Seesaw Mechanism with Occam's Razor

- A fast track towards the spacetime geometry? -

C03 : Masahiro Ibe [ICRR \& IPMU]
8/31/2013 @ Neutrino Frontier Workshop

Based on Phys.Rev.D86(2012)013002 (K.Harigaya, MI, T.T.Yanagida)

Introduction

\checkmark Why are we so much interested in neutrino mass?
\checkmark Neutrino mass is a window to high energy physics beyond the Standard Model!
\checkmark Tiny! \rightarrow New mass scales? New symmetry?
\checkmark Mixing! \rightarrow Implications on flavor structure?
\checkmark Majorana? \rightarrow Lepton number violation ?
\checkmark CP-violation ? \rightarrow Baryon asymmetry of the universe?

Seesaw Mechanism ['79 Yanagida; '79 Gell-Mann, Ramond, Slansky] In the Standard Model :

$$
\begin{aligned}
\mathcal{L}=y_{\alpha \beta} \ell_{L \alpha} \bar{e}_{R \beta} h & \langle h\rangle=v \simeq 174.1 \mathrm{GeV} \\
(\alpha, \beta=\mathrm{e}, \mu, \tau) & \rightarrow \text { the neutrinos remain massless ! }
\end{aligned}
$$

Let us introduce the right-handed neutrinos $\left(N_{i}\right)$:

$$
\begin{aligned}
\mathcal{L}= & y_{\alpha \beta} \ell_{L \alpha} \bar{e}_{R \beta} h+\lambda_{i \alpha} N_{i} \ell_{L \alpha} h-\frac{1}{2} M_{i j} N_{i} N_{j} \\
\rightarrow & \mathcal{L}_{\text {mass }}^{\nu}=-\frac{1}{2}\left[\left(\nu_{L}, N_{R}\right)\left(\begin{array}{cc}
0 & m_{D}^{T} \\
m_{D} & M
\end{array}\right)\binom{\nu_{L}}{N_{R}}\right]+\text { h.c. } \\
& \rightarrow \text { the neutrinos have finite masses }: \quad m_{\nu} \simeq \frac{m_{D} m_{D}^{T}}{M}
\end{aligned}
$$

$$
m_{v}=O(0.01) \mathrm{eV} \text { for } M=O\left(10^{11}\right) \mathrm{GeV} \& m_{D}=O(1) \mathrm{GeV}!
$$

Introduction

Leptogenesis ['86 Fukugita \& Yanagida]

Baryon asymmetry (from nucleosynthesis and CMB):

$$
\eta_{B_{0}}=\frac{n_{B}-n_{\bar{B}}}{n_{\gamma}} \simeq 6 \times 10^{-10}
$$

must have been generated during the evolution of the universe.

Sakharov three conditions ('67) :
$\checkmark B$ (or $B-L$) symmetry breaking
$\checkmark C$ and $C P$ violation
$\checkmark B-L$ and $C / C P$ violating interactions outside of thermal equilibrium

Introduction

Leptogenesis ['86 Fukugita \& Yanagida]
Inflation: $T \rightarrow 0, \eta_{B O} \rightarrow 0$
Reheating: $T \rightarrow T_{R}, \eta_{B O}=0$
N_{R} are in the thermal equilibrium ($T \gg M_{R}$)

N_{R} decays at a temperature T_{D}

Lepton asymmetry is generated!

Sakharov conditions

$$
\left\{\begin{array}{c}
\text { 1: } N_{R} \text { mass violates } L \\
N_{R} \rightarrow \ell+h, \ell^{*}+h^{*} \\
\text { 2: } C P \text {-violating decay } \\
\Gamma\left[N_{R} \rightarrow \ell+h\right] \\
\quad \neq \Gamma\left[N_{R} \rightarrow \ell^{*}+h^{*}\right]
\end{array}\right.
$$

3: Out of equillibrium
$M_{R} / T_{D} \gtrsim 1$

Baryon asymmetry is generated!

$$
\begin{aligned}
& \eta_{B 0} \simeq 3 \times 10^{-10} \times\left(\frac{M_{R}}{10^{10} \mathrm{GeV}}\right)\left(\frac{m_{\nu}^{\mathrm{eff}}}{0.05 \mathrm{eV}}\right) \bar{\kappa} \sin \delta_{\mathrm{eff}} \\
& \bar{\kappa} \simeq\left(\frac{0.01 \mathrm{eV}}{\tilde{m}_{1}}\right)^{1.16}\left[\tilde{m}_{1}=\sum_{\alpha}\left|\lambda_{1 \alpha}\right|^{2} \frac{v^{2}}{M_{R}} \propto \frac{T_{D}^{2}}{M_{R}^{2}}\right]
\end{aligned}
$$

Introduction

In the seesaw mechanism...

\checkmark Tiny neutrino mass can be explained by a new scale = Right handed neutrino mass !
\checkmark With the $C P$-violating phases in the right-handed neutrino sector, the Baryon Asymmetry of the universe can be explained by Leptogenesis.

Future observations of the $C P$-asymmetry in the neutrino oscillations and the neutrino-less double beta decay, will support the ideas of the seesaw mechanism and Leptogenesis qualitatively.
\checkmark To what extent will we learn the seesaw mechanism and Leptogenesis quantitatively?

Seesaw Mechanism vs Neutrino oscillation

Number of real valued parameters

Seesaw Mechanism

M_{i}	3
$y_{a \beta}$	3
$\lambda_{i a}$	$15=(18-3)$

[Mass diagonalized base]

Low energy theory

$>\quad$| M_{i} | 3 |
| :--- | :--- |
| $y_{a \beta}$ | 3 |
| $\bar{m}_{v i}$ | 3 |
| $U_{M N S}$ | $6=3+1+2$ |

For given $\bar{m}_{v i}$ and $U_{M N S}$ in the seesaw mechanism

$$
\bar{m}_{\nu}=U_{M N S}^{T} \lambda^{T} M_{R}^{-1} \lambda U_{M N S} v^{2}
$$

the Yukawa coupling λ is determined up to R,

$$
\lambda=\frac{1}{v} M_{R}^{1 / 2} R \bar{m}_{\nu}^{1 / 2} U_{M N S}^{\dagger}
$$

which satisfies $R^{\top} R=1$ (i.e. complex orthogonal matrix $=6$ parameters).
The Yukawa coupling λ cannot be determined by the low energy data...

Seesaw Mechanism vs Neutrino oscillation

Relation between CP-violating phases :
Neutrino oscillation: Dirac CP-phase δ in $U_{M N S}$

$$
\begin{aligned}
A_{C P}=P\left(v_{l} \rightarrow v_{l^{\prime}}\right)-P\left(\bar{v}_{l} \rightarrow \bar{v}_{l^{\prime}}\right) & \propto J_{C P}=\operatorname{Im}\left[U_{\mu 3} U_{e 3}{ }^{*} U_{e 2} U_{\mu 2^{*}}\right] \\
& =\left(\sin 2 \theta_{12} \sin 2 \theta_{12} \sin 2 \theta_{13} \cos \theta_{13} \sin \delta\right) / 8
\end{aligned}
$$

Leptogenesis: CP-phase of the redundant parameters in R

$$
\begin{aligned}
& \eta_{B 0} \propto m_{\nu}^{\mathrm{eff}} \sin \delta_{\mathrm{eff}} m_{\nu}^{\mathrm{eff}} \sin \delta_{\mathrm{eff}}=\frac{\operatorname{Im}\left[\lambda m_{\nu} \lambda^{T}\right]_{11}}{\left(\lambda \lambda^{\dagger}\right)_{11}} \\
& \begin{array}{ll}
\lambda^{\dagger}=\frac{1}{v^{2}} M_{R}^{1 / 2} R \bar{m}_{\nu} R^{\dagger} M_{R}^{1 / 2} & \\
& \\
& \rightarrow m_{\nu} \lambda^{T}=\frac{1}{v^{2}} M_{R}^{1 / 2} R \bar{m}_{\nu}^{2} R^{T} M_{R}^{1 / 2} \\
& \eta_{B \text { does not depend on } U_{M N S} \ldots}
\end{array} \\
& \\
&
\end{aligned}
$$

The $C P$-violating phases in the neutrino oscillation and Leptogenesis are independent.

Seesaw Mechanism vs Neutrino oscillation

\checkmark The seesaw mechanism is attractive model to explain the observed tiny neutrino mass.
\checkmark Without knowing the origin of λ, it is difficult to test the seesaw mechanism from the low energy data.
\checkmark Observation of the CP-asymmetry in neutrino oscillations will support Leptogenesis qualitatively, but they are quantitatively independent.

To go one step further?

Top down: Flavor symmetries, Grand Unified Theory... Instead, we take a bottom up approach as a trial where we reduce the number of the Yukawa couplings as small as possible as long as the experimental results are reproduced (Occam's Razor).

Seesaw Mechanism with Occam's Razor

We need only two right-handed neutrinos!

$$
\begin{aligned}
& \bar{m}_{\nu}=U_{M N S}^{T} \lambda^{T} M_{R}^{-1} \lambda U_{M N S} v^{2} \\
& \left(\operatorname{rank}\left[\bar{m}_{v}\right]=\min \left[\operatorname{rank}\left[U_{M N S}\right], \operatorname{rank}[\lambda], \operatorname{rank}\left[M_{R}\right]\right]\right) \\
& \quad \rightarrow \text { the lightest neutrino mass }=0!
\end{aligned}
$$

Number of real valued parameters

Seesaw Mechanism

M_{i}	2
$y_{a \beta}$	3
$\lambda_{i a}$	$9=(12-3)$

Low energy theory

$>\quad$| M_{i} | 2 |
| :--- | :--- |
| $y_{a \beta}$ | 3 |
| $\bar{m}_{v i}$ | 2 |
| $U_{\text {MNS }}$ | $5=3+1+1$ |

\checkmark A complex redundant parameter z:
[Normal Hierarchy : $\bar{m}_{v 1}=0$]

$$
R=\left(\begin{array}{ccc}
0 & \cos z & -\sin z \\
0 & \sin z & \cos z
\end{array}\right)
$$

[Inverted Hierarchy : $\bar{m}_{v 3}=0$]

$$
R=\left(\begin{array}{ccc}
-\sin z & \cos z & 0 \\
\cos z & \sin z & 0
\end{array}\right)
$$

Seesaw Mechanism with Occam's Razor

Minimal Yukawa Structure ? (in diagonalized mass bases)
$\mathbf{X} \quad \lambda=\left(\begin{array}{ccc}a & 0 & 0 \\ b & 0 & 0\end{array}\right) \quad$ only one massive neutrino...
X $\lambda=\left(\begin{array}{ccc}a & a^{\prime} & 0 \\ b & 0 & 0\end{array}\right) \quad$ only one neutrino mixing angle...
Х $\lambda=\left(\begin{array}{ccc}a & a^{\prime} & 0 \\ b & b^{\prime} & 0\end{array}\right) \quad$ only two neutrino mixing angles...
$\bigcirc \lambda=\left(\begin{array}{ccc}a & a^{\prime} & 0 \\ b & 0 & b^{\prime}\end{array}\right) \quad \lambda=\left(\begin{array}{ccc}a & 0 & 0 \\ b & b^{\prime} & b^{\prime \prime}\end{array}\right)$

Seesaw Mechanism

$$
\begin{array}{ll}
M_{i} & 2 \\
y_{a \beta} & 3 \\
\lambda_{i a} & 5=(8-3)
\end{array}
$$

Low energy theory

$<$| M_{i} | 2 |
| :--- | :--- |
| $y_{a \beta}$ | 3 |
| $\bar{m}_{v i}$ | 2 |
| $U_{\text {MNS }}$ | $5=3+1+1$ |

\rightarrow we have non-trivial predictions on $U_{M N S}$ and $\bar{m}_{v i}$. ['02 Frampton, Glashow, Yangagida, '02 Raidal, Strumia, '04 Ibarra, Ross]

Seesaw Mechanism with Occam's Razor

Do they reproduce the observed 5 parameters ?

\checkmark Mass differences:

$$
\Delta m_{21}^{2}=7.59_{-0.18}^{+0.20} \times 10^{-5} \mathrm{eV}^{2}, \quad \Delta m_{31}^{2}=2.45_{-0.09}^{+0.09} \times 10^{-3} \mathrm{eV}^{2}(N H), ~ 子, ~ \Delta m_{31}^{2}=-2.34_{-0.09}^{+0120} \times 10^{-3} \mathrm{eV}^{2}(I H), ~ \$
$$

\checkmark Mixing Angle :

$$
\begin{array}{ll}
\sin ^{2} \theta_{12}=0.312_{-0.015}^{+0.017}, & \sin ^{2} \theta_{23}=0.51_{-0.06}^{+0.06}(N H), \sin ^{2} \theta_{13}=0.023_{-0.004}^{+0.004} \\
& \sin ^{2} \theta_{23}=0.52_{-0.06}^{+0.06}(I H),
\end{array}
$$

['11 Schwetz, M. Tortola and J.W. F. Valle, '12 Daya Bay]

We put two-zeros in λ

$\{$ Redundant parameter " z " is fixed.
Two relations on $U_{\text {MNS }}$ and $\bar{m}_{v i}$.
$\rightarrow 5$ (out of 7) parameters remain in $U_{\text {MNS }}$ and $\bar{m}_{v i}$!

Seesaw Mechanism with Occam's Razor

Ex1) $\lambda_{1 e}=\lambda_{2 \mu}=0$ or $\lambda_{1 \mu}=\lambda_{2 e}=0$ in the normal hierarchy.
A complex relation on $U_{\text {MNS }}$ and $\bar{m}_{v i}$.

$$
m_{3} s_{13} s_{23} e^{-i(\delta+\alpha)}+m_{2} s_{12}\left(c_{12} c_{23}-e^{i \delta} s_{12} s_{13} s_{23}\right)=0
$$

This condition cannot be satisfied for the observed 5 parameters for any values of a and δ !

A bit small $\sin \theta_{13}$ is predicted... \rightarrow excluded!

Seesaw Mechanism with Occam's Razor

\checkmark Similarly, all the other possibilities in the normal hierarchy are not consistent with the observed 5 parameters...

For the normal hierarchy with $m_{1}=0$, the Yukawa coupling λ depends on $U_{a 3}$, and two-zero conditions lead to a sharp prediction on $\sin \theta_{13}$, which contradicts with observations.

Explicit Yukawa coupling in the normal hierarchy

$$
\begin{aligned}
& \lambda_{1 \alpha}=\frac{1}{v} \sqrt{M_{1}}\left(\sqrt{m_{2}} U_{\alpha 2}^{*} c_{z}-\sqrt{m_{3}} U_{a 3}^{*} s_{z}\right), \\
& \lambda_{2 \alpha}=\frac{1}{v} \sqrt{M_{2}}\left(\sqrt{m_{2}} U_{a 2}^{*} s_{z}+\sqrt{m_{3}} U_{a 3}^{*} c_{z}\right),
\end{aligned}
$$

Seesaw Mechanism with Occam's Razor

Ex2) $\lambda_{1 e}=\lambda_{2 \mu}=0 \quad$ or $\quad \lambda_{1 \mu}=\lambda_{2 e}=0 \quad$ in the inverted Hierarchy.
A complex relation on $U_{M N S}$ and $\bar{m}_{V i}$.

$$
m_{1} c_{12}\left(c_{23} s_{12}+c_{12} s_{23} s_{13} e^{i \delta}\right)-m_{2} s_{12}\left(c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta}\right) e^{i \alpha}=0
$$

For given $\Delta m_{21}^{2}, \Delta m_{31}^{2}, \sin ^{2} \theta_{12}$ and $\sin ^{2} \theta_{23}$

This relation is consistent with data only for $\delta \simeq \pm \pi / 2!$

Seesaw Mechanism with Occam's Razor

In the inverted hierarchy, we found four consistent possibilities :

$$
\lambda_{e 2}=\lambda_{\mu 1}=0\left(\lambda_{e 1}=\lambda_{\mu 2}=0\right) \quad \lambda_{e 2}=\lambda_{T 1}=0\left(\lambda_{e 1}=\lambda_{T 2}=0\right)
$$

In these cases, we have very sharp predictions!

$$
\delta \simeq \pm \frac{\pi}{2}
$$

$$
m_{e e} \simeq 47 \mathrm{meV}
$$

The effective Majorana neutrino mass

$$
m_{e e}=\left|m_{1} U_{e 1}^{2}+m_{2} U_{e 2}^{2}+m_{3} U_{e 3}^{2}\right|
$$

Seesaw Mechanism with Occam's Razor

In passing...

Combination of the latest T2K and reactor experiments...

$\left\{\begin{array}{l}\delta \simeq \pi / 2 \quad \text { is getting excluded... } \\ \delta \simeq-\pi / 2 \text { is getting favored...?? }\end{array}\right.$

Seesaw Mechanism with Occam's Razor

Implications on Leptogenesis
$\left\{\begin{array}{l}\text { Neutrino oscillation : Dirac CP-phase } \delta \text { in } U_{M N S} \\ \text { Leptogenesis: } C P \text {-phase of the } z \text { in } R\end{array}\right.$
They are now interrelated !

$$
\begin{aligned}
& \eta_{B 0} \propto m_{\nu}^{\text {eff }} \sin \delta_{\text {eff }}=\frac{\Delta m_{12}^{2}}{\tilde{m}_{1}} \operatorname{Im}\left[c_{z}^{2}\right] \quad \tilde{m}_{1}=\left(\lambda \lambda^{\dagger}\right)_{11} \frac{v^{2}}{M_{R}} \\
& \operatorname{Im}\left[c_{z}^{2}\right]= \pm s_{12} c_{12} t_{23} s_{13} \sin \delta= \pm \frac{J_{C P}}{c_{13}^{2} c_{23}^{2}} \\
& \begin{array}{ll}
\text { plus) }: \lambda_{e 1}=\lambda_{\mu 2}=0, \lambda_{e 1}=\lambda_{t 2}=0 \quad \text { (minus) }: \lambda_{e 2}=\lambda_{\mu 1}=0, \lambda_{e 2}=\lambda_{\tau 1}=0
\end{array}
\end{aligned}
$$

The observation of the $C P$-violation in the neutrino oscillation directly probe the $C P$-violation in Leptogenesis!

$$
\eta_{B_{0}} \simeq \pm 5.9 \times 10^{-10} \times\left(\frac{M_{1}}{5 \times 10^{13} \mathrm{GeV}}\right)
$$

Summary

\checkmark The seesaw mechanism is an attractive framework which explains the tiny neutrino masses!
The seesaw mechanism also makes it possible to explain the Baryon Asymmetry of the universe via Leptogenesis.
\checkmark The seesaw mechanism does not give any particular predictions on the mixing angles and the masses...
\checkmark The $C P$-violation used in Leptogenesis is independent from the $C P$-violation in the neutrino oscillations...

In the spirit of the Occam's Razor, it is possible to reduce the seesaw mechanism down to...

> Two right-handed neutrino
> Two zeros in the Yukawa coupling λ.

Summary

Once the seesaw mechanism is shaved down to this level...

Surprisingly sharp predictions !

\checkmark One massless neutrino
\checkmark Inverted hierarchy!
$\checkmark \delta \simeq \pm \frac{\pi}{2}$
$\checkmark m_{e e} \simeq 47 \mathrm{meV}$
The CP-phase in the neutrino oscillations directly probes the $C P$-phase in Leptogenesis !

Summary

Any physics behind?

$$
\lambda_{1 \mu}=\lambda_{2 e}=0
$$

A higher dimensional realization.

The charged leptons are on the branes. The two right-handed neutrinos reside on the intersections.

The Higgs boson is not localized.

Once the observed δ and $m_{e e}$ are found to be consistent with our predictions, they can be explained by the "surprisingly shaved" seesaw mechanism.

This might reflect the structure of spacetime geometry in higher dimensional theories...

Backup

Density operator: $\rho=\Sigma \mathrm{f}_{\mathrm{n}}|\mathrm{n}><\mathrm{n}|$

$$
\begin{aligned}
& \mathrm{i} \partial \rho / \partial \mathrm{t}+[\rho, \mathrm{H}]=0 \\
& \rho(\mathrm{t})=\mathrm{e}^{\mathrm{iHt}} \rho \mathrm{e}^{-\mathrm{iHt}}
\end{aligned}
$$

Baryon asymmetry: $\left\langle\mathrm{n}_{\mathrm{B}}\right\rangle(\mathrm{t})=\operatorname{Tr}[\rho(\mathrm{t}) \mathrm{B}]$ with $\left\langle\mathrm{n}_{\mathrm{B}}\right\rangle(0)=0$

Sakharov three conditions ('67)

$$
\begin{aligned}
& \text { For }[H, B]=0:\left\langle n_{B}\right\rangle(t)=\left\langle n_{B}\right\rangle(0)=0 \quad \text { Sakharov \#1 } \\
& \text { For }[H, C]=0:\left\langle n_{B}\right\rangle(t)=-\left\langle n_{B}\right\rangle(t) \rightarrow\left\langle n_{B}\right\rangle(t)=0 \quad \text { Sakharov \#2 } \\
& \text { For }[H, C P]=0:\left\langle n_{B}\right\rangle(t)=-\left\langle n_{B}\right\rangle(t) \rightarrow\left\langle n_{B}\right\rangle(t)=0
\end{aligned}
$$

In thermal equilibrium : Baryon production rate = Inverse Baryon production rate

Normal Hierarchy

$$
\begin{aligned}
& \lambda_{1 \alpha}= 0 \\
& \tan z=\frac{\sqrt{m_{2}} U_{\alpha 2}^{*}}{\sqrt{m_{3}} U_{\alpha 3}^{*}}, \\
& \lambda_{2 \alpha}=0 \\
& \tan z=-\frac{\sqrt{m_{3}} U_{\alpha 3}^{*}}{\sqrt{m_{2}} U_{\alpha 2}^{*}} \\
& \lambda=\left(\begin{array}{ccc}
a & a^{\prime} & 0 \\
b & 0 & b^{\prime}
\end{array}\right) \\
& \rightarrow m_{2} U_{\alpha 2} U_{\alpha^{\prime} 2}+m_{3} U_{\alpha 3} U_{\alpha^{\prime} 3}=0 \\
& \lambda=\left(\begin{array}{ccc}
a & 0 & 0 \\
b & b^{\prime} & b^{\prime \prime}
\end{array}\right) \\
& \rightarrow U_{\alpha 2} U_{\alpha^{\prime} 3}=U_{\alpha 3} U_{\alpha^{\prime} 2}
\end{aligned}
$$

Inverted Hierarchy

$$
\begin{aligned}
& \lambda_{1 \alpha}=0 \\
& \quad \tan z=\frac{\sqrt{m_{2}} U_{\alpha 2}^{*}}{\sqrt{m_{1}} U_{\alpha 1}^{*}}, \\
& \lambda_{2 \alpha}=0
\end{aligned}
$$

$$
\tan z=-\frac{\sqrt{m_{1}} U_{\alpha 1}^{*}}{\sqrt{m_{2}} U_{\alpha 2}^{*}}
$$

$$
\lambda=\left(\begin{array}{ccc}
a & a^{\prime} & 0 \\
b & 0 & b^{\prime}
\end{array}\right)
$$

$$
\rightarrow m_{2} U_{\alpha 2} U_{\alpha^{\prime} 2}+m_{1} U_{\alpha 1} U_{\alpha^{\prime} 1}=0
$$

$$
\lambda=\left(\begin{array}{ccc}
a & 0 & 0 \\
b & b^{\prime} & b^{\prime \prime}
\end{array}\right)
$$

$$
\rightarrow \quad U_{\alpha 2} U_{\alpha^{\prime} 1}=U_{\alpha 1} U_{\alpha^{\prime} 2}
$$

Generic two-zero conditions

Definitions of the $U_{\text {MNS }}$

$$
\begin{aligned}
& U=\left[\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta} \\
-s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta} & s_{23} c_{13} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta} & c_{23} c_{13}
\end{array}\right] \\
& \times \operatorname{diag}\left(1, e^{i \frac{\alpha_{21}}{2}}, e^{e^{\alpha_{31}^{2}}}\right) \\
& \\
& \frac{\left|U_{e 2}\right|^{2}}{\left|U_{e 1}\right|^{2}} \equiv \tan ^{2} \theta_{12} ; \quad \frac{\left|U_{\mu 3}\right|^{2}}{\left|U_{\tau 3}\right|^{2}} \equiv \tan ^{2} \theta_{23} ; \quad U_{e 3} \equiv \sin \theta_{13} e^{-i \delta}
\end{aligned}
$$

Allowed Yukawa couplings

In the inverted hierarchy, we found four consistent possibilities :

$$
\lambda_{e 2}=\lambda_{\mu 1}=0\left(\lambda_{e 1}=\lambda_{\mu 2}=0\right)
$$

$$
\left.\begin{array}{l}
\lambda=\left(\begin{array}{ccc}
0.12 \times e^{-0.053 i} & 0 & 0.028 \times e^{1.5 i} \\
0 & 0.28 \times e^{3.0 i} & 0.29 \times e^{-0.12 i}
\end{array}\right) \times\left(M_{1} / 10^{13} \mathrm{GeV}\right)^{1 / 2} \\
\times\left(M_{2} / 10^{14} \mathrm{GeV}\right)^{1 / 2}
\end{array}\right\}
$$

$$
\lambda_{e 2}=\lambda_{T 1}=0\left(\lambda_{e 1}=\lambda_{T 2}=0\right)
$$

$$
\begin{aligned}
& \lambda=\left(\begin{array}{ccc}
0.12 \times e^{-0.049 i} & 0.027 \times e^{-1.6 i} & 0 \\
0 & 0.28 \times e^{3.0 i} & 0.29 \times e^{-0.11 i}
\end{array}\right) \begin{array}{c}
\times\left(M_{1} / 10^{13} \mathrm{GeV}\right)^{1 / 2} \\
\mathrm{x}\left(M_{2} / 10^{14} \mathrm{GeV}\right)^{1 / 2}
\end{array} \\
& z=0.98 \times e^{-3.1 i}
\end{aligned}
$$

In these cases, we have non-trivial very sharp predictions

$$
\delta \simeq \pm \pi / 2 \quad m_{e e} \simeq 47 \mathrm{meV}
$$

Putting zero ?

In the quark sector, the Cabbibo angle is a parameter.
The Cabbibo angle can be derived if we put zero in M_{d} !

$$
\begin{aligned}
& M_{u}=\left(\begin{array}{cc}
m_{u} & 0 \\
0 & m_{c}
\end{array}\right) \quad M_{d}=\left(\begin{array}{cc}
0 & \sqrt{m_{d} m_{s}} \\
\sqrt{m_{d} m_{s}} & m_{s}
\end{array}\right) \\
& \rightarrow \sin \theta_{C}=\left(m_{d} / m_{s}\right)^{1 / 2} \sim 0.22!
\end{aligned}
$$

[S. Weinberg, HUTP-77-A057, Trans.New York Acad.Sci.38:185-201, 1977]

Leptogenesis

$$
\begin{aligned}
\epsilon & =\frac{\Gamma[N \rightarrow \ell+h]-\Gamma\left[N \rightarrow \ell^{\dagger}+h^{\dagger}\right]}{\Gamma[N \rightarrow \ell+h]+\Gamma\left[N \rightarrow \ell^{\dagger}+h^{\dagger}\right]} \\
& \simeq \frac{3}{16 \pi} \frac{M_{1}}{v^{2}} \frac{\operatorname{Im}\left[\left(\lambda m_{\nu} \lambda^{T}\right)_{11}\right]}{\left(\lambda \lambda^{\dagger}\right)_{11}} \\
& \frac{n_{B}}{n_{\gamma}}=\frac{28}{79} \frac{n_{B-L}}{n_{\gamma}}=\left.\frac{28}{79} \frac{n_{L}}{n_{\gamma}}\right|_{N_{R} \text { decay }}
\end{aligned}
$$

ve appearance

$$
\begin{aligned}
& \mathrm{P}\left(\mathrm{v}_{\mu} \rightarrow \mathrm{v}_{\mathrm{e}}\right) \cong \sin ^{2} 2 \theta_{13} \mathrm{~T}_{1}-a \sin 2 \theta_{13} \mathrm{~T}_{2}+\alpha \sin 2 \theta_{13} \mathrm{~T}_{3}+\mathrm{a}^{2} \mathrm{~T}_{4} \\
& \mathrm{~T}_{1}=\sin ^{2} \theta_{23} \sin ^{2}\left[\left(1-x_{v}\right) \Delta\right] /\left(1-x_{v}\right)^{2} \\
& \mathrm{~T}_{2}=\sin \delta \sin 2 \theta_{12} \sin 2 \theta_{23} \sin \Delta \sin \left(\mathrm{x}_{\mathrm{v}} \Delta\right) / x_{v} \sin \left[\left(1-\mathrm{x}_{\mathrm{v}}\right) \Delta\right] /\left(1-\mathrm{x}_{\mathrm{v}}\right) \\
& \mathrm{T}_{3}=\cos \delta \sin 2 \theta_{12} \sin 2 \theta_{23} \cos \Delta \sin \left(\mathrm{x}_{\mathrm{v}} \Delta\right) / x_{v} \sin \left[\left(1-\mathrm{x}_{\mathrm{v}}\right) \Delta\right] /\left(1-\mathrm{x}_{\mathrm{v}}\right) \\
& \mathrm{T}_{4}=\cos ^{2} \theta_{23} \sin ^{2} 2 \theta_{12} \sin ^{2}\left(\mathrm{x}_{\mathrm{v}} \Delta\right) / \mathrm{x}_{\mathrm{v}}^{2} \\
& \Delta \equiv \Delta \mathrm{~m}^{2}{ }_{31} \mathrm{~L} / 4 \mathrm{E}, \mathrm{a} \equiv \Delta \mathrm{~m}^{2} 21 / \Delta \mathrm{m}_{31} \sim 1 / 30, \mathrm{x}_{\mathrm{v}} \equiv 2 \sqrt{2}^{2} \mathrm{G}_{\mathrm{F}} N_{\mathrm{e}} \mathrm{E} / \Delta \mathrm{m}^{2} 31
\end{aligned}
$$

