

LHC-ATLAS 実験の最新状況と 京都グループの活動

隅田 土詞 (高エネルギー物理学研究室) 12th March 2012 物理学第二教室 教室発表会

Outline

- LHC-ATLAS
 - 現状と今年の予定
- ・京都 ATLAS グループ
 - メンバー構成
 - 活動内容/今後の予定
 - TGC : Endcap muon trigger
 - Level-1 trigger electronics
 - Jet calibration
- ・ATLASの最新結果 @Moriond (少し)
 - Scaler boson search
 - MSSM Higgs searches
- ・まとめ

LHC 加速器

- Large Hadron Collider
 - CERNにある世界最大の 陽子陽子衝突型加速器
 - ▶ 全周: 27 km
 - スイスのジュネーブと フランスの国境に建設された
 - 最大衝突エネルギー
 7+7 TeV (陽子-陽子)
- ・4+2個の実験
 - ATLAS, CMS
 - ▶ 汎用検出器
 - LHC-B
 - ▶ Bの物理
 - ALICE
 - 重イオン衝突実験
 - ⁻ LHCf, TOTEM
 - 超前方散乱、全断面積測定

Physics II workshop, 12 Mar 2012

A Toroidal LHC ApparatuS
 100GeV~TeVスケールでの様々な物理に対応した汎用検出器

LHC/ATLAS の現状

- ・2010/2011 の運転
 - $\sqrt{s}: 3.5+3.5 = 7 \text{TeV}$
 - peak luminosity
 - 2.1x10³² / 3.3x10³³ cm⁻² s⁻¹
 - integrated luminosity
 - ▶ 45 / 5000 pb⁻¹
 - ✓ 2011年、LHC は良いパフォーマンスを見せた。
 - ✓ ATLAS 検出器も約 93 %の稼働率で 非常に良く動いた。

Parameter	2010	2011	Nominal
Beam energy	3.5 TeV	3.5TeV	7 TeV
Beam squeeze (β *)	3.5 m	1.0m	0.55 m
Transverse emittance	2-3 µm rad	2.5 µm rad	3.75 µ m rad
Protons per bunch	1.2x10 ¹¹	1.6x10 ¹¹	1.15x10 ¹¹
Bunch separation	150 ns	50 ns	25 ns
Number of bunches	368	1380	2808
max peak luminosity (cm ⁻² s ⁻¹)	2.1x10 ³²	3.3x10 ³³	>10 ³⁴

Toshi SUMIDA

Integrated Luminosity [pb⁻¹/day]

5

LHC運転 in 2012

・2012年の運転

- パラメータ

energy

- √s: 4+4 = 8 TeV
 ✓ Higgs はそんなに得をしないが、
 重たい粒子を作る物理には結構効く
- beam squeeze (β*)
 - 1.0 → 0.6 m
- 期待されるデータ
 - peak luminosity
 - **6.8x10³³** cm⁻²s⁻¹
 - integrated luminosity
 - **15** fb⁻¹
- ・ <u>同時複数衝突 (pile-up)</u>
 - 2011年後半の運転
 - ▶ 1バンチ交差での平均衝突数 <µ> ~ 12
 - 2012年の予想
 - ↓ <µ> ~ 35 !!

Physics II workshop, 12 Mar 2012

2011年のpeak luminosity の上昇

Comsions at madron Comder LHC での¥ $\hat{p_1} = (x_1 E; 0, 0, x_1 E), \quad \hat{p_2} = (x_2 E; 0, 0, -x_2 E),$ ・陽子陽子衝空でま る事 $\hat{s}^2 = (x_1 + x_2)^2 E^2 - (x_1 - x_2)^2 E^2 = 4x_1 x_2 E^2$ xf(x,Q²) $Q^2 = 10^4 \text{ GeV}^2$ $Q^2 = 10^4 \text{ GeV}^2$ = 2E) $Q^2 = 10^4 \text{ GeV}^2$ g/10 q/10 (68% C.L.) 0.8 g/10 $\times 3.5$ TeV $x_1 \times 3.5 \text{ TeV}$ 0.6 b.b $Q^2 = 10^4 \text{ GeV}^2$ 0.4 a/10 陽子陽子衝突 0.2 10-4 10⁻¹ 10 =パートンパ 10⁻² 10⁻¹ 10⁻² 10⁻⁴ 10^{-3} 10⁻¹ $1 x_{014} x_2$ 実際の中心 7 TeV 2) × 3.5 × 2 $\sqrt{\hat{s}} = \sqrt{x_1 x_2} \times 7 \text{ TeV}$ ×35 $(x_1$ 10⁻³ 10⁻² $(x \neq Bjorken scale 5 \text{ TeV})$ 10^{-3} 10⁻¹ 10⁻⁴ 10^{-2} 10^{-1} Gluon golligion for light gbject production

Physics II workshop, 12 Mar 2012

Toshi SUMIDA 🛛 🐨

Physics II workshop, 12 Mar 2012

Pile-up

- ・Z→μ⁺μ⁻の イベントディスプレイ
 - with **20** vertices
 - p_T>400MeVの
 トラックのみを表示
 - 楕円の大きさは primary vertex再構成 の不定性を20倍にして 表している
- カロリメータ(特にハドロン)での エネルギー測定や、 横方向消失運動量(missing E_T)の 測定に大きく影響する

京都 ATLAS グループ

- ・2001-2002年度
 - スタッフ: 笹尾、坂本 (→東大素粒子国際センターへ異動)
 - 学生: 溝内(M2)、隅田(M1、→K中間子実験へ逃亡)、辻(M1)
 - ✓ その後瓦解
- ・2003-2010年度
 - スタッフ: 笹尾 (??)
- ・<u>2011年度</u>
 - スタッフ: 石野 (6月着任)、隅田(10月着任)
 - 学生: 田代 (M1)
 - 本年度より活動を再開した。

ATLAS trigger system

- ・トリガーレベル
 - L1 : hardware
 - Calo, Muon, Tracking
 - L2 : consumer PC
 - EF : full reconstruction
 - この3つのレベルで、~1GHzから ~400Hz までレートを落とし、 ちゃんとデータ取得ができている。
- L1 EndCap Muon Trigger
 - Thin Gap Chamber (TGC)
 - 日本グループ全体で、検出器の建設(大体やった)から エレクトロニクスの構築(全部やった)まで大きく貢献
 - トリガーチェーンのうち、特に Muon L2 以降も日本の貢献が大きい
- ・これまでのLHC運転中の検出器のオペレーション、 トラブル時のメンテナンス等を石野が主導している

Muon Trigger の問題点

- (本物の muon だけでも大変なのに)
 右図の赤い線の様に、ビームハローが
 ビームパイプで散乱された低運動量の陽子が存在し、
 high p_T の muon としてトリガーされてしまう。
 - 現在は Endcap Toroid Magnet の 外側の三層(on BW)のみのコインシデンスで トリガーをかけているため。
 - さらに内側に設置したもう一層 (on SW)との コインシデンスを取る事で、 このバックグラウンドを排除する事ができる。
 - MC で効果を確認。
 - 約30%までレートを低減(@95% eff.)
 - 実際のロジックは、VMEモジュールに 載ったFPGAに書き込む必要がある。
 - 現在、LHCが停止するタイミングを狙って
 早期にこの新ロジックを導入すべく、
 ハードウェアでの実装、テストを行っている。

Jet calibration

Jet の pT(測定)/pT(MC truth)

- Jet の横方向運動量(p_T)を 正しく測る事は、あらゆる 物理解析において最重要項目の一つ
 - この測定自体が、
 - パートン分布
 - 高エネルギーパートンのハドロン化
 - 検出器中の物質量
 - ・カロリーメータのノイズ
 - における不定性を含むので非常に難しい
 - しかも、pile-upの影響を大きく受ける
 - ▶ 2011/2012年の解析において 早期に解決しなければならない問題
 - ✓ pile-upからのエネルギーの 補正関数を作成、MCを使った 検証を行った。

隅田

最新結果 from ATLAS

•	Η	iq		S
		'9	3	

- 全てのモードで 4.6-4.9 fb⁻¹ を使った 解析結果に update
 - ▶ H→WW^(*), H→TT を含む
- 結果
 - not excluded
 - ▶ 117.5 < m_H < 118.5 GeV
 - ▶ 122.5 < m_H < 129 GeV
 - Best fit
 - m_H = 126 GeV with 2.5 σ (local significance)

signal strength (SM らしさ)~1

Higgs Decay channel	m_H Range	$L [fb^{-1}]$
low- m_H , good mass resolution		
$H \to \gamma \gamma$	110-150	4.9
$H \to ZZ \to \ell\ell\ell'\ell'$	110-600	4.8
low- m_H , limited mass resolution		
$H \to WW \to \ell \nu \ell \nu$	110-200-300-600	4.7
$VH \to b\overline{b}$	110-130	4.6
$H \to \tau^+ \tau^- \to \ell \ell 4 \nu$	110-150	4.7
$H \to \tau^+ \tau^- \to \ell \tau_{\rm had} 3 \nu$	110-150	4.7
$H \to \gamma^+ \tau^ \gamma_{\rm bac} \tau_{\rm at} d 2\nu$	110-150	4.7
$high-m_H$		
$H \to ZZ \to \ell\ell\nu\bar{\nu}$	200-280-600	4.7
$H \to ZZ \to \ell \ell q \bar{q}$	200-300-600	4.7
$H \to WW \to \ell \nu q \overline{q'}$	300-600	4.7

Physics II workshop,

4

最新編史 from ATLAS/CM

Physics II workshop, 12 Mar 2012

- 2011年、LHCは非常に順調に稼働。
 ATLAS検出器は √s = 7 TeV において約 5 fb⁻¹の
 陽子陽子衝突データを取得した。
 2012年は 4+4TeV衝突、最大強度が約2倍になる。
 予想取得データは 15fb^{-1。}
 Higgs boson の発見、または
 - 全質量領域での棄却が期待される。
- ・LHCの強度増大に伴い、トリガーレートや pile-up から来るカロリメータへ影響が問題となっている。
- ・京都グループは、2011年より本格活動再開。 L1ミューオントリガーの構築とそのアップグレード、 ジェットのキャリブレーションにおいて大きな貢献をしている。

