

Measurement of $sin2\phi_1$

Representing the Belle Collaboration

July 23-28, 2001

LP01, Rome

A World-Wide Activity Involving 50 Institutions

July 23-28, 2001

LP01, Rome

The **Belle** Collaboration

Observation of $B \rightarrow J/\psi K_1(1270)$

The Belle Collaboration

K. Abe¹⁰, K. Abe³⁸, I. Adach¹⁰, Byoung Sup Ahn¹⁶, H. Alhara⁴⁰, M. Asal¹¹, Y. Asano⁴⁵, T. Aso⁴⁴, V. Aulchenko², T. Aushev¹⁴, A. M. Baldch²⁵, E. Banas²⁶, W. Bartel^{8,10}, S. Behari¹⁰, F. K. Behera⁴⁶, D. Beiline², A. Bondar², A. Bozek²⁸, T. E. Browder⁹, B. C. K. Casey⁹, P. Chang²⁶, Y. Chao²⁶, B. G. Cheon³⁵, S.-K. Chol⁶, Y. Chof⁸⁵ J. Dragic¹³, A. Duitskoy¹⁴, S. Eldelman², Y. Ensd²¹, F. Fang³, H. Fujil¹⁰, C. Fukimaga⁴², M. Fukushima¹², A. Garmash^{2,10}, A. Gordon¹⁹, K. Gotow⁴⁷, R. Guo²³, J. Haba¹⁰, H. Hamsakl¹⁰, K. Hanagald³², K. Hana³⁰ T. Hara³⁰, N. C. Hastings¹⁹, H. Hayashi¹², M. Hayami²⁰, E. M. Heman¹⁹, Y. Higasho²¹, I. Higuch³⁰, T. Higuch⁴⁰, H. Hirano⁴³, T. Hojo³⁵, Y. Hosh³⁸, S.-E. Hou³⁷, W.-S. Hou³⁷, S.-C. Hau³⁸, H.-C. Huang³⁷, Y. Igarashi¹⁰, T. Ijima¹⁰, H. Ikeda¹⁰, K. Inami²¹, A. Ishikawa²¹, H. Ishino⁴¹, K. Itoh¹⁰, G. Iwai²⁶, H. Iwasaki¹⁰, Y. Iwasali (b, D. Jackson)³⁰, P. Jalcha²⁶, N. K. Jang⁴⁰, M. Jones³, R. Kagal⁴⁰, N. Kamalin⁴¹, J. Kaneko⁴⁴, J. H. Kaneko⁴⁴, J. S. Kang⁴⁶, P. Kapusta²⁶, N. Katsyama¹⁰, H. Kawal⁴⁰, N. Kawamma¹, T. Kawasak¹⁶⁶, S. Kang⁴⁶, N. Kawamma¹, T. Kawasak¹⁶⁶, N. Kawamma¹⁴, T. Kawasak¹⁶⁶, N. Kawamma¹⁴⁶, N. Kawamma¹⁴, T. Kawasak¹⁶⁶, N. Kawamma¹⁴⁶, N. Kawama¹⁴⁶, N H. Kabaya, S. Kabaya, F. Kapista, K. Katayana, K. Kabayana, K. Kawana, K. Kawana, T. Kawaski, T. Kawaski, K. Kuchini, D. W. Kim³⁵, Heejong Kim⁴⁶, H. J. Kim⁴⁶, Hymwoo Kim¹⁶, S. K. Kim³⁴, T. H. Kim⁴⁶, K. Kincahita⁶, S. Kokapash³⁵, S. Kokah⁴⁴, F. Krokovny, K. Kukad⁴⁷, S. Kimat³⁴, A. Kuwah³, Y.-J. Kwon⁴⁶, J. S. Lange⁷, S. H. Lee³⁴, D. Liventsev¹⁴, E.-S. Lu²⁵, D. Marlow³³, T. Matsubara⁴⁰, S. Matsu¹¹, S. Matsumoto⁴ T. Matsumoto²¹, Y. Mikani³⁰, K. Miyabayashi²², H. Miyaka³⁰, H. Miyata²⁵, G. E. Moloney¹³, G. F. Moorhead¹³ T. Matsumoto⁴⁴, Y. Mikand⁴⁵, K. Miyabayashl⁴⁴, H. Miyake⁴⁶, H. Miyata⁴⁶, G. K. Moloney¹⁵, G. F. Moorhead¹⁵,
 S. Mort⁴⁶, A. Murakand⁴⁵, T. Nagamine⁴⁵, Y. Nagasala¹¹, Y. Nagashina³⁰, T. Nakadaira⁴⁰, E. Nakano²⁴,
 M. Nakao¹⁰, J. W. Nan⁴⁵, S. Natta³⁵, Z. Natkanler⁴⁵, K. Neth¹⁴⁵, S. Nakhla¹⁷, O. Nitoh⁴⁵, S. Noguch¹²,
 T. Nozald¹⁰, S. Ogava³⁷, T. Ohshina³¹, T. Okabe³¹, S. Okumo¹⁵, S. L. Okam⁵, H. Ozald¹⁰, P. Pakhlov¹⁴,
 H. Palka⁴⁵, C. S. Park⁴⁴, C. W. Fark¹⁶, H. Fark¹⁶, L. S. Feak¹⁶, M. Feters⁵, L. E. Filonen⁴⁷, E. Freby²³,
 J. L. Eodrigues⁵, N. Eoot⁵, M. Eosasha²⁵, K. Eyhlek¹⁶, H. Sagawa¹⁰, Y. Sakal¹⁰, H. Sakamoto¹⁷, M. Satapathy⁴⁶,
 A. Satapathy^{10,5}, S. Schrenk⁵, S. Schnenk⁵, S. Sennet¹⁶, K. Senol¹⁹, H. Shinya³⁷, B. Shwarta⁵, S. Yasuk¹⁶,
 A. Sugl²¹, A. Suglyana³¹, K. Sumikawa¹⁰, T. Sunityosh¹⁰, J.-J. Sunitl¹⁰, K. Susuk¹³, S. Susuk¹⁰, The shi¹⁰, S. K. Swain³, T. Takahashi²³, F. Takasaki¹⁰, M. Takita³⁰, K. Tamal¹⁰, N. Tamura²⁶, J. Tanala⁴⁰, M. Tanaka¹⁰, Y. Tanala²⁰, G. N. Tsybr¹⁹, Y. Teramoto²⁰, M. Tomoto¹⁰, T. Tomura⁴⁰, S. N. Tovey¹⁹, K. Trabela¹⁹, T. Tsuboyama¹⁰, T. Tsukamoto¹⁰, S. Uchara¹⁰, K. Ucno²⁸, Y. Unno⁸, S. Uno¹⁰, Y. Ushiroda¹⁰, S. E. Vahsen³² K. E. Varwell³², C. H. Wang³⁴, J. G. Wang⁴⁷, M.-Z. Wang³⁵, Y. Watanabe⁴¹, E. Won³⁴, B. D. Yabsley¹⁰, Y. Yamada¹⁰, M. Yamaga³⁰, A. Yamaguch³⁰, H. Yamamoto⁹, Y. Yamashita²⁷, M. Yamauchl¹⁰, S. Yamaka⁴¹, K. Yoshida²¹, Y. Yusa³³, H. Yuta¹, C. C. Zhang¹³, J. Zhang⁴⁵, H. W. Zhao¹⁰, Y. Zheng⁹, V. Zhilich², and D. Zontar⁴⁵ ¹Annori University, Annori ²Budger Institute of Nuclear Physics, Normibiral "Ohiba University, Chiba *Ohno University, Takya

¹ Conversity of Charlestry, 1 app ² Conversity of Charlestry, 1 app ³ Dentrative Sciences-Synchrotrom, Hamburg ⁷ Conversity of Frankfurt, Prankfurt ⁶ Gyvonguang National Conversity, Obiogin

²³ Nagaya Uninersity, Nagaya
 ²³ Nara Wonce's Uninersity, Nara
 ²³ National Kanhuing Normal Toimersity, Kachsing g
 ²⁴ National Lien-Ho Institute of Technology, Lian Li
 ²⁶ National Taiman Uninersity, Taipei
 ²⁶ H. Nicombiolanski Institute of Nackor Thysics, Krakow

1

July 23-28, 2001

RFI I F

LP01, Rome

Outline

Introduction

- KEKB/Belle performance
- Measurement of sin2\$\overline\$1
- Results & conclusions

CPV due to complex phases in the Quark generation mixing matrix:

July 23-28, 2001

July 23-28, 2001

LP01, Rome

July 23-28, 2001

KEKB asymmetric e⁺e⁻ collider

 Two separate rings e⁺ (LER) : 3.5 GeV e⁻ (HER) : 8.0 GeV •E_{CM} : 10.58 GeV at Y(4S) •Luminosity $10^{34} \,\mathrm{cm}^{-2}\mathrm{s}^{-1}$ •target: •achieved:4x10³³cm⁻²s⁻¹ •±11 mrad crossing angle •Small beam sizes: $\sigma_v \approx 3 \mu m; \sigma_x \approx 100 \mu m$

July 23-28, 2001

- Lots of B mesons $(Br (B \rightarrow f_{CP}) \sim 10^{-3})$
 - very high Luminosity \Rightarrow KEKB
- Find CP eigenstate decays
 - high quality $\sim 4\pi$ detector \Rightarrow Belle
- Tag other B's flavor
 - good particle id
- Measure decay-time difference
 - Asymmetric energies
 - good vertexing (@KEKB: $\gamma \beta c\tau \approx 200 \mu m$)

KEKB performance

LP01, Rome

Average luminosity during run

July 23-28, 2001

- Small beam sizes ⇒ low beam currents
 - 4.5x10³³ with less than 1 Amp in each ring
- ±11 mrad beam crossing angle

– Synchrotron X-rays easily expelled

The Belle detector: $(B^0 \to J/\psi \; K_s)$

$B^0 \rightarrow J/\psi K_s$ event vertex

KEKB/*Belle* summary

- World record luminosity
 - ~10 B mesons/sec
- Backgrounds are tolerable:
 - SVD occupancy < 4%
 - CDC inner layer occupancy < 10%
 - CsI pedestals endcap < 1MeV; barrel <500keV</p>
- Headroom for improvement:

-Plans: Lum $\Rightarrow 10^{34}$; $r_{IPpipe} 2.0 \Rightarrow 1.5$ cm

Use ~all low-background ccK⁰ modes

Biggest contributor to the f_{cp} event sample

$$B^0 \rightarrow J/\psi K_S(\rightarrow \pi^+\pi^-)$$
 (cont'd)

July 23-28, 2001

LP01, Rome

Total events = 76 Bkgd ≈ 9 evts (12%)

July 23-28, 2001

LP01, Rome

July 23-28, 2001

 $B^0 \rightarrow J/\psi K_L$

- 1) $J/\psi \rightarrow l^+l^- + (K_L)$
- 2) Assume $B \rightarrow J/\psi K_L$: compute P_{KL}
- 3) Remove reconstructed
 - $B \rightarrow J/\psi K, J/\psi K^*, \dots$
- 4) Cut on a likelihood based on kinematical and shape quantities
 5) Plot P^{*}_B = |P J/ψ + P KL|

$B^0 \to J/\psi \; K^{}_L$ signal yield

July 23-28, 2001

LP01, Rome

Use *inclusive* flavor-specific properties:

Also need to consider correlations

July 23-28, 2001

 Uses all events – Efficiency > 99% 0.8 $-2w_{l}$ 0.6 $\epsilon_{\text{effective}} = 27.0 \pm 1.2\%$ 0.4 Includes correlations 0.2 • Use MC-*r* as a classifier 0.2 0.6 0.8 • Use data-w for CP fits

MC-determined $r \approx 1-2w$ measured from data

Vertex Reconstruction

- For *CP*-side, use $J/\psi \rightarrow l^+l^-$
 - Reject poorly fit events.
 - $\delta z_{CP} \approx 75 \ \mu m \ (rms)$
- For *Tag*-side
 - use well fit tracks
 - iterate: discard worst track
 - $-\delta z_{tag} \approx 140 \ \mu m \ (rms)$
- Require $|z_{CP} z_{tag}| < 2mm (\approx 10\tau_B)$

 $\sigma_{\Delta t} \approx 1.5 \text{ ps}$

• Tails ≈ 3%; Effic. ≈ 85%

BELLE Des Martine Mart

1137 evts used in the CP fit.

Validation: B lifetimes

July 23-28, 2001

Timeline

- July 6: end Y(4S) running
- July 9: finish data processing
- July 11: find w_l 's
- July 12: Open the box!!
- July 13: PRL draft → Collab
- July 18: PRL submitted
- July 23: Announce results

Combine q, $\xi_f \& \Delta t$

CP is violated in B decays!!

•Large effect

•Apparent in the raw data

•Many σ

LP01, Rome

$$\mathcal{L}_{i} = \int ((1 - f_{bk})\mathcal{P}_{sig} + f_{bk}\mathcal{P}_{bk}) \times \mathcal{R}(\Delta t - \Delta t')d\Delta t'$$

$$\mathcal{P}_{sig} = rac{e^{-|\Delta t|/ au_B}}{2 au_B} (1\!-\!\xi_f q(1\!-\!2w)\sin 2\phi_1\sin\Delta m\Delta t)$$

$\sin 2\phi_1$ value that maximizes $\prod_i L_i$

$sin2\phi_1 = 0.99 \pm 0.14$ (stat) $\pm 0.06(sys)$

Use toy MC: run 1K similar expts with sin2\u03c6₁ (input)=0.99

July 23-28, 2001

LP01, Rome

asymmetry display

used binned data to examine "goodness of fit"

July 23-28, 2001

asymmetry plot: all data

July 23-28, 2001

LP01, Rome

use: $B^0 \rightarrow D^{(*)-}\pi^+$, $D^{*-}\rho^+$, $D^{*-}l^+\nu$, $J/\psi K^*(K^+\pi^-)$

July 23-28, 2001

Vertex algorithm	±0.04
Flavor tagging	±0.03
Resolution function	±0.02
K _L background fraction	±0.02
Background shapes	±0.01
Δm_d and τ_{B0} errors	±0.01
Total	±0.06

Compare with other experiments

July 23-28, 2001

Variations on a theme

Old data; old analysis:	0.58±0.33
Old data; new analysis:	0.54±0.34
New data; new analysis:	1.06±0.14

Allow Δm_d to float	sin2\$\phi_1\$	Δm_d (PDG:0.472)
	1.00±0.14	0.478±0.057 ps ⁻¹

Allow τ_{B0} to float	sin2\phi_1	τ_{B0} (PDG:1.550
	1.00±0.14	1.66±0.07 ps

Resolution function

July 23-28, 2001

Combine q, $\xi_f \& \Delta t$

$sin2\phi_1$ for different r values

