- A fast track towards the spacetime geometry? -

C03 : Masahiro Ibe [ICRR & IPMU] 8/31/2013 @ Neutrino Frontier Workshop

Based on Phys.Rev.D86(2012)013002 (K.Harigaya, MI, T.T.Yanagida)

✓ Why are we so much interested in neutrino mass?

Neutrino mass is a window to high energy physics beyond the Standard Model !

- ✓ Tiny ! → New mass scales ? New symmetry ?
- ✓ Mixing ! → Implications on flavor structure ?
- Majorana ? \rightarrow Lepton number violation ?
- CP-violation ? \rightarrow Baryon asymmetry of the universe ?

Seesaw Mechanism ['79 Yanagida; '79 Gell-Mann, Ramond, Slansky]

In the Standard Model :

$$\mathcal{L} = y_{\alpha\beta} \ell_{L\alpha} \bar{e}_{R\beta} h \qquad \langle h \rangle = v \simeq 174.1 \,\text{GeV}$$

(\alpha, \beta = \eta, \mu, \tau) \qquad \text{the neutrinos remain massless !

Let us introduce the right-handed neutrinos (N_i):

$$\mathcal{L} = y_{\alpha\beta}\ell_{L\alpha}\bar{e}_{R\beta}h + \lambda_{i\alpha}N_{i}\ell_{L\alpha}h - \frac{1}{2}M_{ij}N_{i}N_{j}$$

$$\rightarrow \mathcal{L}_{mass}^{\nu} = -\frac{1}{2}\left[\left(\nu_{L}, N_{R}\right)\begin{pmatrix}0 & m_{D}^{T}\\m_{D} & M\end{pmatrix}\left(\begin{array}{c}\nu_{L}\\N_{R}\end{array}\right)\right] + h.c.$$

$$\rightarrow \text{the neutrinos have finite masses}: \quad m_{\nu} \simeq \frac{m_{D}m_{D}^{T}}{M}$$

 $m_v = O(0.01) \text{ eV for } M = O(10^{11}) \text{ GeV } \& m_D = O(1) \text{GeV } !$

Introduction

Leptogenesis [`86 Fukugita & Yanagida]

Baryon asymmetry (from nucleosynthesis and CMB):

$$\eta_{B_0} = \frac{n_B - n_{\bar{B}}}{n_\gamma} \simeq 6 \times 10^{-10}$$

must have been generated during the evolution of the universe.

Sakharov three conditions ('67) :

- ✓ B (or B-L) symmetry breaking
- C and CP violation

B-L and C/CP violating interactions outside of thermal equilibrium

Introduction

Leptogenesis [`86 Fukugita & Yanagida]

Time

Inflation : $T \rightarrow 0$, $\eta_{B0} \rightarrow 0$ Sakharov conditions Reheating: $T \rightarrow T_R$, $\eta_{B0} = 0$ 1: N_R mass violates L $N_R \rightarrow \ell + h, \, \ell^* + h^*$ N_R are in the thermal equilibrium ($T \gg M_R$) 2: CP-violating decay N_R decays at a temperature T_D $\Gamma[N_R \to \ell + h]$ $\neq \Gamma[N_R \rightarrow \ell^* + h^*]$ Lepton asymmetry is generated ! 3: Out of equillibrium $M_R/T_D \gtrsim 1$ $\langle n_L \rangle \neq 0 \longrightarrow Sphaleron \longrightarrow \langle n_B \rangle \neq 0$ Baryon asymmetry is generated ! $\eta_{B0} \simeq 3 \times 10^{-10} \times \left(\frac{M_R}{10^{10} \,\mathrm{GeV}}\right) \left(\frac{m_{\nu}^{\mathrm{eff}}}{0.05 \mathrm{eV}}\right) \bar{\kappa} \sin \delta_{\mathrm{eff}}$ $\bar{\kappa} \simeq \left(\frac{0.01 \,\mathrm{eV}}{\tilde{m}_1}\right)^{1.16} \left[\tilde{m}_1 = \sum |\lambda_{1\alpha}|^2 \frac{v^2}{M_B} \propto \frac{T_D^2}{M_P^2}\right]$

In the seesaw mechanism...

Tiny neutrino mass can be explained by a new scale
= Right handed neutrino mass !

With the CP-violating phases in the right-handed neutrino sector, the Baryon Asymmetry of the universe can be explained by Leptogenesis.

Future observations of the *CP*-asymmetry in the neutrino oscillations and the neutrino-less double beta decay, will support the ideas of the *seesaw mechanism* and *Leptogenesis* qualitatively.

To what extent will we learn the seesaw mechanism and Leptogenesis quantitatively?

Seesaw Mechanism vs Neutrino oscillation

For given \overline{m}_{vi} and U_{MNS} in the seesaw mechanism

$$\bar{m}_{\nu} = U_{MNS}^T \lambda^T M_R^{-1} \lambda U_{MNS} v^2$$

the Yukawa coupling λ is determined up to R,

$$\lambda = \frac{1}{v} M_R^{1/2} R \, \bar{m}_{\nu}^{1/2} \, U_{MNS}^{\dagger}$$

which satisfies $R^{T}R = 1$ (i.e. complex orthogonal matrix = 6 parameters).

The Yukawa coupling λ cannot be determined by the low energy data...

Relation between CP-violating phases :

Neutrino oscillation : Dirac CP-phase δ in U_{MNS}

 $A_{CP} = P(v_{l} \rightarrow v_{l'}) - P(\bar{v}_{l} \rightarrow \bar{v}_{l'}) \propto J_{CP} = Im[U_{\mu3}U_{e3}^{*}U_{e2} U_{\mu2}^{*}]$ $= (sin2\theta_{12} sin2\theta_{12} sin2\theta_{13} cos\theta_{13} sin\delta)/8$

Leptogenesis : CP-phase of the redundant parameters in R

$$\eta_{B0} \propto m_{\nu}^{\text{eff}} \sin \delta_{\text{eff}} \qquad m_{\nu}^{\text{eff}} \sin \delta_{\text{eff}} = \frac{\text{Im}[\lambda m_{\nu} \lambda^{T}]_{11}}{(\lambda \lambda^{\dagger})_{11}}$$
$$\lambda \lambda^{\dagger} = \frac{1}{v^{2}} M_{R}^{1/2} R \bar{m}_{\nu} R^{\dagger} M_{R}^{1/2} \qquad \lambda m_{\nu} \lambda^{T} = \frac{1}{v^{2}} M_{R}^{1/2} R \bar{m}_{\nu}^{2} R^{T} M_{R}^{1/2}$$
$$\rightarrow \eta_{B0} \text{ does not depend on } U_{MNS} \dots$$

The *CP*-violating phases in the neutrino oscillation and Leptogenesis are independent.

Seesaw Mechanism vs Neutrino oscillation

- The seesaw mechanism is attractive model to explain the observed tiny neutrino mass.
- Without knowing the origin of λ, it is difficult to test the seesaw mechanism from the low energy data.
- Observation of the CP-asymmetry in neutrino oscillations will support Leptogenesis qualitatively, but they are quantitatively independent.

To go one step further?

Top down : Flavor symmetries, Grand Unified Theory...

Instead, we take a **bottom up** approach as a trial where we reduce the number of the Yukawa couplings as small as possible as long as the experimental results are reproduced (Occam's Razor).

We need only two right-handed neutrinos!

 $\bar{m}_{\nu} = U_{MNS}^{T} \lambda^{T} M_{R}^{-1} \lambda U_{MNS} v^{2}$ (rank[\bar{m}_{ν}] = min[rank[U_{MNS}], rank[λ], rank[M_{R}]])

 \rightarrow the lightest neutrino mass = 0!

and a range the area

Number of real valued parameters

Seesaw Mechanism M_i 2 $y_{\alpha\beta}$ 3 $\lambda_{i\alpha}$ 9 = (12-3)

Low energy theory		
Mi	2	
У αβ	3	
\overline{m}_{vi}	2	
U _{MNS}	5 = 3 + 1 + 1	

A complex redundant parameter z :

[Normal Hierarchy : $\overline{m}_{v1} = 0$]

$$R = \left(\begin{array}{ccc} 0 & \cos z & -\sin z \\ 0 & \sin z & \cos z \end{array}\right)$$

[Inverted Hierarchy: $\overline{m}_{v3} = 0$] $R = \begin{pmatrix} -\sin z & \cos z & 0 \\ \cos z & \sin z & 0 \end{pmatrix}$

Minimal Yukawa Structure ? (in diagonalized mass bases)

 \rightarrow we have non-trivial predictions on U_{MNS} and \overline{m}_{vi} .

['02 Frampton, Glashow, Yangagida, '02 Raidal, Strumia, '04 Ibarra, Ross]

Do they reproduce the observed 5 parameters?

Mass differences :

$$\Delta m_{21}^2 = 7.59^{+0.20}_{-0.18} \times 10^{-5} \,\mathrm{eV}^2 \,, \qquad \Delta m_{31}^2 = 2.45^{+0.09}_{-0.09} \times 10^{-3} \,\mathrm{eV}^2 \,(NH) \,,$$
$$\Delta m_{31}^2 = -2.34^{+0120}_{-0.09} \times 10^{-3} \,\mathrm{eV}^2 \,(IH) \,,$$

Mixing Angle :

$$\sin^2 \theta_{12} = 0.312^{+0.017}_{-0.015} , \qquad \sin^2 \theta_{23} = 0.51^{+0.06}_{-0.06} (NH) , \quad \sin^2 \theta_{13} = 0.023^{+0.004}_{-0.004} , \\ \sin^2 \theta_{23} = 0.52^{+0.06}_{-0.06} (IH) ,$$

['11 Schwetz, M. Tortola and J. W. F. Valle, '12 Daya Bay]

We put two-zeros in λ

Redundant parameter "z" is fixed. Two relations on U_{MNS} and \overline{m}_{vi} .

 \rightarrow 5 (out of 7) parameters remain in U_{MNS} and \overline{m}_{vi} !

We have sufficient parameters!

A bit small $sin\theta_{13}$ is predicted... \rightarrow excluded !

Similarly, all the other possibilities in the normal hierarchy are not consistent with the observed 5 parameters...

For the normal hierarchy with $m_1 = 0$, the Yukawa coupling λ depends on $U_{\alpha 3}$, and two-zero conditions lead to a sharp prediction on $sin\theta_{13}$, which contradicts with observations.

Explicit Yukawa coupling in the normal hierarchy

$$\lambda_{1\alpha} = \frac{1}{v} \sqrt{M_1} \left(\sqrt{m_2} U_{\alpha 2}^* c_z - \sqrt{m_3} U_{\alpha 3}^* s_z \right) ,$$

$$\lambda_{2\alpha} = \frac{1}{v} \sqrt{M_2} \left(\sqrt{m_2} U_{\alpha 2}^* s_z + \sqrt{m_3} U_{\alpha 3}^* c_z \right) ,$$

This relation is consistent with data only for $\delta \simeq \pm \pi/2$!

In the inverted hierarchy, we found four consistent possibilities :

$$\lambda_{e2} = \lambda_{\mu 1} = 0 \ (\lambda_{e1} = \lambda_{\mu 2} = 0) \qquad \lambda_{e2} = \lambda_{\tau 1} = 0 \ (\lambda_{e1} = \lambda_{\tau 2} = 0)$$

In these cases, we have very sharp predictions !

The effective Majorana neutrino mass

$$m_{ee} = |m_1 U_{e1}^2 + m_2 U_{e2}^2 + m_3 U_{e3}^2$$

In passing...

 $\begin{cases} \delta \simeq \pi/2 & \text{is getting excluded...} \\ \delta \simeq -\pi/2 & \text{is getting favored...??} \end{cases}$

Implications on Leptogenesis

Neutrino oscillation : Dirac *CP*-phase δ in U_{MNS} **Leptogenesis** : *CP*-phase of the *z* in *R*

They are now interrelated !

$$\eta_{B0} \propto m_{\nu}^{\text{eff}} \sin \delta_{\text{eff}} = \frac{\Delta m_{12}^2}{\tilde{m}_1} \text{Im}[c_z^2] \qquad \tilde{m}_1 = (\lambda \lambda^{\dagger})_{11} \frac{v^2}{M_R}$$
$$\text{Im}[c_z^2] = \pm s_{12} c_{12} t_{23} s_{13} \sin \delta = \pm \frac{J_{CP}}{c_{13}^2 c_{23}^2}$$
$$(\text{plus}): \lambda_{e_1} = \lambda_{\mu_2} = 0, \lambda_{e_1} = \lambda_{\tau_2} = 0 \qquad (\text{minus}): \lambda_{e_2} = \lambda_{\mu_1} = 0, \lambda_{e_2} = \lambda_{\tau_1} = 0$$

The observation of the *CP*-violation in the neutrino oscillation directly probe the *CP*-violation in Leptogenesis!

$$\eta_{B_0} \simeq \pm 5.9 \times 10^{-10} \times \left(\frac{M_1}{5 \times 10^{13} \,\mathrm{GeV}}\right)$$

- The seesaw mechanism is an attractive framework which explains the tiny neutrino masses!
- The seesaw mechanism also makes it possible to explain the Baryon Asymmetry of the universe via Leptogenesis.
- The seesaw mechanism does not give any particular predictions on the mixing angles and the masses...
- The CP-violation used in Leptogenesis is independent from the CP-violation in the neutrino oscillations...

In the spirit of the Occam's Razor, it is possible to reduce the seesaw mechanism down to...

> Two right-handed neutrino Two zeros in the Yukawa coupling λ .

Summary

Once the seesaw mechanism is *shaved* down to this level...

Surprisingly sharp predictions !

- One massless neutrino

Inverted hierarchy! $\delta \simeq \pm \frac{\pi}{2}$ $m_{ee} \simeq 47 \,\mathrm{meV}$

The CP-phase in the neutrino oscillations directly probes the CP-phase in Leptogenesis!

Summary

Any physics behind?

 $\lambda_{1\mu} = \lambda_{2e} = 0$ $\ell_{L\mu} \quad \ell_{Le}$ $\ell_{L\tau} \quad N_{R1} \quad N_{R2} \quad \ell_{L\tau}$

A higher dimensional realization.

The charged leptons are on the branes.

The two right-handed neutrinos reside on the intersections.

The Higgs boson is not localized.

Once the observed δ and m_{ee} are found to be consistent with our predictions, they can be explained by the "surprisingly shaved" seesaw mechanism.

This might reflect the structure of spacetime geometry in higher dimensional theories...

Backup

Sakharov three conditions ('67)

Density operator : $\rho = \Sigma f_n | n > < n |$ $i \partial \rho / \partial t + [\rho, H] = 0$ $\rho(t) = e^{iHt} \rho e^{-iHt}$

Baryon asymmetry : $\langle n_B \rangle(t) = Tr[\rho(t) B]$ with $\langle n_B \rangle(0) = 0$

Sakharov three conditions ('67)

For
$$[H, B] = 0$$
: $< n_B > (t) = < n_B > (0) = 0$ Sakharov #1
For $[H, C] = 0$: $< n_B > (t) = - < n_B > (t) \rightarrow < n_B > (t) = 0$ Sakharov #2
For $[H, CP] = 0$: $< n_B > (t) = - < n_B > (t) \rightarrow < n_B > (t) = 0$

In thermal equilibrium : Baryon production rate = Inverse Baryon production rate

Sakharov #3

Generic two-zero conditions

Normal Hierarchy	Inverted Hierarchy
$\lambda_{1\alpha} = 0$ $\tan z = \frac{\sqrt{m_2} U_{\alpha 2}^*}{\sqrt{m_3} U_{\alpha 3}^*} ,$	$\lambda_{1\alpha} = 0$ $\tan z = \frac{\sqrt{m_2} U_{\alpha 2}^*}{\sqrt{m_1} U_{\alpha 1}^*} ,$
$\lambda_{2\alpha} = 0$	$\lambda_{2\alpha} = 0$
$\tan z = -\frac{\sqrt{m_3} U_{\alpha 3}^*}{\sqrt{m_2} U_{\alpha 2}^*}$	$\tan z = -\frac{\sqrt{m_1} U_{\alpha 1}^*}{\sqrt{m_2} U_{\alpha 2}^*}$
$\lambda = \left(\begin{array}{ccc} a & a' & 0 \\ b & 0 & b' \end{array}\right)$	$\lambda = \left(\begin{array}{ccc} a & a' & 0 \\ b & 0 & b' \end{array}\right)$
$ \rightarrow m_2 U_{\alpha 2} U_{\alpha' 2} + m_3 U_{\alpha 3} U_{\alpha' 3} = 0 $	$ \rightarrow m_2 U_{\alpha 2} U_{\alpha' 2} + m_1 U_{\alpha 1} U_{\alpha' 1} = 0 $
$\lambda = \left(\begin{array}{ccc} a & 0 & 0 \\ b & b' & b'' \end{array}\right)$	$\lambda = \left(\begin{array}{ccc} a & 0 & 0 \\ b & b' & b'' \end{array}\right)$
$ \rightarrow \ U_{\alpha 2} U_{\alpha' 3} = U_{\alpha 3} U_{\alpha' 2} $	$ \rightarrow U_{\alpha 2} U_{\alpha' 1} = U_{\alpha 1} U_{\alpha' 2} $

Definitions of the U_{MNS}

$$U = \begin{bmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{bmatrix} \\ \times \operatorname{diag}(1, e^{i\frac{\alpha_{21}}{2}}, e^{\frac{\alpha_{31}}{2}}) .$$

$$\frac{|U_{e2}|^2}{|U_{e1}|^2} \equiv \tan^2 \theta_{12}; \quad \frac{|U_{\mu3}|^2}{|U_{\tau3}|^2} \equiv \tan^2 \theta_{23}; \quad U_{e3} \equiv \sin \theta_{13} e^{-i\delta},$$

Allowed Yukawa couplings

$$\int_{|\delta/\pi|}^{4} \Delta c_{0.46,0.48,0.50,0.52,0.54,0.56,0.58,0.60}^{4} \text{, W} = 0$$

$$\int_{|\delta/\pi|}^{0} \int_{|\delta/\pi|}^{0} \int_{|\delta/\pi|}$$

In these cases, we have non-trivial very sharp predictions $\delta \simeq \pm \pi/2 \qquad m_{ee} \simeq 47\,{
m meV}$

In the quark sector, the Cabbibo angle is a parameter.

The Cabbibo angle *can be derived* if we put zero in M_d !

$$M_u = \begin{pmatrix} m_u & 0 \\ 0 & m_c \end{pmatrix} \qquad M_d = \begin{pmatrix} 0 & \sqrt{m_d m_s} \\ \sqrt{m_d m_s} & m_s \end{pmatrix}$$

→
$$sin\theta_{C} = (m_{d}/m_{s})^{1/2} \sim 0.22!$$

[S. Weinberg, HUTP-77-A057, Trans.New York Acad.Sci.38:185-201, 1977]

Leptogenesis

$$\epsilon = \frac{\Gamma[N \to \ell + h] - \Gamma[N \to \ell^{\dagger} + h^{\dagger}]}{\Gamma[N \to \ell + h] + \Gamma[N \to \ell^{\dagger} + h^{\dagger}]}$$

$$\simeq \frac{3}{16\pi} \frac{M_1}{v^2} \frac{\mathrm{Im}[(\lambda m_{\nu} \lambda^T)_{11}]}{(\lambda \lambda^{\dagger})_{11}}$$

$$\frac{n_B}{n_{\gamma}} = \frac{28}{79} \frac{n_{B-L}}{n_{\gamma}} = \frac{28}{79} \frac{n_L}{n_{\gamma}} \Big|_{N_R \text{decay}}$$

 $P(v_{\mu} \rightarrow v_{e}) \approx sin^{2}2\theta_{13}T_{1} - \alpha sin2\theta_{13}T_{2} + \alpha sin2\theta_{13}T_{3} + \alpha^{2}T_{4}$

 $T_1 = sin^2 \theta_{23} sin^2 [(1-x_v)\Delta]/(1-x_v)^2$

 $T_2 = sin\delta sin2\theta_{12} sin2\theta_{23} sin\Delta sin(x_v\Delta)/x_v sin[(1-x_v)\Delta]/(1-x_v)$

 $T_3 = \cos\delta \sin 2\theta_{12} \sin 2\theta_{23} \cos\Delta \sin(x_{\nu}\Delta)/x_{\nu} \sin[(1-x_{\nu})\Delta]/(1-x_{\nu})$

 $T_4 = \cos^2\theta_{23} \sin^2 2\theta_{12} \sin^2(x_v \Delta) / x_v^2$

 $\Delta \equiv \Delta m^2{}_{31}L/4E, \alpha \equiv \Delta m^2{}_{21}/\Delta m^2{}_{31} \sim 1/30, x_v \equiv 2\sqrt{2}G_F N_e E/\Delta m^2{}_{31}$