KOTO MEETING

K^oTO実験($K_L \rightarrow \pi^0 v \overline{v}$ 探索実験)と 京都Kグループの活動

物理学第二教室 教室発表会 2012年3月12日

高エネルギー研究室 増田孝彦 for 京都Kグループ

- KOTO実験
- 2011年度のK^oTO実験全体の進捗
 - 東日本大震災
 - Cslカロリメータ真空試験
- 2011年度京都グループの活動
 - NCC 製作状況
 - CV 製作状況

K^oTO experiment

- K^oTO (K^o at TOkai)
 - $K_L \rightarrow \pi^0 v \overline{v}$:
 - 長寿命中性K中間子(KL)の稀崩壊探索実験
 - $A(K_L \rightarrow \pi^0 v \overline{v}) \propto V_{td}^* V_{ts} V_{ts}^* V_{td} \propto 2i\eta$
 - Br($K_L \rightarrow \pi^0 v \overline{v}$) $\propto \eta^2$
 - 元々の分岐比が小さいので、BSMの効果が 相対的に大きく現れる
 - 理論的不定性が小さい(1-2%)
- Milestone
 - 現在の上限値
 - 2.6×10⁻⁸ (E391a final result)
 - Grossman-Nir limit
 - 1.5×10⁻⁹ (90% CL)
 - K⁺→π⁺vvの分岐比(1.7±1.1×10⁻¹⁰)から決まる上限値
 - Standard Model

2.4×10-11

K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010)

K^oTO experiment

- K^oTO (K^o at TOkai)
 - $K_L \rightarrow \pi^0 v \overline{v}$:
 - 長寿命中性K中間子(KL)の稀崩壊探索実験
 - $A(K_L \rightarrow \pi^0 v \overline{v}) \propto V_{td}^* V_{ts} V_{ts}^* V_{td} \propto 2i\eta$
 - Br($K_L \rightarrow \pi^0 v \overline{v}$) $\propto \eta^2$
 - 元々の分岐比が小さいので、BSMの効果が 相対的に大きく現れる
 - 理論的不定性が小さい(1-2%)
- Milestone
 - 現在の上限値
 - 2.6×10⁻⁸ (E391a final result)
 - Grossman-Nir limit
 - 1.5×10⁻⁹ (90% CL)
 - K⁺→π⁺vvの分岐比(1.7±1.1×10⁻¹⁰)から決まる上限値
 - Standard Model

2.4×10-11

K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010)

Concept

- 信号の同定
 - ν は検出できないので、 π^0 からの崩壊粒子を見る
 - π⁰からの2γ
 - Cslカロリメータ
 - 2γの位置・エネルギーを求め、π⁰を再構成
 - Veto counters
 - 崩壊領域前立体角を覆い、その他に何も粒子が無いことを保証

2011年度 実験現場

3/11前

記念撮影

- 2010/5/22-2011/2/9:Csl結晶スタッキング
- ~3/11 : 4/9-5/8のビームタイムに向けた準備作業
 - PMT取り付け、信号ケーブル配線、
 スローコントロールシステムインテグレーション、etc, etc...

2011.3.11 スローコントロール系組み上げ中

6

3/11後

- 3/11 : 地震発生。Csl乾燥室への乾燥空気吐出停止
- 3/19 : カロリメータに応急処置で除湿剤を巻いた
 - この際、結晶が脱落していないこと、カロリメータが下流に50cm近く移動し、設置レールから脱落していることを確認した
- 3/23 : Csl乾燥室への乾燥空気吐出再開
- 4/18~ :本格的な被害状況調査開始

懸念されたCslカロリメータへの影響

▲ 湿度によるCsl結晶の劣化

- Cslは潮解性をもっているため、湿度の高い環境では表面が磨りガラス状に白く濁る。
 停電により約2週間乾燥機が停止したため、Cslカロリメータがある乾燥室の湿度が上昇していた。
- 光量低下の可能性

▲ 衝撃によるCsl結晶の破損

地震によって、カロリメータを設置していた荷台が50cm近く移動していた。
 結晶に傷や割れなどの発生する危険性があった。

光量やUniformity悪化の可能性

Light yield, Uniformity

- 宇宙線の信号出力を地震前後で比較した結果
 - 多くの結晶では、出力に変化は見られない。
 - 60ch程度が地震後30%程度出力が下がっている
 - ✓ 地震前後でのUniformityの変化量は20%未満

 ● しかし、、、
 ● 測量の結果、Csl結晶が荷台上で上流側に4mm程度ずれていることが 判明した

KOTO MEETING

11

Cslずれの影響

- Csl結晶の下流端には、PMTの固定、及び結晶間の光学分離のためのholderが 壁として存在している
- Holderと結晶間に5mmの隙間が空いているため、隣の結晶への光のクロス トーク(~1%)の発生が確認された。また、余震によるCslとHolderの衝突で 今後もCsl結晶にダメージを与える可能性がある。

▶ 隙間は塞がなければならない

- ばらして積み直す??
 - 積むだけでも40人・月かかっている
- 隙間を埋める治具を挿入する
 - 光学分離・衝撃吸収を両立する緩衝剤を作成し、
 lchずつ下流に挿入していく

Csl

• 1人・月 (==5分/ch)

PMT

12

Cslずれの影響

- Csl結晶の下流端には、PMTの固定、及び結晶間の光学分離のためのholderが 壁として存在している
- Holderと結晶間に5mmの隙間が空いているため、隣の結晶への光のクロス トーク(~1%)の発生が確認された。また、余震によるCslとHolderの衝突で 今後もCsl結晶にダメージを与える可能性がある。

▶ 隙間は塞がなければならない

・ ばらして積み直す?? ・ 積むだけでも40人・月かかっている

• 隙間を埋める治具を挿入する

光学分離・衝撃吸収を両立する緩衝剤を作成し、
 1chずつ下流に挿入していく

Csl

1人・月 (==5分/ch)

PMT

Cslカロリメータ 真空試験

- Cslカロリメータ真空試験
 - 被害修復も道半ばの8月に、カロリメータ全体を真空環境下で稼働させる 試験を行った。
- 主な目的
 - 真空中での長期動作試験
 - 約2週間

• 真空中で長期間放電し使用に耐えないchannelの洗い出し

事前の100本試験で2%程度発生することがわかっていたため、
 本番前に全数調査し不合格品をはじく

・主な日的

事前の

本番前に主数調査し

• Cslカロリメータ真空試験

 被害修復も道半ばの8月に、カロリメータ全体を真空環境下で稼働させる 試験を行った。 14

1026

Problem #1

- Large PMTの放電が収まらない ullet
 - 真空引きから2週間以上経っても、Large PMTの放電が止まら ightarrowず、HVを印加することが出来なかった。

Solution #1

PMT底部の空間が密閉されていることが原因であった。
 密閉空間内部に高電圧のかかるむき出しの金属部があったため、
 その金属間で放電が起こっていた。

Problem #2

• 真空前と真空中で、信号出力が約25%にまで低下

17

Solution #2

 光学接続のためのシリコーンクッキーが、真空中でのアウトガスを 吸着し、透過率が悪化していたことが主な原因であった。

Problem/Solution #3

- 各種電子回路の破損
 - 主に放電によるもの。

破損箇所	破損数	破損率
Preamp	18	0.8%
HV Supply用電源周り	14	0.6%
HV Supply	7	0.3%
HVモニタ周り	3	3%

<text>

PDCA

	Act			
クロストーク	地震によりCsl結晶がスライドした	光学分離(および衝撃吸収)のための 治具を挿入		
Large PMTの放電	PMT下部に密閉空間が存在し その部分の真空度が悪い	全数に空気穴開け		
信号出力の低下	Csl-PMT光学接続用シリコーンが アウトガスを吸着し透過率低下	事前にベーキングを行い アウトガスを取り除く		
放電による回路故障	放電耐性不足	放電耐性強化版を製作		

• Plan, Do

- 必要な対策案は全て出揃い、所要時間を見積もりつつ処置を進めている。
- 現行のスケジュールでは全ての処置完了を来年度10月を予定しており、
 来年度11月に再度真空試験を行って、最終試験とする。

Neutron Collar Counter (NCC)

Charged Veto (CV)

• 先行実験(E391a)での主要バックグラウンド源

NCC

E391a B.G. summary table

NCC

- 主な役割
 - E391aに比べ、B.G.を1/1000に削減
 - ビーム周りに薄く広がるハロー中性子の測定
- 特徴
 - Pure Csl結晶をWLSF読み出し。
 - Segmentationを最適化しγとnを弁別

NCC製作状況

• 2012/10月インストールに向けて、鋭意量産中

組み合わせてモジュール完成

CV

ペルチェ付きMPPC

大面積、低ノイズ、温度コントロール

- 主な役割
 - Cslカロリメータの直前に置かれ、Cslに入射した粒子が荷電粒子 か中性粒子か判別する
- 特徴
 - 荷電粒子を逃さずとらえる(99.99%)ための大光量
 - 余計な粒子(ハロー中性子)と反応しないため、少ない物質量

CV製作状況

• 2012/5月 インストールを目標に量産作業を進めている

2012/1	2	3	4	5	6	7	8	9	10	11	12
	Beam (90% of Calorimeter, Air)	Ca	alorime repairin	ter Ig	Beam (Full Calorimeter, Air)	Cal Inst	orimete all othe	r repai r detec	ring tors	2 nd Vacu Enginee	ium test, ring Run

- 2012年内
 - 全検出器インストール
 - Engineering Run
- 2013年頭
 - Commissioning & Physics run
 - <1week Run で現在の上限値更新
- 2013/5-6
 - Physics run for the G.N. limit
 - <a><1month Run
- 2013年夏
 - Shut down (Linac upgrade)

Summary

- 2011年度KOTO実験進捗
 - 東日本大震災によるCsl結晶への影響は限定的であった
 - 真空試験により、多くの問題点を洗い出すことになった

	Check	Act
クロストーク	地震によりCsl結晶がスライドした	光学分離(および衝撃吸収)のための 治具を挿入
Large PMTの放電	PMT下部に密閉空間が存在し その部分の真空度が悪い	全数に空気穴開け
信号出力の低下	CsI-PMT光学接続用シリコンが アウトガスを吸着し透過率低下	事前にベーキングを行い アウトガスを取り除く
放電による回路故障	放電耐性不足	放電耐性強化版を製作

- 京都Kグループ
 - 新検出器であるNCC, CVの量産中
 - 2012年内インストール予定
- 2013年夏のShut downまでに、GN Limitを超えるsensitivityでの実験を行う予定である

