K中間子グループの研究紹介

1

京都高エネ研 D1河崎、増田

京都Kグループのmember構成

●スタッフ

- E787:研究生 藤原
- ◦E391a:森井(D3)
- K^oTO:塩見(D2)、増田(D1)、河崎(D1)、 前田(M2) 、内藤(M2)

なぜKなのか? - 標準理論とCPの破れ

小林益川行列とCP対称性の破れ

CKM行列は3×3のユニタリ行列 ⇒自由度3+1 複素位相

Wolfenstein表示

K中間子とは

K中間子:s-quarkを含む擬スカラー粒子 $J^P = 0^-$

質量は~500MeV(陽子の半分)

 $K_L \& K_s$

$$\left| K_{L}^{0} \right\rangle = \frac{1}{\sqrt{2(1+\varepsilon^{2})}} \left\{ \left(1+\varepsilon \right) \left| K^{0} \right\rangle - \left(1-\varepsilon \right) \left| \overline{K}^{0} \right\rangle \right\} \qquad (\tau = 5.2 \times 10^{-8} \text{s})$$

$$\left| K_{S}^{0} \right\rangle = \frac{1}{\sqrt{2(1+\varepsilon^{2})}} \left\{ \left(1+\varepsilon \right) \left| K^{0} \right\rangle + \left(1-\varepsilon \right) \left| \overline{K}^{0} \right\rangle \right\} \qquad (\tau = 8.9 \times 10^{-11} \text{s})$$

$K_L \rightarrow \pi^0 \nu \nu \sigma$ 物理

$$\begin{pmatrix} V_{uu} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

$$A(K_L \to \pi^0 \nu \bar{\nu}) = \frac{1}{\sqrt{2}} [A(K^0 \to \pi^0 \nu \bar{\nu}) - A(\bar{K^0} \to \pi^0 \nu \bar{\nu})]$$

$$\propto V_{ts}V_{td}^* - V_{ts}^*V_{td} \propto \eta$$

 $Br(K_L \to \pi^0 \nu \bar{\nu}) \propto |Im(V_{ts}^* V_{td})|^2 \propto \eta^2$

$K_L \rightarrow \pi^0 \nu \nu o$ 特徴

- ・
 理論的不定性が小さい(1~2%): Golden mode
- CKM行列の複素パラメータηの直接測定
 - ●B中間子での結果との比較→標準理論の精密検証
 - New Physicsへの感度

●分岐比が小さい

- ◎標準理論の予言する分岐比(2.5×10⁻¹¹)
- 介在する粒子が中性粒子のみ

 $K_{L} \rightarrow \pi^{0} \nu \nu 探索の歴史$

E391a実験

●KL → π 0 ν ν 測定実験 @ KEK 12GeV 陽子シンクロトロン

- ◎ 世界で初めてこのモードに特化
- E14 (KºTO)実験の"パイロット"実験
 - 測定原理、解析手法の検証

3回の物理ラン
Run1 (2004 Feb-Jul)
Run2 (2005 Feb-Apr)
Run3 (2005 Nov-Dec)

E391a実験の解析

🧶 Run2の解析 (隅田さん)

- 🔵 "ブラインド"手法
 - シグナル領域を隠して解析
- シグナル領域にイベント無し
 - ・分岐比の上限値 6.7 x 10⁻⁸
 ・→ 世界記録を更新!
- 🥯 Run3の解析 (森井)
 - よりよいバックグラウンドの理解
 - 現在アクセプタンス向上

のための研究中

●K^oTO実験とは

- 世界最大強度のJ-PARC 50 GeV
 陽子シンクロトロンを使用
- E391aの検出器をアップグレード

- Step1:世界初の崩壊事象の観測
- Step2: ~100event観測し、標準理論の精密検証

K^oTO Collaboration

K^oTO実験のCollaboration

●日本:京大、阪大、佐賀大、山形大、防衛大、KEK

• 海外

- アメリカ:アリゾナ大、シカゴ大等
- 韓国:ソウル大、チェジュ大、プサン大等
- その他:台湾、ロシア等からも参加

日本を始め、世界各国から多数のInstituteが参加 している国際的な実験

"2γ以外何もない" eventをsignalと同定

崩壊領域全体をveto検出器で覆い、他に粒子が無いことを保証

K中間子グループ研究紹介

K^oTO Detector と京都グループの主な担当箇所

E391aからアップグレードする検出器の大半に寄与

K^oTO Detector と京都グループの主な担当箇所

E391aからアップグレードする検出器の大半に寄与

Neutron Collar Counter (NCC)

● NCCの役割

- 上流部で崩壊したKLから生成されるrによるバックグラウンドを排除
- NCC自身がハロー中性子と反応して生じるバックグラウンドの抑制
- ハロー中性子のfluxとenergyの測定
- NCCの特徴
 - Cslからなるfull active counter
 - ◎ 波長変換ファイバーによる読み出し

NCC開発の現状

🔵 これまでの研究成果

- NCC基本designの決定
- simulationによるバックグラ
 ウンド数の評価

 Cslの波長変換ファイバー読み 出しの最適化の研究による、 光量増加(4.5p.e./MeV)

<image><text>

ローコストで読み出すための[MPPC用アンプ]を 開発していました。(継続中) それとCVに使う[プラシンとファイバ]の性能を測定し 最適な組合せを探しました。 今年度は[プロトタイプ]を作って 実際にビームに当てて性能評価を行います。

√ 役割

- $\pi^0 \rightarrow 2\gamma$ の位置とエネルギーを詳細測定 $\rightarrow P_t Z_{vtx}$ 平面上の位置決め
 - π⁰vvとそのほかのB.G.の分離

√ 特徴

- 2800本程度のCsI結晶を使用
 - ▶ KTeV(@FNAL 1996-2000)の物を再利用
 - ▶ 5×5×50cm:350本、 2.5×2.5×50cm:2240本
- 1MeV~1GeVの3桁にわたるエネルギーレンジ
- PMTの低消費電力化

Z Vertex [mm]

KOTO meeting

KOTO meeting

KOTO meeting

KOTO meeting

√ 役割

 $\langle \bullet \rangle$

BHCV (臼杵)

- K_L崩壊による荷電粒子(π[±], μ[±], e[±])をveto ✓特徴

- ビーム中の中性子やγに反応しない
 →ガスシンチレーション比例計数管
 - ガスだから薄くて軽い
 - ▶ 比例計数管とPMTの2段増幅で荷電粒子は 残さずキャッチ

BHCV 臼杵さんの活動記録

初代 BHCV

K

 \diamond

試作機を製作して、 最適な形状やガスの選定などを行いました

BHCV試作機の内部

1

10

KOTO meeting

BHCV試作機の全体

 $\langle \bullet \rangle$

BHPV (前田)

√ 役割

- ◆ ビームホールに逃げたyをveto
 ✓特徴
 - 中性子に対して不感
 - エアロジェルを使ったCherenkov検出器
 - レートがとても高い(>MHz)
 - 京都Kグループで長年にわたりR&Dが重ねられてきた、 伝統ある検出器

8

▶ K^oTO実験でようやく実用化!!

シミュレーションを使って、 **実用に耐えるBHPVデザイン**を決めました。 これから実際に**プロトタイプ**を作って、 期待通りの性能が出ているかを 確かめます。

KL生成数測定実験(塩見)

✓KLの数も実験の最重要事項

- KL数がそのまま分岐比感度になる!!
- 実験を始める前に、KLの数を知っておきたい

√測定原理

- K_L→π⁺π⁻π⁰(π⁰→2γ)崩壊の数を測定し、K_L数に焼き直す
 - π[±]はHodo scope(細いプラシンとファイバ)でトラッキング
 - π^0 はMini calorimeter(CsIブロック)で2 γ を検出

 $p_x^+ + p_x^- + k_{1x} + k_{2x} = 0$ $p_y^+ + p_y^- + k_{1y} + k_{2y} = 0$

(k₁,k₂γ線の運動量, p⁺,p⁻ π[±]の運動量) *K⁰TO meeting*

久しぶりにハードがさわれて喜ぶ塩見さん

修士の間は、 **[K^oTO実験全体のバックグラウンド]**を見積もりました。 去年は[**K**L**数測定実験の考案**]、シミュレーションによる 実験の[パフォーマンスの評価]を行いました。 今年は実験に使うプラシンとファイバの選定や カロリメータの性能評価を行い、 下旬には[J-PARCで測定実験]を行います。

11

<u>JUM</u> 日本のコラボレーション

Japanese University Meeting(?)です。 みんなの進捗状況をinformalに報告しあいます。 K^oTOのミーティングの中で一番重要かも。 各大学同士の交流の場です。

				s v		
今後の	予定		· · · · ·			
09/4	25: JUM	. ,				
5	22-24: コラボレーションミーティング					
6	1-3: 東北大核理研ビームテスト Phase1					
7	6-10: 東北大核理研ビームテスト Phase2					
9	10-13: 学会@甲南大学					
10~?	KL生成数測定実験					

	FY2009(M1)	FY2010(M2)	FY2011(D1)	FY2012(D2)	FY2013(D3)	
実験全体 	K∟数測定	engineering run	run 1	run 2	run 3	
Csl 	性能評価	Stacking				_
Veto	製作			Upgrade?		
						-

KOTO meeting

M1さんにやってもらいたいこと

- ・塩見さんと共にK_L Measurementの準備を
 進める
- ・Beam Survey用にプラシンを用いてBHCV を開発する
 - ・プラスチックシンチレーターを用いた場合の 性能評価(ガスチェンバーとの比較)
 - ・読み出しsystemのstudy(Flash ADC等)

K⁰TO Experiment : Search for K_L \rightarrow \pi^0 v \overline{v}

