ミューオンニュートリノから 電子ニュートリノへの振動発見

西村 康宏 東京大学 宇宙線研究所 2000の 宇宙ニュートリノ観測情報融合センター

ニュートリノフロンティア研究会 2013/8/30(土)

• T2K実験による $v_{\mu} \rightarrow v_{e}$ 発見まで Ov_{μ} ビームから長基線飛来中に出現する v_{e} を見つける Tokai to Kamioka (T2K) 実験

ニュートリノ振動解明へ向けて MNS行列 質量 フレーバー レプトンCP 位相? 固有状態 固有状態 $\sin\theta_{13}e^{-i\delta}$ $\cos\theta_{12}$ $\cos\theta_{13}$ 0 $\sin\theta_{12}$ 0 v_{e} 0 \mathcal{V}_1 0 $-\sin\theta_{12}$ $\cos\theta_{12}$ $\sin\theta_{23}$ $\cos\theta_{23}$ 0 0 0 0 V_{2} \mathcal{V}_{μ} = $-\sin\theta_{13}e^{i\delta}$ $\cos\theta_{23}$ $\cos\theta_{13}$ 0 $-\sin\theta_{23}$ 0 0 V_3 V_{τ} $\theta_{12} = 33.6^{\circ} \pm 1.0^{\circ}$ $\theta_{23} = 45^{\circ} \pm 6^{\circ}$ $\theta_{13} < 11^{\circ}, > 0$? θ_{23} octant (<45° or >45° ?) ニュートリノ質量階層性 2011年から、T2Kをはじめ θ₁₃測定値が報告された 今回使用するデフォルト値 Normal Inverted $7.6 \times 10^{-5} \text{ eV}^2$ Δm_{12}^2 $\theta_{13} = 9.1^{\circ} \pm 0.6^{\circ}$ ~5×10-5eV2 Δm_{32}^2 $2.4 \times 10^{-3} \text{ eV}^2$ Daya Bay sin ${}^{2}2\theta_{13} = 0.090 {}^{+0.008}_{-0.009}$ 2.4x10⁻³ $\sin^2 2\theta_{23}$ 1.0 ~3×10⁻³eV² $\sin^2 2\theta_{12}$ 7.6x10⁻⁵ T2Kではθ₁₃の測定に 0.8495 m_3^2 $\sin^2 2\theta_{13}$ これら全で(θ_{23} 、 δ_{CP} 、 0.1 (or 0) $[eV^2]$? Δm²₃₂)が関わる δ_{CP} 0 degree

ミューオンニュートリノから電子ニュートリノへの振動発見(西村康宏)

2013/8/30

 θ_{13} と v_e の出現・消失チャンネル ● 原子炉からの反v』消失 Double CHOOZ, Daya Bay, RENO 実験 $P(\overline{\nu}_e \rightarrow \overline{\nu}_e) \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{1.27 \Delta m_{31}^2 L[m]}{E_{\nu}[MeV]} \right)$ θ13 を精度良く測定可能 加速器v_uからのv_e出現 T2K 実験 $P(v_{\mu} \rightarrow v_{e}) = \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2} \left(\frac{1.27\Delta m_{31}^{2} L[km]}{E_{v}[GeV]}\right)$ 他パラメータとも相関 $+8C_{13}^2S_{12}S_{13}S_{23}(C_{12}C_{23}\cos\delta) - S_{12}S_{13}S_{23}) \cdot \cos\Delta_{32} \cdot \sin\Delta_{31} \cdot \sin\Delta_{21}$ CP保存項 $-8C_{13}^2C_{12}C_{23}S_{12}S_{13}S_{23}\sin\delta\sin\Delta_{32}\cdot\sin\Delta_{31}\cdot\sin\Delta_{21}$ CP非保存項 $+4S_{12}^2C_{13}^2(C_{12}^2C_{23}^2+S_{12}^2S_{23}^2S_{13}^2-2C_{12}C_{23}S_{12}S_{23}S_{13}\cos\delta)\cdot\underline{\sin^2\Delta_{21}}$ 太陽項 $-8C_{13}^2S_{13}^2S_{23}^2\cdot \frac{aL}{4E_{..}}(1-2S_{13}^2)\cdot \cos\Delta_{32}\cdot \sin\Delta_{31}$ Matter effect (a) $+8C_{13}^2S_{13}^2S_{23}^2\frac{\boxed{a}}{\Delta m_{21}^2}(1-2S_{13}^2)\cdot\sin^2\Delta_{31},\qquad \delta\to-\delta \text{ and }a\to-a \text{ by }\overline{\nu}_\mu\to\overline{\nu}_e$ ○原子炉ν実験のθ₁₃精密測定と加速器ν実験は補完的 T2Kではθ₁₃測定だけでなく、δ_{CP}や他パラメータも制限 ミューオンニュートリノから電子ニュート (西村康宏) 2013/8/30 リノへの振動発見

-トリノから雷子ニュ

2. On-axis Interactive Neutrino GRID (INGRID)

2013/8/30

ミューオンニュートリノから電子ニュートリノへの振動発見(西村康宏)

v_e 出現事象候補を選出し、 $v_u \rightarrow v_e$ 振動解析 ミューオンニュートリノから電子ニュートリノへの振動発見(西村康宏)

Ξ

ューオンニュートリノから電子ニュートリノへの振動発見(西村康宏)

ミューオンニュートリノから電子ニュートリノへの振動発見

10

(西村康宏)

前回結果より細かいビン

● v。振動解析ビンパラメータによる分布をフィット

2013/8/30

ミューオンニュートリノから電子ニュートリノへの振動発見 (西村康宏)

スーパーカミオカンデ(SK)の v事象観測から振動解析まで

J-PARC側とSuper-K側でGPSによる時間同期で選別 △ ΔT₀= T_{SK} - T_{J-PARC} - TOF Super-Kで見た

(1) Super-Kで532事象観測、有効体積(FV)カットで363事象 (Fully Contained, FC) (FCFV)

2013/8/30 ミューオンニュートリノから電子ニュートリノへの振動発見(西村康宏)

v_e観測事象でv_µ→v_e振動を解析
 O Super-Kでv_e信号を高純度・高効率で選出する

2013/8/30

ーオンニュートリノから電子ニュートリノへの振動発見

西村康宏)

(期待値はsin²2θ₁₃=0.1を仮定)

ミューオンニュートリノから電子ニュートリノへの振動発見(西村康宏)

ミューオンニュートリノから電子ニュートリノへの振動発見(西村康宏)

安定したデータ取得を達成
 28 v_e事象 / 6.4x10²⁰pot (2010/1/23 - 2013/4/12)

2013/8/30 ミューオンニュートリノから電子ニュートリノへの振動発見(西村康宏)

sin ² 20 ₁₃ =0.1		ν _μ CC	v_e CC	NC	BG all	Sig. v_{e}	_e Data	
	True FV	308	15.0	272	594	25.6	—	
(1)	FCFV	234	14.4	76.5	325	24.8	363	
(2)	1 ring	135	9.2	21.6	166	21.5	186	
(3)	e-like	5.3	9.1	14.9	29.3	21.2	58	
(4)	E _{vis} >100MeV	3.5	9.1	12.7	25.2	20.9	55	
(5)	No decay-e	0.7	7.4	10.6	18.7	18.6	43	
(6)	$E_v^{rec} < 1.25 GeV$	0.2	3.5	8.0	11.8	17.9	38	
(7)	fiTQun π^0 cut	0.06	3.1	0.9	4.0	16.4	28	New
	Efficiency	< 0.1%	20%	0.3%	0.7%	64%	—	
(7)	POLfit π^0 cut	0.12	3.2	2.3	5.6	16.8	31	2012年までの
	Efficiency	< 0.1%	21%	0.8%	0.9%	66%) —	選出法
NC(π ⁰)除去率が向上								

ミューオンニュートリノから電子ニュートリノへの振動発見(西村康宏)

「1-Ring + e-like + π⁰除去」の系統誤差見積もりには、
 SKで常に取得されている「大気ニュートリノデータ」を用いる

v。出現事象 誤差の広がり $\sin^2 2\theta_{13} = 0$ $\sin^2 2\theta_{13} = 0.1$ w/o ND280 fit w/o ND280 fit $\sin^2 2\theta_{13} = 0.1$ w/ ND280 fit w/ ND280 fit-Toy experiment 前置検出器 $\sin^2 2\theta_{23} = 1.0$ $\Delta m_{32}^2 = 2.4 \times 10^{-3} \text{ eV}^2$ (Normal hierarchy) フィット前 $\sin^2 2\theta_{13} = 0$ $\delta_{CP}=0$ フィット後 $\sin^2 2\theta_{23} = 1.0$ $\Delta m_{32}^2 = 2.4 \times 10^{-3} \text{ eV}^2$ 6.4×10^{20} p.o.t. (Normal hierarchy) $\delta_{CP} = 0$ 6.4×10^{20} p.o.t. 5 10 15 20 20 30 10 40

Source	$\sin^2 2\theta_{13} = 0$	= 0.1
Flux + v int. (ND 測定)	4.9 %	3.0 %
v int. (外部実験から)	6.7 %	7.5 %
Super-K	7.3 %	3.5 %
(+SKでの相互作用)		
Total	11.1 %	8.8 %
Total (2012)	13.0 %	9.9 %

2013/8/30

ミューオンニュートリノから電子ニュートリノへの振動発見

(西村康宏)

N_{obs} : ve candidate events x : bins of shape $\mathcal{L}(N_{obs.}, \boldsymbol{x}; \boldsymbol{o}, \boldsymbol{f}) = \mathcal{L}_{norm}(N_{obs.}; \boldsymbol{o}, \boldsymbol{f}) \times \mathcal{L}_{shape}(\boldsymbol{x}; \boldsymbol{o}, \boldsymbol{f}) \times \mathcal{L}_{syst.}(\boldsymbol{f})$ parameters (測定値:自由度) **O**scillation parameters Poisson **Systematic** PDF **f**: systematic uncertainties 異なるbinningで、独立な2種類の解析を行い、整合性を確認 解析B(再構築エネルギービン) 解析A (運動量一散乱角によるビン) $E^{rec} = \frac{m_p^2 - (m_n - E_b)^2 - m_e^2 + 2(m_n - E_b)E_e}{2(m_n - E_b - E_e + p_e \cos \theta_e)}$ θe : Ring – beam direction ム方向 pe:電子運動量 (CCQEを仮定) v_{μ} background (NC) v_e signal (CC v_e signal) 150 0.04 angle (degrees) 0.15 ѵ。信を $\begin{aligned} \sin^2 2\theta_{13} &= 0.1 \\ \delta_{CP} &= 0 \\ \Delta m_{32}^2 &= 2.4 \times 10^{-3} \text{ eV}^2 \end{aligned}$ v_{μ} BKG 0.03 0.03 $Osc. v_e CC$ 100 Bkg. v_e CC 0.02 0.02 50 Bkg. NC 0.01 0.01 arbitrary unit 0.1 (area normalized) 1500⁰ 1500 500 1000 500 1000 momentum (MeV/c) momentum (MeV/c) \overline{v}_{μ} background (NC) v_{e} background (CC $v_{e} + \overline{v}_{e}$) 150 0.05 angle (degrees) v BKG $\overline{v_u}$ BKG 0.03 0.03 1000.02 0.02 50 0.01 0.01500 1000 $0^{\scriptscriptstyle L}_0$ 1500 500 1500 Reconstructed neutrino energy (MeV) 500 1000 1000

2013/8/30

momentum (MeV/c)

150

100

50

150

00

50

0<u>`</u>

angle (degrees)

angle (degrees)

momentum (MeV/c)

ミューオンニュートリノから電子ニュートリノへの振動発見 (西村康宏) 2013/8/30

 $\sin^2 2 heta_{13} = 0.123^{+0.065}_{-0.051}$ • 前回から大幅な精度向上

2013/8/30 ミューオンニュートリノから電子ニュートリノへの振動発見(西村康宏)

θ₁₃信頼領域 — δ_{CP}

各δ_{CP}に対する θ₁₃ C.L. 分布

Run1-3 (2012) → Run1-4 (2013)

Normal hierarchy

Inverted hierarchy

T2K preliminary

2013/8/30

ミューオンニュートリノから電子ニュートリノへの振動発見(西村康宏)

各δ_{CP}に対する θ₁₃ C.L. 分布

各δ_{CP}、sin²θ₂₃の値で、θ₁₃の信頼領域を見積もり

2013/8/30 ミューオンニュートリノから電子ニュートリノへの振動発見(西村康宏)

v_e出現+v_u消失を合わせた3世代間解析、E^{rec}ビン

 $Ov_{\mu} \rightarrow v_{e}$ 発見から、 θ_{13} 精密測定へ

2013/8/30

ミューオンニュートリノから電子ニュートリノへの振動発見(西村康宏)

ンニュートリノから電子ニュートリノへの振動発

(西村康宏)

- 2013年4月12日までの6.4×10²⁰potでv_e出現を解析
 T2K最終目標の8%量
 - ○前結果より系統誤差改善・高純度のv。信号選出
 - ▶前置検出器ND280の見積もり改善・高統計で誤差低減
 - ▶後置検出器SKで、π⁰の除去率改善、誤差低減
- sin²2θ₁₃ = 0.15, 0.116 0.189 (68%CL), 0.097 0.218 (90%CL)(NH)
 θ₁₃=0 は 7.5σ で排除
- v_µ→v_eが発見され、θ₁₃が精度良く測られる時代
 今後は・・・
 - $\circ v_{\mu} \rightarrow v_{e} \geq v_{\mu} \rightarrow v_{\tau}$ の3世代間振動を同時解析 $\circ \nabla v_{\mu} = U_{\mu} \geq 0$ の3世代間振動を同時解析
 - ○原子炉実験・将来のNOvAとのグローバル解析
- 2013/8/30 ミューオンニュートリノから電子ニュートリノへの振動発見(西村康宏)

·オンニュートリノから電子ニュートリノへの振動st

西村康宏)