IceCube実験による宇宙ニュートリノの証拠 石原安野 千葉大学

11/11 11101

新学術領域「ニュートリノフロンティア」研究会 東エ大 2013年8月31日

The High Energy Deep Universe Mystery

- 起源のわからない高エネルギー粒子が宇宙から地球に飛来している。どこから?
 エネルギーはLHC加速器の1000万倍以上に達する (100EeV=10keV(x-ray) x 10,000,000,000,000,000!)
- ・ 巨大ブラックホールである活動銀河核(AGN)や宇宙で最も激しい爆発現象であるガンマ 線爆発(GRB)といった極限爆発現象は遠方(若い)宇宙に分布
 - 高エネルギー宇宙の進化の歴史には謎が多い

Extremely-high energy emission in the Universe

3

Extremely-high energy emission in the Universe

Extremely-high energy emission in the Universe

Extremely-high energy neutrinos in the Universe

The Largest Neutrino Detector in the world: The IceCube Detector

7

IceCube Construction and Runs

Strings	Data	Livetime	trigger rate	HE v rate
	(year)		(Hz)	(per day)
IC40	2008-09	375 days	1100	~40/ day
IC59	2009-10	350 days	1900	~70/ day
IC79	2010-11	320 days	2250	~100/day
IC86-I	2011- 2012	360 days	2700	~120/day
IC86-II	2012-2013	360 days	2700	~120/day
IC86-III	2013-	TBD	2700	~120/day

Very stable full operation since May 2011

Aya Ishihara ニュートリノフロンティア研究会

Detection Principle

Dark and transparent material

 μ , τ or cascades

Cherenkov light

An array of photomultiplier tubes

IceCube event signatures

τ

e

hadronic shower With 59 strings 2009

~100TeV up-going muon track event

With 40 strings, 2008 Dec

W.

high energy cosmic-ray induced atmospheric muospheric build build

'Brightness' is the signature for UHE neutrinos

below ~PeV, upwardgoing tracks and cascade-like topology is important

$$-\left\langle\frac{dE}{dX}\right\rangle = \alpha + \beta E$$

NPE is the number of photoelectron signals measured by IceCube detector

from MC simulation

Extraterrestrial neutrino search with v_{μ}

Extraterrestrial neutrino search with cascades

Aya Ishihara ニュートリノフロンティア研究会

Ava Ishib

Starting Event Search (cascade+starting track)

- Followup analysis on the UHE cascade-like events with sensitivity extended down to 30TeV
- Atmospheric muon/neutrino background largely reduced by vetoing events with initial photons in outer layers

 Down-going atmospheric neutrinos also reduced by vetoing atmospheric muon events

High Energy Veto Method

Events with NPE > 6000 (the case for EHE, NPE > 60000)

Effective Areas Propositional to expected event rates

Area x \mathbf{v} flux x 4π x livetime = event rate

Comparisons of different channels

• 緑=starting track

Starting eventsのNPE分布

2010-2012 (2 years)

- 26 new events found(19 cascades, 7 with tracks)
- over background expectation of 12 +/-4 atmospheric muons(6±3) and atmospheric neutrinos(6±2)
- no new events near the PeV region but deviation from background only hypothesis observed

Already observed two events

Examples of events

declination: -0.4° deposited energy: 71TeV

declination: 40.3° deposited energy: 253TeV

Energy, declination and topology

Aya Ishihara ニュートリノフロンティア研究会

Up-Down Asymmetry

expected Energy vs $\cos \theta$ distributions

Vertex positions

Extraterrestrial neutrino search with starting events

- Inconsistent with background only model at 3.3σ for 26 events and 4.1σ with 28 events combined (preliminary)
- Event features (reconstructed energy, zenith angle, vertex positions and topology) consistent with background + astrophysical (φ_{astro}∞E⁻²) fluxes
- Best fit results $E^2\phi=3.6x10-8$ [GeV cm-1 s-1 sr-1] with a hard cut off at 1.6PeV
 - Need to be evaluated with adding more statistics soon!

p-values	All 28 Events	21 Cascade Events
Cluster Search	~80%	8%

Aya Ishihara ニュートリノフロンティア研究会

Summary

- IceCube実験完成後データとほぼ完成時の データ2年分をNPEとVETOによるシンプル な解析で宇宙ニュートリノ探査を行った。
- 背景事象のみの仮説からは4.1oレベルで
 inconsistent
- 期待される信号分布は今のところisotropic, flavor 1:1:1,背景事象よりハードな φ ∝ E^{-2.2~-2.0}分布と矛盾はない

• ほかのチャンネルからの結果ともconsistent

The Energy–Brightness relation

	Dep. Energy	Time	Decl.	R.A.	Med. Angular	Event
ID	(TeV)	(MJD)	(deg.)	(deg.)	Error (deg.)	Type
1	117^{+15}_{-15}	55351	-28.0	282.6	25.4	Shower
2	$47.6^{+6.5}_{-5.4}$	55351	-1.8	35.2	16.3	Shower
3	$78.7^{+10.8}_{-8.7}$	55451	-31.2	127.9	$\lesssim 1.4$	Track
4	165^{+20}_{-15}	55477	-51.2	169.5	7.1	Shower
5	$71.4^{+9.0}_{-9.0}$	55512	-0.4	110.6	$\lesssim 1.2$	Track
6	$28.4^{+2.7}_{-2.5}$	55567	-27.2	133.9	9.8	Shower
7	$34.3^{+3.5}_{-4.3}$	55571	-45.1	15.6	24.1	Shower
8	$32.6^{+10.3}_{-11.1}$	55608	-21.2	182.4	$\lesssim 1.3$	Track
9	$63.2^{+7.1}_{-8.0}$	55685	33.6	151.3	16.5	Shower
10	$97.2^{+10.4}_{-12.4}$	55695	-29.4	5.0	8.1	Shower
11	$88.4^{+12.5}_{-10.7}$	55714	-8.9	155.3	16.7	Shower
12	104^{+13}_{-13}	55739	-52.8	296.1	9.8	Shower
13	253^{+26}_{-22}	55756	40.3	67.9	$\lesssim 1.2$	Track
14	$1041 {}^{+132}_{-144}$	55782	-27.9	265.6	13.2	Shower
15	$57.5^{+8.3}_{-7.8}$	55783	-49.7	287.3	19.7	Shower
16	$30.6^{+3.6}_{-3.5}$	55798	-22.6	192.1	19.4	Shower
17	200^{+27}_{-27}	55800	14.5	247.4	11.6	Shower
18	$31.5^{+4.6}_{-3.3}$	55923	-24.8	345.6	$\lesssim 1.3$	Track
19	$71.5^{+7.0}_{-7.2}$	55925	-59.7	76.9	9.7	Shower
20	$1141 {}^{+143}_{-133}$	55929	-67.2	38.3	10.7	Shower
21	$30.2^{+3.5}_{-3.3}$	55936	-24.0	9.0	20.9	Shower
22	220^{+21}_{-24}	55941	-22.1	293.7	12.1	Shower
23	$82.2^{+8.6}_{-8.4}$	55949	-13.2	208.7	$\lesssim 1.9$	Track
24	$30.5^{+3.2}_{-2.6}$	55950	-15.1	282.2	15.5	Shower
25	$33.5^{+4.9}_{-5.0}$	55966	-14.5	286.0	46.3	Shower
26	210^{+29}_{-26}	55979	22.7	143.4	11.8	Shower
27	$60.2^{+5.6}_{-5.6}$	56008	-12.6	121.7	6.6	Shower
28	$46.1_{-4.4}^{+5.7}$	56048	-71.5	164.8	$\lesssim 1.3$	Track