June 10th, 2004 @Kyoto U.

M. Yokoyama (Kyoto University) for K2K collaboration

1. IntroductionK2K experimentsince 1999

First accelerator-based long baseline (**250km**) neutrino experiment. Search for $\underline{v_{\mu}}$ disappearance and v_{e} appearance

Flavor mixing in lepton sector

 \Box Flavor eigenstates \neq mass eigenstates

Neutrino Oscillation

Time evolution of neutrino

Consider mixing b/w two flavors

Consider neutrino generated as pure $v\mu (=\cos\theta |v_2>+\sin\theta |v_3>)$ $|v_{\mu}, t\rangle = \cos\theta e^{-im_2^2 t/4p} |v_2\rangle + \sin\theta e^{-im_3^2 t/4p} |v_3\rangle$

If $m_2 \neq m_3$, v is in mixed state after time evolution!

$$P = \left| \left\langle v_{\mu} \middle| v_{\mu}, t \right\rangle \right|^{2} = 1 - \sin^{2} 2\theta \sin^{2} \left(1.27 \frac{\Delta m^{2}}{eV^{2}} \frac{L(km)}{E(GeV)} \right)$$

If there is neutrino oscillation $\rightarrow \Delta m^{2} \neq 0$

 $\rightarrow m \neq 0!$

Super-Kamiokande atmospheric v p,He,...

Best fit sin²2θ=1.0, Δm²=2.0x10⁻³ eV² Null oscillation

 $\begin{array}{c} 0 & -1 & -0.5 & 0 & 0.5 & 1 \\ \hline & -1 & -0.5 & 0 & 0.5 & 1 \\ \hline & & & & & \\ 120 \\ \hline & & & & \\ 120 \\ \hline & & & & \\ 5100 \\ \hline & & & & \\ 60 \\ \hline & & & & \\ 40 \\ \hline & & & & \\ 20 \\ \hline & & & & \\ 100 \\ \hline & & & & \\ 0 \\ \hline \end{array}$

 $1.3x10^{-3} < \Delta m^2 < 3.0x10^{-3} eV^2$ (@ sin²2 θ =1, 90% CL)

 $\nu\mu \rightarrow \nu\tau$ oscillation? ⁵

Brief history of K2K

1995

- Proposed to study neutrino oscillation for atmospheric neutrinos anomaly.
- **1999**
 - Started taking data.
- **2000**
 - Detected the less number of neutrinos than the expectation at a distance of 250 km. Disfavored null oscillation at the 2σ level.

2002

 Observed indications of neutrino oscillation. The probability of null oscillation is less than 1%.

2004

This result!

- JAPAN: High Energy Accelerator Research Organization (KEK) / Institute for Cosmic Ray Research (ICRR), Univ. of Tokyo / Kobe University / Kyoto University / Niigata University / Okayama University / Tokyo University of Science / Tohoku University
- KOREA: Chonnam National University / Dongshin University / Korea University / Seoul National University

U.S.A.: Boston University / University of California, Irvine / University of Hawaii, Manoa / Massachusetts Institute of Technology / State University of New York at Stony Brook /

University of Washington at Seattle

POLAND: Warsaw University / Solton Institute

Since 2002 JAPAN: Hiroshima University / Osaka University CANADA: TRIUMF / University of British Columbia Italy: Rome France: Saclay Spain: Barcelona / Valencia Switzerland: Geneva RUSSIA: INR-Moscow

Neutrino beam and the directional control

a vith 250kA. a dual horn system

Accumulated POT (Protons On Target)

Near detector system at KEK

- IKT Water Cherenkov Detector (1KT)
- Scintillating-fiber/Water sandwich Detector (SciFi)
- Lead Glass calorimeter (LG) before 2002
- Scintillator Bar Detector (SciBar) from 2003
- Muon Range Detector (MRD)

Scintillators (64layers)

Fibers and front-end elec14

Just Completed!

SK is back !

Full water on 10-Dec.-2002

Acrylic + FRP vessel

Jan.-2003, fully contained event

Sep.-2002, before water filling

3. Analysis Overview

4. Near Detector measurements

Event rate measurement (#of v int.)

- Measurement w/ 1KT
- Cross-checked by other detectors
- Spectrum shape measurement
 - IKT, SciFi, SciBar (pμ, θμ)
 - Measure spectrum and nQE/QE (v interaction model)

Predict number of event and spectrum shape at SK

4.1 Event rate measurement @1KT

The same detector technology as Super-K.
Sensitive to low energy neutrinos.

$$N_{SK}^{\exp} = N_{KT}^{obs} \bullet \left[\frac{\int \Phi_{SK}(E_v)\sigma(E_v)dE_v}{\int \Phi_{SK}(E_v)\sigma(E_v)dE_v} \right] \bullet \frac{M_{SK}}{M_{KT}} \bullet \frac{\varepsilon_{SK}}{\varepsilon_{KT}}$$
$$= Far/Near Ratio (by MC) \sim 1 \times 10^{-6}$$

M: Fiducial mass M_{SK} =22,500ton, M_{KT} =25ton ε: efficiency $\varepsilon_{SK-I(II)}$ =77.0(78.2)%, ε_{KT} =74.5%

4.2 Measurement with SciBar

Full Active Fine-Grained detector (target: CH).

- Sensitive to a low momentum track.
- Identify CCQE events and other interactions (non-QE) separately.

4.3 Near Detector Spectrum Measurements

1KT

• Fully Contained 1 ring μ (FC1R μ) sample.

SciBar

■ 1 track, 2 track QE ($\Delta \theta_p \leq 25^\circ$), 2 track nQE ($\Delta \theta_p > 25^\circ$) where one track is μ .

SciFi

■ 1 track, 2 track QE ($\Delta \theta_p \leq 25^\circ$), 2 track nQE ($\Delta \theta_p > 30^\circ$) where one track is μ .

A hint of K2K forward µ deficit.

K2K observed forward μ deficit.

- A source is non-QE events.
- For CC- 1π ,
 - Suppression of ~q²/0.1[GeV²] at q²<0.1[GeV²] may exist.
- For CC-coherent π,
 - **\square** The coherent π may not exist.

We do not identify which process causes the effect. The MC CC- 1π (coherent π) model is corrected phenomenologically.

Oscillation analysis is insensitive to the choice.

4.4 Near Detectors combined measurements

(p_{μ},θ_{μ}) for 1track, 2trackQE and 2track nQE samples $\rightarrow \Phi(Ev)$, nQE/QE

- Fitting parameters
 - $\Phi(E_v)$, nQE/QE ratio
 - Detector uncertainties on the energy scale and the track counting efficiency.
 - The change of track counting efficiency by nuclear effect uncertainties; proton re-scattering and π interactions in a nucleus ...

Strategy

- 1 Measure $\Phi(E_{\nu})$ in the more relevant region of $\theta_{\mu} \ge 20^{\circ}$ for 1KT and $\theta_{\mu} \ge 10^{\circ}$ for SciFi and SciBar.
- 2 Apply a low q^2 correction factor to the CC-1 π model (or coherent π).
- 3 Measure nQE/QE ratio for the entire θ_{μ} range.

Flux measurements

 χ^2 =638.1 for 609 *d.o.f*

- $E_{\rm V} < 500$ = 0.78 ± 0.36 Φ1 ($\Phi 2$ (500 ≤ Ev < 750) = 1.01 ± 0.09 Φ 3 (750 \leq Ev < 1000) = 1.12 \pm 0.07 Φ 4 (1500 ≤ E_V <2000) = 0.90 ± 0.04 Φ 5 (2000 ≤ Ev <2500) = 1.07 ± 0.06 Φ 5 (2500 ≤ E_V <3000) = 1.33 ± 0.17 **Φ6 (3000≤ Ε**ν $) = 1.04 \pm 0.18$ nQE/QE $= 1.02 \pm 0.10$
 - The nQE/QE error of 10% is assigned based on the variation by the fit condition.
 - θ>10°(20 °) cut: nQE/QE=0.95 ±0.04
 - standard(CC-1π low q² corr.): nQE/QE=1.02 ±0.03
 - **No coherent:** $\pi = nQE/QE = 1.06 \pm 0.03$

1KT: μ momentum and angular distributions. with measured spectrum

29

SciFi (K2K-IIa with measured spectrum)

SciBar (with measured spectrum)

5. Super-K oscillation analysis

- Total Number of events
 E_v^{rec} spectrum shape of FC-1ring-μ events
 Systematic error term
- $L(\Delta m^2, \sin 2\theta, f^x)$

$$= L_{norm}(\Delta m^2, \sin 2\theta, f^x) \cdot L_{shape}(\Delta m^2, \sin 2\theta, f^x) \cdot L_{syst}(f^x)$$

f^x: Systematic error parameters

Normalization, Flux, and nQE/QE ratio are in fx

Near Detector measurements, Pion Monitor constraint, beam MC estimation, and Super-K systematic uncertainties.

K2K-SK events

preliminary

K2K-alll	DATA	MC
(K2K-I, K2K-II)	(K2K-I, K2K-II)	(K2K-I, K2K-II)
FC 22.5kt	108	150.9
	(56, 52)	(79.1, 71.8)
1ring	66	93.7
	(32, 34)	(48.6, 45.1)
μ-like	57 (56)	84.8
for E _v re	(30, 27)	(44.3, 40.5)
e-like	9	8.8
	(2, 7)	(4.3, 4.5)
Multi Ring	42	57.2
	(24, 18)	(30.5, 26.7)

Ref; K2K-I(47.9×10¹⁸POT), K2K-II(41.2×10¹⁸POT) ₃₃

 $L_{norm}(\Delta m^2, \sin 2\theta, f^x) = L_{shape}(\Delta m^2, \sin 2\theta, f^x)$

6. Results preliminary Best fit values. $sin^2 2\theta = 1.53$ ■ ∆m² [eV²] = 2.12×10⁻³ Best fit values in the physical region. ■ sin²2θ = **1.00** Δm^2 Input: ∆m²=2.7300E-03, sin²(2θ)=1.0000 A toy MC ■ ∆m² [eV²] = **2.73×10⁻³** 14.4% 10 ∆log**L**=0.64 2.73 10 $\sin^2 2\theta = 1.53$ can occur by statistical fluctuation with 14.4% probability. 10 -4 0.5 2.5 2 1.00 1.53 sin²20

Data are consistent with the oscillation.

v_{μ} disappearance versus E_{ν} shape distortion

Null oscillation probability

preliminary

The null oscillation probabilities are calculated based on $\Delta ln L$.

	K2K-I	K2K-II	K2K-all
ν_{μ} disappearance	2.0%	3.7%	0.33% (2.9 ₀)
$E_{_{\!\mathrm{v}}}$ spectrum distortion	19.5%	5.4%	1.1% (2.5 <i>o</i>)
Combined	1.3%	0.56%	0.011%
	(2.5 σ)	(2.8 <i>o</i>)	(3.90)

Disappearance of v_{μ} and distortion of the energy spectrum as expected in neutrino oscillation.

K2K <u>confirmed</u> **neutrino oscillation** discovered in Super-K atmospheric neutrinos.

8. Summary

With 8.9×10¹⁹ POT, K2K has confirmed neutrino oscillations at 3.9σ.

7. Other Physics in K2K (based on K2K-I data)

distributions. with measured spectrum

SciFi (K2K-IIa with measured spectrum)

SciBar (with measured flux)

44

Log Likelihood difference from the minimum.

□ $\Delta m^2 < (1.7 \sim 3.5) \times 10^{-3} \text{ eV}^2$ at $\sin^2 2\theta = 1.0$ (90% C.L.)

45

The change of $N_{SK}^{\ exp}$ in K2K-I (Bugs)

■ The detector position ■ 295m \rightarrow 294m -1%

■ MC difference between KT and SK ■ KT; $M_A(QE)=1.1$ $\sigma (NC_{e/})_{KT}=1.1 \times \sigma (NC_{e/})_{SK}$ ■ SK; $M_A(QE)=1.0$ \Rightarrow Efficiency change! -1%

N_{SK}^{exp} Change ~2%

CC-1 π suppression versus coherent π

Systematic Bias without the MC correction.

ND (SciBar) measurement

```
DATA; MC w/ CC-1\pi suppression MC template; Default MC
```


Oscillation Results

Default MC for ND and SK $sin^22\theta=1.00$ $\Delta m^2=2.73 \ 10^{-3} eV^2$ Prob.(null oscillation)=0.0049%

Corrected MC $sin^22\theta=1.00$ $\Delta m^2=2.65 \times 10^{-3} eV^2$ Prob.(null oscillation)=0.011%

There is a small bias in nQE/QE and the low energy flux.

Oscillation result with a default MC

The result w/o low q^2 MC correction gives the better (biased) measurement due to the more low energy flux and the smaller nQE/Q².

K2K-I vs K2K-II

K2K-I vs K2K-II

52

v_{μ} Disappearance Result (K2K-I)

PRL 90(2003)041801

Null oscillation probability: less than 1%.
 Δm²=1.5~3.9 x 10⁻³ eV² @sin²2θ=1(90%CL)

Extrapolation from Near to Far sites v beam ×10 10 ×10⁴ 10⁴ x10¹ x10^⁵ Energy Radius Energy 12 number of neutrinos/cm^{*} 12 Radius number of neutrinos/cm⁻ umber of neutrinos/cm 6 8 8 SK 3mrad 2 2 3 Ev(GeV) E√GeV) × 10⁻⁶ 0 4 5 4 8 Radius (m) 5 0 4 2 3 12 0 Ev(GeV) Ev 2.5 Far/Near flux ratio **PION** moniter 2.0 PIMON data analysis Gas Cherenkov detector: Simulation 1.5 1.0×10^{-6} (insensitive to primary protons) 1.0 Measure, $N(p_{\pi}, \theta_{\pi})$ above 2.5GeV 0.5 just after the horns. 0 1.5 2.5 0.5 2 n E, (GeV)

