

高圧キセノンガスTPC:AXELの読み出し機構の 最適化と試作機による評価

京都大学理学研究科 博士後期課程3年 潘 晟 for the AXEL collaboration

2019年3月16日 JPS年次大会@九州大学

2

1. AXEL実験

2. 小型AXEL試作機について

3. 大型AXEL試作機について

4. まとめ

З

1. AXEL実験

2. 小型AXEL試作機について

3. 大型AXEL試作機について

4. まとめ

AXEL - A Xenon ElectroLuminescence-

4

-> 目標: 0.5%FWHM @ Q値

セル状の各領域でEL光を検出することで、エネルギー測定と飛跡検出を同時に行う 電気力線をセル内に引き込む構造なので、光量の位置依存性を軽減 堅い素材で構成されているため、大型化が容易(メッシュのたわみのような問題が無い)

Ionization electrons are collected into cells if $E_{EL} > E_{Drift}$, And converted into EL light

AXEL実験の計画

Contents

2019年3月16日 日本物理学会 @九州大学

7

1. AXEL実験

2. 小型AXEL試作機について

3. 大型AXEL試作機について

4. まとめ

小型試作機:Tetra

FWHM [keV]

×10³

100

counts

200

0

20

40

60

80

Number of photons

小型試作機:Hex

9

有効領域:φ14cm、長さ6cm、64chの試作機 MPPC(Cell)は六角形配置で13mm-pitch、穴径φ7mm 356keVガンマ線で評価を行うも良い結果を得ず → 場所依存性が問題

ELCC仕様の再決定/シミュレーション

- 電子トラックシミュレーション → ELゲインの場所依存性
- Geant4による30keVイベント生成 → 場所依存性ありのEL光信号の再現
- これらを元に最適なピッチ、穴径を設計:10mmピッチ、 ϕ 5.5mm
- 実機データとも比較し、シミュレーションの妥当性を確認

Contents

2019年3月16日 日本物理学会 @九州大学

11

1. AXEL実験

2. 小型AXEL試作機について

3. 大型AXEL試作機について

4. まとめ

大型試作機(HP180L)

大型試作機(HP180L)/真空引き試験

- 大型試作機の圧力容器の真空引き試験
- 内容物は、チェンバー内壁に巻きつけられた放電防止用のHPDE筒のみ
- JIS25A配管→NW50配管ラインにて真空引き
- 120時間で2.7×10-4 Paを達成 (真空ポンプ付近)

Contents

2019年3月16日 日本物理学会 @九州大学

16

1. AXEL実験

2. 小型AXEL試作機について

3. 大型AXEL試作機について

4. まとめ

まとめ

17

大質量、高エネルギー分解能、トラッキングによるBG削減 の3つを兼ね備えた 高圧キセノンガス検出器AXELを開発中

小型試作機では、13mmピッチ、 ϕ 7mmのELCCによる性能評価を進めていたが、 良い結果は得られなかった

- シミュレーションにより、事象場所依存性が問題となっていることが判明

シミュレーションを元に、最適なELCCのピッチおよび穴径を決定

- 10mmピッチ、 *φ*5.5mm

大型試作機(HP180L)の最初期フェーズとしてチャンネル数168の試作機を製作中 - 各項目ほとんど準備OK

- 真空引き試験も行い、2.7×10⁻⁴ Paを達成

18

Back up

133Ba線源

宇宙線研から133Baを借りる

-								
							•	ba
00 -	-							
20	00	200 2200	400 2400	600 2600	800 2800	1000 3000	1200 3200	13
			h	ttp://ww	vw4vip.ii	nl.gov/ga	ammara	y/c
	<u>-</u>	□≪白7Ⅲ	ホトル	± 10 +_ 1	伯公古			

于由緑妍から借りた緑源

→ 現在は約500kBqくらいのハズ(半減期~10年)

放射能標準ガンマ線源							
核	種	¹³³ Ba	放射能	9.29×10^{5}	Bq		
線源	-1-	BA402	基準日	2007/05/21			
線源番号 147							
社団法人 日本アイソトープ協会							

Gamma ra	ау	X ray	
Energy (keV)	Intensity (%)	Energy (keV)	Intensity (%)
53.161	2.199	3.795	0.24
79.621	2.62	4.142	0.11
80.997	34.06	4.272	0.66
160.613	0.645	4.286	6
223.398	0.45	4.62	3.8
276.398	7.164	4.649	0.56
302.853	18.33	4.717	0.93
356.017	62.05	4.781	0.048
383.851	8.94	4.934	1.19
		5.281	0.54
		5.542	0.15
		5.553	0.22
		30.27	0.00401
		30.625	34.9
		30.973	64.5
		34.92	5.99
		34.987	11.6
		35.252	0.123
		35.818	3.58
		35.907	0.74

小型試作機:Tetra

MPPC saturation correction

- 入射光子数がMPPCの総ピクセル数に近づくと、信号は飽和する
- 飽和曲線はMPPCのピクセルの回復時間によって決まっている

- MPPCに2成分の時定数があることを仮定し、以下の修正したモデルを用いて補正

中村和広が64ch分の回復時間を測定、その結果を補正に反映:25aL401 ただし、測定条件と試作機の条件の違いから系統誤差を含む可能性がある:要確認

それぞれのピークからエネルギー分解能を評価

小型試作機:Tetra

小型試作機:Hex, 133Ba

小型試作機:Tetra

¹³⁶Xeの0vββ崩壊のQ値に外挿したエネルギー分解能は 0.82~1.74% (FWHM)

- エネルギーに一次で比例する成分の正体は特定には至らず
- さらに光量を上げることでエネルギー分解能は向上する可能性 (現在のnetのEL増幅率は~5.2倍)

初期フェーズ (168ch)稼働に向けて準備中 ほとんどの準備は整いつつある

2019年3月16日 日本物理学会 @九州大学

初期フェーズ (168ch)稼働に向けて準備中 ほとんどの準備は整いつつある

2019年3月16日 日本物理学会 @九州大学

2019年3月16日 日本物理学会 @九州大学

28

初期フェーズ (168ch)稼働に向けて準備中 ほとんどの準備は整いつつある

初期フェーズ (168ch)稼働に向けて準備中 ほとんどの準備は整いつつある

2019年3月16日 日本物理学会 @九州大学

初期フェーズ (168ch)稼働に向けて準備中 ほとんどの準備は整いつつある

31

大型試作機(HP180L)

初期フェーズ (168ch)稼働に向けて準備中 ほとんどの準備は整いつつある

