KEK-Bファクトリー加速器

KEK加速器研究施設 赤井和憲

2004.5.20 京都大学

1

- 1. KEKB加速器とは?
- 2. KEKBの構成と性能向上の歩み
- 3. KEKBの将来: Super-KEKB計画

Part 1. KEKB加速器とは?

- 電子(e-)陽電子(e+)衝突型 加速器
- 非対称エネルギー、2リン グ型の加速器
 - 電子リング:HER/8GeV
 - 陽電子リング:LER/3.5GeV
- 非常に高いルミノシティでB
 中間子を大量生成

電子陽電子衝突型リングのエネルギー

KEKB:非対称エネルギーダブルリング コライダー

- ・ 飛跡からB・反Bの 崩壊時間の差がわ かる。
- e-/e+それぞれに独 立のリングが必要。
- 加速器の設計運転
 は単リングの2倍以
 上複雑

KEKB トンネルの中 (周長 3 km)

左が陽電子リング 右が電子リング

要求される性能:高いルミノシティ

KEKB デザインルミノシティ 10³⁴/cm²/sec KEKBのデザイン段階では、世界の加速器研究者の間では 夢の数字と考えられていた

高いルミノシティーを得るには?

- 大電流ビーム蓄積
- ・ 衝突点で小さいビームサイズ
- 安定かつ高い精度で衝突を維持

世界の加速器のルミノシティ変遷

PEP-II との熾烈な競争

KEKBとPEP IIの到達点(2004.5.20現在)

	KEKB		PEP II	
	Record	Design	Record	Design
Peak luminosity [/cm²/sec]	13.04×10^{33}	1×10^{34}	9.01 × 10 ³³	3×10^{33}
Integrated luminosity per day [/pb]	935	-	698	-
Total Integrated luminosity [/fb]	258		206	
I _{beam} LER [A]	1.65	2.6	2.43	2.14
I _{beam} HER [A]	1.19	1.1	1.38	0.75
Number of bunches	1284	~ 5000	1561	1635
β _y [*] [mm] LER/HER	5.2/7	10/10	11/11	15/30
ξ _y LER/HER	0.074/0.053	0.052/0.052	0.067/0.046	0.03/0.03
v_x/v_y LER	45.511 / 43.553	45.52 / 45.08	38.52 / 36.56	32.28 / 35.18
v_x/v_y HER	44.513 / 41.582	47.52 / 43.08	24.52 / 23.62	25.28 / 24.18

Part 2.KEKBの構成と性能向上の歩み

- ・リング加速器のしくみ
- ・ KEKBの設計、ハードウェアの特長
- KEKBの性能向上の歩み
- 入射器

荷電粒子の加速のしくみ

高周波加速空洞

リング内の粒子分布(バンチ)

- ・バンチ
 - ビームはリング内に一様に分布しないで、バンチと呼ばれる塊の集合になる。
 - これは、高周波でビームを加速しているため、この高周波 フィールドの適当な位相でのみ適切な加速が行えるため である。
 - リングに存在できるバンチの数(の最大値)は、リングの周 長と高周波の周波数で決まる(KEKBの場合5120)

ベータトロン振動とチューン

- ビームは磁場から受ける力によって横方向(x方向またはy方向)に 振動を伴う運動をする。 ベータトロン振動。
- 力の性質は「復元力」。(例:ばねによる振動)
- ・ 蓄積リングの場合、ビームがリング一周する時に何回振動するかを 表すパラメータをベータトロン・チューンと呼ぶ。(単にチューンと呼 ぶこともある。)
- チューンは磁石の設定、配置によって決めることができる。
- チューンはビーム光学系における重要なパラメータである。

バンチ内の粒子の分布

- 横方向(水平、垂直方向のビームサイズ)
 - リングの場所によって、ビームサイズが異なる
 - このビームサイズは、ビーム光学でレンズの役割を果たす四極 電磁石 (Quadruple Magnet, Q Magnet)のリング内の配置に依存 する -> 関数
- 進行方向(バンチ長)

- 高周波加速の加速電圧、偏向電磁石の強さなどで決まる

ビームサイズ

$$\sigma_{x} = \sqrt{\beta_{x}\varepsilon_{x} + \left(\eta_{x}\frac{\Delta p}{p}\right)^{2}} \qquad \sigma_{y} = \sqrt{\beta_{y}\varepsilon_{y} + \left(\eta_{y}\frac{\Delta p}{p}\right)^{2}}$$

- Beta function and emittance $\beta_{x,y}$ Beta function (Optical parameter): リングの場所に依存 $\mathcal{E}_{x,y}$ Emittance: リングの場所に依存しない不変量

- Energy Dispersion and energy spread

 $\eta_{x,y}$ Energy dispersion (Optical parameter): リングの場所に依存 $\frac{\Delta p}{p}$ Energy spread : バンチ内の粒子のエネルギーの分布の広がり リングの場所に依存しない不変量

超伝導空洞: 高加速電圧を効率よく発生

超伝導空洞で世界最高電流>1.2Aの蓄積

2.5 π セルラティス: 最小の非線形性と最大の柔軟性 半整数共鳴線に0.005まで接近

有限交差角:2ビームを容易に分離 ユニークな超伝導最終収束磁石、常伝導特種電磁石群 リングコライダーとして世界最小ビーム サイズ(2.2 µm×110 µm)を達成

ソレノイド磁場により電子雲の発生を抑制

J-LINAC:

限られたスペースで必要な入射エネルギーを達成 陽電子2バンチ入射の実現

ARES空洞: 巨大な蓄積エネルギーで大電流を安定に加速 バンチ毎フィードバックで他の不安定性も抑制

KEKB 超伝導加速空洞

超伝導加速空洞としては ・蓄積ビーム電流が世界最大 ・ビームへの供給パワーも世界最大

KEKB-ARES 常伝導加速空洞

ビーム不安定に強く、 大電流に適した、 独創的な設計。

総数約3300台。 0.1mmの精度で設置。

2 <mark>極電磁石</mark> ビームを曲げる、軌道補正

6 <mark>極電磁石</mark> ビームの色収差補正

Low- β Optics(β_v の小さい光学系)

- 衝突点付近の特殊な四極電磁石により極限まで衝突点の
 の 関数を絞り込む
- 関数
 - ビームサイズ^{1/2}
 - リングの平均的な値
 - 5~30m
 - **衝突点**(KEKBデザイン値)
 - 水平方向(β_x^{*}):33cm
 - 垂直方向(β_v^{*}):10mm

26

- 1989年: デザイン作業に着手
- 1994年:予算通過、建設開始
- 1995年6月: KEKB デザインレポート完成
- 1997年9月:入射器リニアックKEKB用アップグレード完成、運転開始
- 1998年12月: HERビーム運転開始
- 1999年1月: LERビーム運転開始
- 1999年5月: Belle検出器装着
- 1999年6月: Belleで最初の素粒子反応観測
- 2001年4月:当時の世界最高ルミノシティ(3.4×10³³cm⁻²s⁻¹)に到達(PEP-IIを 越える)
- 2002年10月:積分ルミノシティ、100 /fbに到達(世界初)
- 2003年5月9日: デザインルミノシティ10³⁴cm⁻²s⁻¹を達成(世界初)
- 2004年2月:積分ルミノシティ、200 /fb に到達(世界初)
- 2004年5月現在: ルミノシティは1.3 × 10³⁴cm⁻²s⁻¹ で世界記録を更新中

ルミノシティ向上の歩み

ルミノシティ向上を阻んだ諸問題

- 大電流ビームとの戦い
 加速器コンポーネントの発熱や放電による破損
 ビーム不安定性
- 電子雲に起因する陽電子ビームサイズ増大
 ソレノイド巻きによる対策
- ビーム・ビーム効果相互作用によるビームサイズの増大

大電流ビームの(悪)影響

- 不安定になったビームが機器を直撃
 - 真空機器を破壊 - Belle検出器への多大な放射線
- ビームが誘起する強力な電磁場による放電や発熱で機器が破壊
- 機器のインピーダンスが起こすビーム不安
 定

大電流ビーム直撃によるダメージ

一例:可動マスク

可動マスク 「ビームが暴れたら僕が止めるよ。 大事なBelle検出器様を守るために。」

そして傷だらけになってしまった。

Belle検出器

(1) マスクの改良につぐ改良。
(2) 不安定なビームはすばや〈捨てる(アボート)。
により、現在はほぼ解決。

大電流ビームによる各種真空機器の破壊

Movable Mask

LER Septum Chamber

光電子雲による陽電子ビームサイズ増大

光干渉計によるビームサイズ測定

電子雲対策(ソレノイド磁場)

陽電子リング全周に、せっせと ソレノイドコイルを巻いた。 (夏休み、正月休み)

ソレノイドコイル巻きの歴史

ソレノイドの効果

ビームサイズへの効果

ルミノシティへの効果

ビームビーム効果によるビームサイズ増大の抑制

- より良いビームパラメタ(betatron tune等)の選択。
 Simulationで探し実際のマシンで実験する。
- マシン・エラーの(加速器のデザインからの誤差)軽減は 必須。
- チューニングを行うためのソフトウエア("tool")の開発と整備。

ベータトロンチューンとルミノシティ

マシンチューニング "tool" の例 チューン フィードバック

.5135

.5 ~ .5

.510

測定値

セット値

500 1000 LER Current (mA)

1500

.525

.52

.515

.51

.505

V H (LER)

Gated Tune LER H

44.482

44.481

44:69

44.483

Optics 測定と補正

Knobs:

Local bumps at sextupoles Fudge factors for quads/skews

Works very well !

and the second second

fudge saved to the file 'OKFUDGE 89 30 2082 11:59:47

Use QCS skew Skew weight: Tolerance:

Damping factor: Game Damping Pactor CALC SET

入射器の構成

線形加速器下流のswitch yard

連続入射による積分ルミノシティ増加

- 入射中もデータを取り続 ける。
- 10Hz**入射**
- 3.5msec **O**veto
- 加速器の状態を一定に 保つことが可能になり運 転が安定になる。

- 予想外の困難=「陽電子リングにおける光電子雲不安定性」の克服
 - ソレノイド磁場の半手巻きによる追加、全長2300m
 - ビームパラメータの変更による対応
 - 大電流(LER 1.5 A, HER 1.1 A)の蓄積に伴う発熱・放電・破壊との闘い
 - 真空チェンバーの発熱、溶解(放射光、ビームエネルギー直撃等)
 - 可動コリメーターの破壊(ビームエネルギー直撃、放電、高次モード電磁場等)
 - ベローズ内部の破壊(放射光、放電、高次モード電磁場等)
 - 衝突点ベリリウムチェンバーの破損
 - 1日24時間週7日日曜も休日もない連続運転、年間8-9ヶ月
 - 停止期間は機器の保守、修理と改造

Best Shift (8 hours)

Daily/weekly/monthly積分ルミノシティ

Weekly Integrated Luminosity

48

Part 3. KEKB加速器の将来

Super B Factory計画の提案

高エネルギー加速器研究機構 素粒子原子核研究所 / 加速器研究施設

KEKB加速器の将来計画における目標 ~ Super B Factory 計画~

Bファクトリー実験で用いられているKEKB加速器の最高ルミノシティー(2004年5月現在)は、

 $L_{peak} = 1.3 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$

- KEKB加速器の将来計画では、さらに高いルミノシ ティーを目指し2.5x10³⁵ cm⁻² s⁻¹を目標とする(約20 倍)。 SuperKEKB計画
- アップグレードの時期は2009年頃を予定。

SuperKEKBの概念図

超高ルミノシティーへの主要戦略

- SuperKEKB加速器ではKEKBの約20倍のルミノシティーを達成するために、
 - ビーム電流を約4倍に増強する。
 - 1.6 A (LER) / 1.2 A (HER) 9.6 A (LER) / 4.1 A (HER)

y*関数を約1/2にする。

- $y^* = 6 \text{ mm}$ $y^* = 3 \text{ mm}$ (ビームを絞る)
- バンチ長も 6 mm 3 mm に縮める。
- ビーム・ビーム パラメータを約3倍にする。

•
$$\xi_y = 0.05$$
 $\xi_y = 0.14$

約24倍のゲイン

ビーム電流の増強

- (1) RFシステムの増強と改良
 - ビームパワーを補償するためにRFシステムの数を約2倍に増強。
 - クライストロン1台:空洞2台からクライストロン1台:空洞1台へ移行 (RFパワーの増強)。
 - LER-ARES空洞改造により結合バンチ不安定性を軽減。
 - 進行方向のバンチフィードバックシステムを装備。
 - 高次モード電磁波(HOM)を受け止めるHOM damperの改良。
 - 空洞でのHOMパワーロスを軽減するためにロス・ファクター(κ)を小 さくする。(ex. 空洞とビームチェンバーの結合部を滑らかにする等)

$$P_{HOM} = \kappa \cdot T_0 \frac{I^2}{n_B}$$
ビーム電流

ビーム電流

バンチ数
ビーム電流

バンチ数

RFユニットの増強

		KEKB		Super-KEKB	
		LER	HER	LER	HER
Oho	D4		3		14
	D5		3	8	2
Fuji	D7	5		10	
	D8	5		10	
Nikko	D10		4		6
	D11		4		6
Total		24		56	

LER-ARES空洞の改造

- The ARES in LER will be remodeled to increase the stored energy further.
- By enlarging the coupling hole between the A-C cavities, Us/Ua will be increased from 9 to 15.
- Storage cavity is reused.

	exsisting	modified
Energy ratio	1:9	1:15
Detuning (kHz)	65	45
Growth time (ms)	0.3	1.6
C-damper (kW)	41	26

Coupling impedance for the p/2 mode

55

ビーム電流の増強(つづき)

- (2)真空機器の改造
 - アンテ・チェンバーの導入。
 - 強力な放射光を受け止める。
 - 陽電子ビームに悪影響を及ぼす光電子雲を遮蔽する。
 - HOMパワーロスの軽減。真空チェンバーを結合するためのベローズの改良。
 - フィンガータイプから櫛型へ。
 - 強力なRFシールド。
 - ダメージに強い。
 - 可動マスクシステムの改良。
 - HOMの発生を軽減するタイプ。
 - ビームによるダメージに強い。
 - 特殊なHOM吸収体(HOM absorber)を装備。

アンテ・チェンバー

HOM吸収体

衝突点でより強くビームを絞る

- ・ 衝突点での 関数、 ^{*}_x / ^{*}_y を20 cm / 3 mm に絞る
 30 mrad finite-crossing (有限交差角) > 22 mrad (KEKB加速器)
- 最終収束系の改良。
 - 最終収束磁石を衝突点に出来る限り近づける。
 - 衝突点まわりの特殊四極磁石も衝突点に出来る限り近づける。

Head-on 衝突 vs 有限角度衝突

- Head-on衝突 では高いビーム・ビーム パラメータが期待できる。
 - 但し、Weak-StrongとStrong-Strong モデルでは結果が約2倍違うが信頼性の高いStrong-Strongの方 をデザインパラメータとしている。
- ・ 有限角度のビーム軌道 + Head-onビーム衝突
 - = Crab-Crossing (ルミノシティ2倍以上にUP)

Crab空洞を用いたCrab-Crossing

(実現すれば世界初)

リングヘビームを供給する入射器の改良

 ビームエネルギー交換:光電子雲効果の軽減と入射の 高効率化
 8 GeV電子 / 3.5 GeV陽電子 8 GeV陽電子 / 3.5GeV電子

 1. 陽電子ダンピング・リング (1 GeV)
 2. Cバンドを用いた陽電子エネルギー8GeV化 (e⁻ LER / e⁺ HER) Cバンド:40 MeV/m Sバンド:20 MeV/m

その他の主要アイテム

- ・ ビーム光学系の基本コンセプトはKEKB加速器を踏襲。
- ソレノイド磁石
 陽電子ビームに対する光電子雲の有効的な遮蔽
- 大電流に耐え得る高性能ビーム・モニター
 - ビーム位置モニター
 - 光干渉計によるエミッタンス測定
- ・ 強力なバンチ・フィードバックシステム
 - 横方向バンチ・フィードバックシステム
 - 進行方向バンチ・フィードバックシステム
- 高速なビーム・アボートシステム
- 強力な冷却システム
- ・ 大電力の安定供給
- 信頼性の高い制御システム

主要マシンパラメータ

Parameter		LER	HER	Unit
Beam currrent	I	9.4	4.1	А
Number of bunches	n _b	50)18	
Horizontal beta at IP	β_{x}		20	cm
Vertical beta at IP	β_{y}		3	mm
Bunch length	σ _z		3	mm
Emittance	ε _x		24	nm
Coupling	к		1	%
Crossing angle	θ_{x}	30 with cra	b-crossing	mrad
Momentum compaction	$lpha_{\sf p}$	2.7x10 ⁻⁴	1.8x10 ⁻⁴	
RF voltage	V _c	15	20	MV
Synchrotron tune	ν_{s}	0.031	0.019	
Vertical beam-beam	ξy	0.14 (0.28)	
Luminosity	L	2.5	(5)	x10 ³⁵ cm ⁻² s ⁻¹

Beam-beam parameter is obtained from simulations: strong-strong (weak-strong)

・ KEKBの現状

- ルミノシティがデザイン値の1×10³⁴ /cm²/sを超え、1.3×10³⁴ /cm²/sに達した。
 - 設計段階では世界の加速器研究者の間では夢の数字であった。
- ピーク値、積分値ともルミノシティがライバルのPEP-II (SLAC) より5割近く高く、世界最高記録を更新し続けている。
 - PEP-II が比較的conventionalな設計方針をとったのに対してKEKBはいくつもの新しい 技術を導入してより高いルミノシティを目指した。
- 様々な困難に遭遇し、克服してきた。

• 将来計画

- KEKBの経験をもとに、次のステップであるSuperKEKB計画の準備を行っている。
- KEKBデザイン値と比べてビーム電流で4倍、衝突点での を 1/2、ビーム・ビームパラメタを3倍にすることにより2.5 × 10³⁵ /cm²/sを目指している。

これ以降は予備スライド

ルミノシティーを決める要因 ルミノシティーを表現する基本的な式 ビーム・ビーム パラメータ ビーム電流 l orentz 衝突点でビームが互いに factor 及ぼし合う力の大きさ $I_{e\pm}\xi_{y}^{e\pm}$ σ_{y} $R_{\underline{L}}$ $L = \frac{\gamma_{e\pm}}{\gamma_{e\pm}}$ 1 + - $2er_{e}$ β_{v} $R_{\mathcal{E}}$ 幾何学的な要因 による補正係数 古典電子半径 $0.8 \sim 1$ (short bunch)

衝突点でのx方向と y方向のビームサイズ の比 1~2% (flat beam)

衝突点でのビームの絞り量「焦点深度」

関数

衝突点での

y方向の

ルミノシティーはビーム電流とビーム・ビーム パラメータの積に比例し、*関数に反比例する。

KEKBとPEPIIとの比較(デザイン)

	KEKB	PEP II	
Feature	Aggressive	Conservative	
Luminosity	$1 \times 10^{34} / \text{cm}^2 / \text{sec}$	3×10^{33} /cm ² /sec	
RF	ARES + SCC Convention		
Crossing angle	± 11 mrad 0 mrad (Conver		
Lattice	Special (2.5 π cell)	Conventional	
BPM	Conventional Single pass		
Injector	Upgraded Linac	SLC Linac	
LER	Сп	Al ante chamber	
Vac. chamber	Cu	TiN coating 67	

KEKBとPEPIIとの比較(デザインパラメータ)

	KEKB		PEP II	
	LER	HER	LER	HER
Peak luminosity [/cm ² /sec]	1 × 10 ³⁴		3 × 10 ³³	
Beam Energy [GeV]	3.5	8.0	3.1	9.0
I _{beam} [A]	2.6	1.1	2.14	0.75
Number of bunches ~ 5		000	1658	
β_{y}^{*} [mm]	10		15	30
σ_{l} [mm]	4		10	
Momentum compaction	$1 \sim 2 \times 10^{-4}$		1.5 × 10 ⁻³	2.4 × 10 ⁻³
RF Voltage [MV]	10	17.9	9.5	18.5
Beam-Beam parameter ξ_x / ξ_y	0.039/0.052		0.03/0.03	

KEKBとPEPIIとの比較(IR)

入射時間

2バンチ運転による入射時間の短縮

ルミノシティ最大化のためのマシンデザイン / 技術

- 世界最高の革新的な加速器設計
 - <u>有限交差角</u>に基づ〈衝突点配置、特殊超伝導·常伝導電磁 石
 - 最大の柔軟性、最小の非線形性を持つ新型ビーム光学系と
 それを可能にした高精度電磁石群
 - 大電流を安定に加速するARES常伝導空洞
 - 世界最高蓄積電流を誇る超伝導空洞
 - 大電流に耐える超高真空システム
 - 高精度ビーム診断・安定化装置群
 - 世界標準EPICSを世界最大規模で実現した制御系
 - 陽電子2バンチ入射をも可能にした強力な入射器とビーム輸送系

Accelerator Resonantly coupled with Energy Storage ARES

QuickTimeý C² TIFFÁia ekC*CuÁj eLiźEvÉcéOÉaÉĂ ĂF«FNF/FFC%a@CÉC2C%C...CÖIKovC-C ÁB

光干渉計によるビームサイズ測定

Optics補正(beta function補正)

高いビーム・ビーム パラメータの追求

- ビーム・ビーム パラメータにはリミットがある。
 - 大きくなるにつれて衝突確率は上がるがバンチ不安定性も増す。 ある値を超すとバンチがばらける(ビーム・ビーム リミット)。
- ビーム・ビーム パラメータの見積もりには数値シュミレーションに頼ら ざるを得ない。
- ・ 衝突するビームに含まれる粒子数は10¹¹個を超えるので、そのままではシュミレーションはできない。

- Weak-Strongモデル
 - 一方のビームをガウス分布に固定して、もう片方のビームはマクロ 粒子(~10万個)で記述する。
- Strong-Strongモデル
 - 両方のビームをマクロ粒子(~10万個)で記述する。