $t_{ortho} = \frac{1}{\Delta N_{ortho}}$ は求めたいo-Psの寿命である

時刻tでのo-Psの数をN(t)とおくと

$$\frac{dN(t)}{dt} = -N(t) \times \Gamma_{obs} = -N(t) \times \left(\Gamma_{ortho} + \Gamma_{pick-off}\right) = \frac{N(t)}{t_{ortho}} \times (1 + f(t))$$
が成立. これを解いて
$$N(t) = \exp\left(-\frac{1}{t_{ortho}}\int dt(1 + f(t))\right)$$

補正の方法 J_{arc} $-\frac{dN(t)}{dt} = N_0(1+f(t)) \times \exp\left(-\frac{1}{t_{ortho}}\int dt(1+f(t))\right)$ 左辺は時刻tにおいて単位時間に崩壊するo-Psの数である

511keVより小さいエネルギー領域においてイベント数対時間のグラフ を上の形の関数でフィッティングすることで t_{ortho} (o-Ps)の寿命が求ま る

実際は

 $-\frac{dN(t)}{dt} = q_0 \left(1 + p_0 \exp\left(-\frac{t}{p_1}\right) + p_2\right) \exp\left(-\frac{1}{q_1} \left(p_0 p_1 \exp\left(-\frac{t}{p_1}\right) + (p_2 + 1)t\right)\right) + q_2$ という形でフィッティングし、パラメータ q_0, q_1, q_2 を求める. $(q_1$ が上の式と の比較より求めたい寿命となる)

100 200

縦軸:*f(t*) 横軸:t

°84

実際の補正の様子

$$f(t)$$
のフィッティングで得たパラメータは $\left(f(t) = p_0 \exp\left(-\frac{t}{p_1}\right) + p^2\right)$

	p_0	p_1	p_2
Nal1(前半)	0.311319 ± 0.0328026	178.084 ± 37.0958	0.0922431 ± 0.0126019
Nal2(前半)	0.586264 ± 0.0699025	179.258 ± 41.6911	0.158811 ± 0.0271116
Nal3(前半)	0.588127 ± 0.0451764	138.11 ± 15.3647	0.128402 ± 0.00947268
Nal1(後半)	0.187763 ± 0.0125955	132.497 ± 11.8121	0.0274073 ± 0.0021945
Nal2(後半)	0.90583 ± 0.0750912	185.972 ± 31.2802	0.167988 ± 0.0317585
Nal3(後半)	1.07811 ± 0.0845759	165.209 ± 22.2954	0.138095 ± 0.0267573

実際の補正の様子

得られた p_0, p_1, p_2 の値をもとに400keV以下のすべてのイベントに対し, $-\frac{dN(t)}{dt} = q_0 \left(1 + p_0 \exp\left(-\frac{t}{p_1}\right) + p_2\right) \exp\left(-\frac{1}{q_1} \left(p_0 p_1 \exp\left(-\frac{t}{p_1}\right) + (p_2 + 1)t\right)\right) + q_2 O \mathcal{I} \prec \mathcal{I} \prec \mathcal{I}$

前半のデータのフィッティング (左から順にNal1,2,3)

後半のデータのフィッティング (左から順にNal1,2,3)

補正後の寿命

	q_0	q_1 (寿命)	q_2
Nal1(前半)	197.902 ± 64.9217	128.219 ± 35.6236	122.718 ± 6.00821
Nal2(前半)	155.766 ± 56.0834	172.000 ± 64.8614	133.093 ± 9.50830
Nal3(前半)	123.891 ± 35.5117	196.269 ± 85.9145	125.532 ± 11.5415
Nal1(後半)	549.769 ± 125.958	107.593 ± 20.0749	267.527 ± 8.58059
Nal2(後半)	1060.46 ± 957.598	97.5146 ± 30.5887	297.811 ± 6.64594
Nal3(後半)	544.675 ± 617.560	108.129 ± 49.7126	317.216±7.75443

考察:直接γ線

- 今回のセットアップでは、Na22から発生する1275keVのγ線は 直進すればNalには入射しないはずである。
- •しかし、1275keV付近のイベントは多かった.

シリカパウダーの容器や鉛ブロックの表面で反射している?

考察:700keV付近のピーク

「遅い」領域で、明らかに511keVとは別のピークが見える.

考察:700keV付近のピーク

「遅い」領域で,明らかに511keVとは別のピークが見える.

考察:700keV付近のピーク

ピークをGaussianでFitting 中心は 661.58 ± 9.26 [keV]

考察:700keV付近のピーク

ピークをGaussianでFitting

中心は 661.58 ± 9.26 [keV]

¹³⁷Cs は β 崩壊の結果として661.7keVの γ 線を放出する. この線源は本実験の直前に使用していたので,放射性物質の漏れなど も考えられる.

※ガイガーカウンターで実験装置の周辺を調べたが特に目立った反応は無かった.

考察:イベント数

- 例年の同じ実験よりも最終的に得る寿命の誤差が大きい.
- イベント数が少ないから?

いくつか比べてみると…

- 計測期間日(今回58日)はあまり変わらない。
- イベント数も同じオーダーだった

1275keV等の必要ない信号が多く, 本来見たいイベントが隠されているのでは?

考察:イベント数

時間当たりイベント数の、計測期間中の変動

考察:イベント数

• 線源であるNa22の半減期は約2.6年なので、58日間で原子数は $\left(\frac{1}{2}\right)^{\frac{58}{2.6\times365}} \Rightarrow 0.95$

より5%程度減少する.

- •他にも現象の原因があるはず.
- イベント数が少ない事にも関係しているかもしれない

考察:イベント数について

- •記録したイベント数自体は例年と変わらない
- しかし、これは不要なイベントの記録が増加した結果であり、 ポジトロニウムの寿命測定に必要なイベント数は例年よりも少なくなっていると考えられる。
- ポジトロニウムの対消滅が少なくなっているとするならば、シリカパウダーの入れ方や配置に問題があったか、あるいはシリカパウダーの量が少ないのかもしれない。

使用したシリカパウダーの体積は容器の容積に比べて小さい.

考察:ADCピーク変動

各ADCのピークの計測期間中の変化.縦軸はADC CH,横軸は日付番号

ペデスタル(0keV)は、ADC1が前半と後半でピーク波形が代わったり、 ADC2で時折飛びがあるが、長期的には安定している.

1275keVは明らかな変動があり、全体に減少傾向にある.

511keVも同様.

考察: ADCピーク変動

- OkeVに対応するADC値は変わらず、エネルギーピークに対応する値は減少傾向にある
- PMTからADCへの信号そのものが弱くなっている可能性がある

原因としては

- シンチレータやPMTの劣化
- シンチレータやPMTの温度変化 ※室温は安定していた
- PMT電源電圧の変動

が考えられる.

Pick-off補正関数の決定での不確かさ

$$f(t) = \frac{y_{peak}(t)S(0)}{y_{peak}(t)S(0) - y_{peak}(0)S(t)}$$

これを測定値から決定するために時間幅**Δ**tをとって

$$f(t) = \frac{y_{peak}^{\Delta t}(t)S(0)}{y_{peak}^{\Delta t}(t)S(0) - y_{peak}(0)S^{\Delta t}(t)}$$

(上付きの Δt は($t - \Delta t$, $t + \Delta t$)のデータを時間の1点として集めて測定した値)

Δ*t*が大きいと… 例えば

なるべくΔtは

小さくとった

方がよい

今回の実験では例年に比ベイベント数が少なかった

しかし

そのため Δt を小さくとってしまう と511keVのピークが見えない!

 $\Delta t = 1$ としたときのNal1での 499nsから501nsでのイベント そのため今回の実験では*Δt* = 25*ns*とし, (50,100),(100,150),…,(650,700)と50ns刻みでデータをとり, それぞ れ75ns,125ns,…,675nsでのデータとして扱った

2次元ヒストグラムで見ると(Nal1の場合)

測定された寿命の誤差の要因

511keVより低いエネルギーのイベント数対時間の グラフではなるべくp-Psの影響が少ない部分で フィッティングを行った しかしこの時寿命をフィッティングする範囲に よって結果として得られる寿命の値が大きく上下 する

Pick-off補正での誤差

Pick-off補正で寿命をフィッティングする際の関数は

$$-\frac{dN(t)}{dt} = q_0 \left(1 + p_0 \exp\left(-\frac{t}{p_1}\right) + p_2\right) \exp\left(-\frac{1}{q_1} \left(p_0 p_1 \exp\left(-\frac{t}{p_1}\right) + (p_2 + 1)t\right)\right) + q_2$$

であった.

先ほどはこの関数で実際のデータをフィッティングして寿命を求めた

これらのパラメータは誤差を持つ このパラメータが変化すると関数形が変化するので, 誤差を考慮するときは様々な関数形についてフィッ ティングしてもっともよくデータにあうものを選択し なければならない?

Pick-off補正での誤差

- フィッティング関数の関数形が幅を持つ要因:
- パラメータ*p*0,*p*1,*p*2が持つ誤差
- パラメータq₀,q₁,q₂が持つ誤差
- このうち前者は既知だが後者は未知
- →先ほどの誤差を考慮しない形でのパラメータ q_0,q_1,q_2 が持つ誤差を予測値として用いる

一般にパラメータ $r_0, r_1, ..., r_n$ で特徴づけられる関数g(t)の誤差 $\delta g(t)$ は

$$\delta g(t) = \sqrt{\sum_{i=0}^{n} \left(\frac{\partial g}{\partial r_i} \,\delta r_i\right)^2}$$

で与えられる. (誤差の伝播式)

しかし今回の例では,パラメータq₀,q₁,q₂の誤差が未知なので,単純に上の式でデータをフィッティングしたときの値を予測値として用いる.

$$h(t) = -\frac{dN(t)}{dt}$$
として,各パラメータに対する微分を求める

$$\begin{split} \frac{\partial h}{\partial p_0} &= \left(q_0 - \frac{p_1 q_0}{q_1} (1 + p_2) - \frac{p_0 p_1 q_0}{q_1} \exp\left(-\frac{t}{p_1}\right)\right) \exp\left(-\frac{t}{p_1}\right) \exp\left(-\frac{1}{q_1} \left(p_0 p_1 \exp\left(-\frac{t}{p_1}\right) + (p_2 + 1)t\right)\right) \\ \frac{\partial h}{\partial p_1} &= \left(\frac{p_0 q_0 t}{p_1^2} - q_0 \left(1 + p_0 \exp\left(-\frac{t}{p_1}\right) + p_2\right) \left(\frac{p_0 p_1 t}{q_1 p_1^2} + \frac{p_0}{q_1}\right)\right) \exp\left(-\frac{t}{p_1}\right) \exp\left(-\frac{1}{q_1} \left(p_0 p_1 \exp\left(-\frac{t}{p_1}\right) + (p_2 + 1)t\right)\right) \\ \frac{\partial h}{\partial p_2} &= q_0 \left(1 - \frac{t}{q_1} \left(1 + p_0 \exp\left(-\frac{t}{p_1}\right) + p_2\right)\right) \exp\left(-\frac{1}{q_1} \left(p_0 p_1 \exp\left(-\frac{t}{p_1}\right) + (p_2 + 1)t\right)\right) \\ \frac{\partial h}{\partial q_0} &= \left(1 + p_0 \exp\left(-\frac{t}{p_1}\right) + p_2\right) \exp\left(-\frac{1}{q_1} \left(p_0 p_1 \exp\left(-\frac{t}{p_1}\right) + (p_2 + 1)t\right)\right) \\ \frac{\partial h}{\partial q_1} &= q_0 \left(1 + p_0 \exp\left(-\frac{t}{p_1}\right) + p_2\right) \frac{1}{q_1^2} \left(p_0 p_1 \exp\left(-\frac{t}{p_1}\right) + (p_2 + 1)t\right) \exp\left(-\frac{1}{q_1} \left(p_0 p_1 \exp\left(-\frac{t}{p_1}\right) + (p_2 + 1)t\right)\right) \\ \frac{\partial h}{\partial q_2} &= 1 \end{split}$$

フィッティング関数は誤差を含めて

 $\tilde{h}(t) = h(t) \pm \delta h(t)$

 $h(t) - \delta h(t)$ から $h(t) + \delta h(t)$ のなかでのデータと最もよく合うものを探す

フィッティングの結果

	q_0	q_1 (寿命)	q_2	θ
Nal1(前半)	144.163 ± 69.1251	118.121 ± 47.0916	118.296±6.45647	0.999979 ± 1.05229
Nal2(前半)	115.331 ± 43.4965	145.578±65.2727	127.062 ± 8.67050	0.999999 ± 1.42037
Nal3(前半)	100.719 ± 17.8631	144.859±58.9568	119.506±8.72650	0.999999 ± 1.99311
Nal1(後半)	589.619 ± 178.181	110.746±24.3677	270.167±12.3929	-0.360728 ± 1.30566
Nal2(後半)	16.7103 ± 1.28508	102.200 ± 1.16120	293.743±1.18115	0.999998 ± 1.42370
Nal3(後半)	-120.639 ± 382.146	114.463±29.1351	312.367±5.43904	0.999949 ± 1.38063

データの総数が少ないことによる不確かさを補うため,キャリブレーション,TQ補正 まで済ませたデータを前半,後半,Nal1,2,3を区別することなく同じものとして扱い 寿命を測定してみる

112

パラメータの誤差を考えないときの結果

q_0	q 1(寿命)	q_2
296.028±83.1933	147.146 ± 28.1071	277.705 ± 5.42402

パラメータの誤差を考えたときの結果

q_0	q 1(寿命)	q_2	θ
310.827 ± 244.474	150.133 ± 52.4783	278.492±13.8113	-0.211915 ± 1.33396
