Supersymmetry at ATLAS

Dan Tovey University of Sheffield

Supersymmetry

 Supersymmetry (SUSY) fundamental continuous symmetry connecting fermions and bosons

 $\mathbf{Q}_{\alpha}|\mathbf{F}\rangle = |\mathbf{B}\rangle, \qquad \mathbf{Q}_{\alpha}|\mathbf{B}\rangle = |\mathbf{F}\rangle$

- {Q_α,Q_β}=-2γ^μ_{αβ}p_μ: generators of SUSY ~
 'square-root' of translations
 - Connection to space-time symmetry
- SUSY stabilises Higgs mass against loop corrections (gauge hierarchy/fine-tuning problem)
 - Leads to Higgs mass \leq 135 GeV
 - Good agreement with LEP constraints from EW global fits
- SUSY modifies running of SM gauge couplings 'just enough' to give Grand Unification at single scale.

Kyoto, January 2005

SUSY Spectrum

- SUSY gives rise to partners of SM states with opposite spin-statistics but otherwise same Quantum Numbers.
- Expect SUSY partners to have same masses as SM states
 - Not
 observed
 (despite best efforts!)
 - SUSY must be a broken symmetry at low energy
- Higgs sector also expanded

Standard Model Particles		SUSY Partners			
Particles	States	Sparticles	States	Mixtures	
quarks (q)	$\left(\begin{smallmatrix} u \\ d \end{smallmatrix} ight)_L, u_R, d_R$	squarks (\bar{q})	$\begin{pmatrix} \tilde{u} \\ d \end{pmatrix}_L, \tilde{u}_R, \tilde{d}_R$		
$(\operatorname{spin}_{\frac{1}{2}})$	$\binom{c}{s}_L, c_R, s_R$	(spin-0)	$\begin{pmatrix} \bar{c} \\ \bar{s} \end{pmatrix}_L, \ \bar{c}_R, \ \bar{s}_R$		
	$\left(\begin{smallmatrix} t \\ b \end{smallmatrix} ight)_L, t_R, b_R$		$\begin{pmatrix} \bar{t} \\ \bar{b} \end{pmatrix}_L, \bar{t}_R, \bar{b}_R$	$ ilde{t}_{1,2}, ilde{b}_{1,2}$	
leptons (l)	$\begin{pmatrix} e \\ v_e \end{pmatrix}_L, e_R$	sleptons (\overline{l})	$\begin{pmatrix} \bar{e} \\ \bar{v}_e \end{pmatrix}_L, \bar{e}_R$		
$(\operatorname{spin}_{\frac{1}{2}})$	$\left(\begin{smallmatrix} \mu \\ u_{\mu} \end{smallmatrix} ight)_L, \mu_R$	(spin-0)	$\left(egin{smallmatrix} \dot{\mu} \ \dot{v}_{\mu} \end{array} ight)_L, \ \dot{\mu}_R$		
	$\left(egin{smallmatrix} au \ u_ au \end{pmatrix}_L, au_R$		$\left(egin{smallmatrix} \dot{ au} \\ \dot{ au}_{ au} \end{array} ight)_L, \ ar{ au}_R$	$\bar{\tau}_{1,2}$	
gauge/Higgs bosons	g, Z, γ, h, H, A	gauginos/Higgsinos	$\bar{g}, \bar{Z}, \bar{\gamma}, \bar{H}_{1,2}^{0}$	$- \bar{\chi}^{0}_{1,2,3,4}$	
(spin-1, spin-0)	W^{\pm}, H^{\pm}	$(\operatorname{spin}_{\frac{1}{2}})$	$\tilde{W}^{\pm}, \tilde{H}^{\pm}$	$- \bar{\chi}_{1,2}^{\pm}$	
graviton (spin-2)	G	gravitino (spin- $\frac{3}{2}$)	Ĝ		

- Conservation of R_p (motivated e.g. by string models) attractive
 - e.g. protects proton from 1500 rapid decay via SUSY states
- **Causes Lightest SUSY** Particle (LSP) to be absolutely stable
- $m_{1/2}$ (GeV) LSP neutral/weakly 750 interacting to escape astroparticle bounds on 500 anomalous heavy elements.
- Naturally provides solution to²⁵⁰ dark matter problem of 0 astrophysics / cosmology
- **R-Parity violating models still** possible \rightarrow not covered here. $m_h = 114.1 GeV$

 $m_{1/2}$ (GeV) mSugra with $tan\beta = 10$, $A_0 = 0$, $\mu < 0$

Dan Tovey

SUSY @ ATLAS

- LHC will be a 14 TeV proton-proton collider located inside the LEP tunnel at CERN.
- Luminosity goals:
 - 10 fb⁻¹ / year (first 3 years)
 - 100 fb⁻¹/year (subsequently).
- First data in 2007.
- Higgs & SUSY main goals.

- Much preparatory work carried out historically by ATLAS
 - Summarised in Detector and Physics Performance TDR (1998/9).
- Work continuing to ensure ready to test new ideas in 2007.
- Concentrate here on more recent work.

Model Framework

- Minimal Supersymmetric Extension of the Standard Model (MSSM) contains > 105 free parameters, NMSSM etc. has more → difficult to map complete parameter space!
- Assume specific well-motivated model framework in which generic signatures can be studied.
- Often assume SUSY broken by gravitational interactions → mSUGRA/CMSSM framework : unified masses and couplings at the GUT scale → 5 free parameters (m₀, m_{1/2}, A₀, tan(β), sgn(μ)).
- R-Parity assumed to be conserved.
- Exclusive studies use benchmark points in mSUGRA parameter space:
 - LHCC Points 1-6;
 - Post-LEP benchmarks (Battaglia et al.);
 - Snowmass Points and Slopes (SPS);
 - etc...

Kyoto, January 2005

Dan Tovey

SUSY Signatures

- Q: What do we expect SUSY events @ LHC to look like?
- A: Look at typical decay chain:

- Strongly interacting sparticles (squarks, gluinos) dominate production.
- Heavier than sleptons, gauginos etc. → cascade decays to LSP.
- Long decay chains and large mass differences between SUSY states
 Many high p_T objects observed (leptons, jets, b-jets).
- If R-Parity conserved LSP (lightest neutralino in mSUGRA) stable and sparticles pair produced.
 - Large E_T^{miss} signature (c.f. W→I_V).
- Closest equivalent SM signature t→Wb.

Dan Tovey

Inclusive Searches

- Use 'golden' Jets + n leptons + E_T^{miss} discovery channel.
- Map <u>statistical</u> discovery reach in mSUGRA m₀-m_{1/2} parameter space.
- Sensitivity only weakly dependent on A_0 , tan(β) and sign(μ).
- Syst.+ stat. reach harder to assess: focus of current & future work.

Kyoto, January 2005

8

SUSY Mass Scale

- Defined as weighted mean of masses of initial sparticles.
- Calculate distribution of 'effective mass' variable defined as scalar sum of masses of all jets (or four hardest) and E_T^{miss}:

 $\mathbf{M}_{eff} = \Sigma |\mathbf{p}_T^i| + \mathbf{E}_T^{miss}$.

- Distribution peaked at ~ twice
 SUSY mass scale for signal events.
- Pseudo 'model-independent' measurement.
- Typical measurement error (syst+stat) ~10% for mSUGRA models for 10 fb⁻¹.

Exclusive Studies

- With more data will attempt to measure weak scale SUSY parameters (masses etc.) using exclusive channels.
- Different philosophy to TeV Run II (better S/B, longer decay chains)
 → aim to use model-independent measures.

- Two neutral LSPs escape from each event
 - Impossible to measure mass of each sparticle using one channel alone
- Use kinematic end-points to measure combinations of masses.
- Old technique used many times before (v mass from β decay spectrum, W (transverse) mass in W→Iv).
- Difference here is we don't know mass of neutral final state particles.

Dilepton Edge Measurements

- When kinematically accessible $\tilde{\chi}_{2}^{0}$ can undergo sequential two-body decay to $\tilde{\chi}_{1}^{0}$ via a right-slepton (e.g. LHC Point 5).
- Results in sharp OS SF dilepton invariant mass edge sensitive to combination of masses of sparticles.
- Can perform SM & SUSY background subtraction using OF distribution e⁺e⁻ + μ⁺μ⁻ - e⁺μ⁻ - μ⁺e⁻
- Position of edge measured with precision ~ 0.5%
 (30 fb⁻¹).

Measurements With Squarks

- Dilepton edge starting point for reconstruction of decay chain.
- Make invariant mass combinations of leptons and jets.
- Gives multiple constraints on combinations of four masses.
- Sensitivity to individual sparticle masses.

Dan Tovey

Kyoto, January 2005

'Model-Independent' Masses

Table 4: The absolute kinematic endpoints of invariant mass quantities formed from decay chains of the types mentioned in the text for known particle masses. The following shorthand notation has been used: $\bar{\chi} = m_{\tilde{\chi}_{0}}^{2}$, $\tilde{\xi} = m_{\tilde{\chi}_{0}}^{2}$,

Kyoto, January 2005

+ 9%

± 12%

13

Ĩ_R

 $\widetilde{\chi}^{0}_{1}$

Dan Tovey

Sbottom/Gluino Mass

- Following measurement of squark, slepton and neutralino masses move up decay chain and study alternative chains.
- One possibility: require b-tagged jet in addition to dileptons.
- Give sensitivity to sbottom mass (actually two peaks) and gluino mass.
- Problem with large error on input χ˜⁰₁ mass remains → reconstruct difference of gluino and sbottom masses.
- Allows separation of \tilde{b}_1 and \tilde{b}_2 with 300 fb⁻¹.

Kyoto, January 2005

Stop Mass

- Look at edge in tb mass distribution.
- Contains contributions from
 - ĝ→tt̃₁→tb_˜χ⁺1
 - ĝ→bb
 ₁→bt
 [~]
 [~]
 ⁺
 ¹
 - SUSY backgrounds
- Measures weighted mean of end-points
- Require m(jj) ~ m(W), m(jjb) ~ m(t)

- Subtract sidebands from m(jj) distribution
- - Di-top selection with sideband subtraction
- Also use 'standard' bbll analyses (previous slide)

RH Squark Mass

 $\widetilde{\chi}^{0}_{1}$

- Right handed squarks difficult as rarely decay via 'standard' $\tilde{\chi}_{2}^{0}$ chain – Typically BR ($\tilde{q}_{R} \rightarrow \tilde{\chi}_{1}^{0}q$) > 99%.
- Instead search for events with 2 hard jets and lots of E_T^{miss}.
- Reconstruct mass using 'stransverse mass' (Allanach et al.):

 $m_{T2}^{2} = \min_{q_{T}^{\chi(1)} + q_{T}^{\chi(2)} = E_{T}^{miss}} \left[max\{m_{T}^{2}(p_{T}^{j(1)}, q_{T}^{\chi(1)}; m_{\chi}), m_{T}^{2}(p_{T}^{j(2)}, q_{T}^{\chi(2)}; m_{\chi}) \} \right]$

- Needs $\tilde{\chi}_{1}^{0}$ mass measurement as input.
- Also works for sleptons.

Dan Tovey

Kyoto, January 2005

 \tilde{q}_{R}

Kyoto, January 2005

- Also possible to identify dilepton edges from decays of heavy gauginos.
 Dequires high state
- Requires high stats.

Dan Tovey

 Crucial input to reconstruction of MSSM neutralino mass matrix (independent of SUSY breaking scenario).

17

200 400 m_a (GeV) • Observed signal — Expected signal

Events/100 fb⁻¹ tanβ=10 μ>0

Mass Relation Method

- New idea for reconstructing SUSY masses!
- 'Impossible to measure mass of each sparticle using one channel alone' (Slide 10).
 - Should have added caveat: Only if done event-by-event!
- Assume in each decay chain 5 inv. mass constraints for 6 unknowns (4 $\tilde{\chi}_{1}^{0}$ momenta + gluino mass + sbottom mass).
- Remove ambiguities by combining different events analytically → 'mass relation method' (Nojiri et al.).
- Also allows all events to be used, not just those passing hard cuts (useful if background small, buts stats limited – e.g. high scale SUSY).

Chargino Mass Measurement

- Mass of lightest chargino very difficult to measure as does not participate in standard dilepton SUSY decay chain.
- Decay process via v+slepton gives too many extra degrees of freedom - concentrate instead on decay $\tilde{\chi}_{1}^{+} \rightarrow W \tilde{\chi}_{1}^{0}$.
- Require dilepton ^{χ0}₂ decay chain on other 'leg' of event and use kinematics to calculate chargino mass analytically.
- Using sideband subtraction technique obtain clear peak at true chargino mass (218 GeV).
- ~ 3 σ significance for 100 fb⁻¹.

Measuring Model Parameters

- Alternative use for SUSY observables (invariant mass end-points, thresholds etc.).
- Here assume mSUGRA/CMSSM model and perform global fit of model parameters to observables
 - So far mostly private codes but e.g. SFITTER, FITTINO now on the market;
 - c.f. global EW fits at LEP, ZFITTER, TOPAZ0 etc.

Dan Tovey

SUSY Dark Matter

Dan Tovey

21

Kyoto, January 2005

SUSY Dark Matter

- Small slepton-neutralino mass difference gives soft leptons
 - Low electron/muon/tau energy thresholds crucial.
- Study point chosen within region:
 - m₀=70 GeV; m_{1/2}=350 GeV; A₀=0; tanß=10; μ >0;
 - Same model used for DC2 study.
- Decays of $\tilde{\chi}_{2}^{0}$ to both \tilde{I}_{L} and \tilde{I}_{R} kinematically allowed.
 - Double dilepton invariant mass edge structure;
 - Edges expected at 57 / 101 GeV
- Stau channels enhanced (tanβ)
 - Soft tau signatures;
 - Edge expected at 79 GeV;
 - Less clear due to poor tau visible energy resolution.

Dan Tovey

Kyoto, January 2005

Focus Point Models

- Large $m_0 \rightarrow$ sfermions are heavy
- Most useful signatures from heavy neutralino decay
- Study point chosen within focus point region :
 - $m_0=3000 \text{ GeV}; m_{1/2}=215 \text{ GeV}; A_0=0; \text{tan} \& B=10; \mu > 0$
- Direct three-body decays $\widetilde{\chi}^0_n \rightarrow \widetilde{\chi}^0_1$ II

SUSY Spin Measurement

- Q: How do we know that a SUSY signal is really due to SUSY?
 - Other models (e.g. UED) can mimic SUSY mass spectrum
- A: Measure spin of new particles.
- One proposal use 'standard' two-body slepton decay chain
 - charge asymmetry of Iq pairs measures spin of $\tilde{\chi}^0_2$
 - relies on valence quark contribution to pdf of proton (C asymmetry)
 - shape of dilepton invariant mass spectrum measures slepton spin

DC1 SUSY Challenge

10

10

10

lơ/dM_{eff} (Events/200 GeV)

ATLAS

Preliminarv

Modified

LHCC Point 5:

m_o=100 GeV;

m_{1/2}=300 GeV:

SUSY

Mass

Scale

 $A_0 = 300 \text{ GeV};$ tanß=6 : $\mu > 0$

- First attempt at large-scale simulation of SUSY signals in ATLAS (100 000 events: ~5 fb⁻¹) in early 2003.
- Tested Geant3 simulation and ATHENA (C++) reconstruction software framework thoroughly.

Dan Tovey

Kyoto, January 2005

DC2 SUSY Challenge

- DC2 testing new G4 simulation and reconstruction.
- Points studied:
 - DC1 bulk region point (test G4)
 - Stau coannihilation point (rich in signatures test reconstruction)
- Further studies planned in run up to Rome Physics Workshop (Focus Point model etc.)

Dan Tovey

Kyoto, January 2005

- Preparations needed to ensure efficient/reliable searches for/measurements of SUSY particles in timely manner:
 - Initial calibrations (energy scales, resolutions, efficiencies etc.);
 - Minimisation of poorly estimated SM backgrounds;
 - Estimation of remaining SM backgrounds;
 - Development of useful tools.
- Different situation to Run II (no previous σ measurements at same \sqrt{s})
- Will need convincing bckgrnd. estimate with little data as possible.
- Background estimation techniques will change depending on integrated lumi.
- Ditto optimum search channels & cuts.
- Aim to use combination of
 - Fast-sim;
 - Full-sim;
 - Estimations from data.
- Use comparison between different techniques to validate estimates and build confidence in (blind) analysis.
- Aim to study with full-sim (DC2) data
 Dan Tovey 28

Background Estimation

Single top

WW/WZ/ZZ

Also:

- Main backgrounds:
 - Z + n jets
 - W + n jets
 - ttbar
 - QCD
- Generic approach :
 - Select low E_T^{miss} background calibration samples;
 - Extrapolate into high E_T^{miss} signal region.

- Used by CDF / D0
- Extrapolation non-trivial.
 - Must find variables uncorrelated with E_T^{miss}
- Several approaches developed.
- Most promising: Use Z (→ II) + jets to estimate Z (→ vv) / W (→ Iv) + jets

Top Background

- Estimation using simulation possible (normalised to data ttbar selection) – cross-check with data
- Isolate clean sample of top events using mass constraint(s).
- Then plot E_T^{miss} distribution (large statistical errors), compare with same technique applied to SUSY events (SPS1a benchmark model).
- Reconstruct leptonic W momentum from ETmiss vector and W mass constraint (analytical approach – quadratic ambiguity).
- Select solution with greatest W p_T.
- Select b-jet with greatest p_{T.}
- Plot invariant mass of combination.

Top Background

- Select events in peak and examine ETmiss distribution.
- Subtract combinatorial background with appropriately weighted (from MC) sideband subtraction.
- Good agreement with top background distribution in SUSY selection.

- With this tuning does not select SUSY events (as required)
- Promising approach but more work needed (no btag etc.)

Histogram – 1 lepton SUSY selection (no b-tag) Data points – background estimate

Supersummary

- The LHC will be <u>THE PLACE</u> to search for, and hopefully study, SUSY from 2007 onwards (at least until ILC).
- SUSY searches will commence on Day 1 of LHC operation.
- Many studies of exclusive channels already performed.
- Lots of input from both theorists (new ideas) and experimentalists (new techniques).
- Renewed emphasis on use of full simulation tools.
- Big challenge for discovery will be understanding systematics.
- Big effort ramping up now to understand how to exploit first data in timely fashion
 - Calibrations
 - Background rejection
 - Background estimation
 - Tools
- Massive scope for further work!

BACK-UP SLIDES

llq Edge

- Dilepton edges provide starting point for other measurements.
- Use dilepton signature to tag presence of $\tilde{\chi}_{2}^{0}$ in event, then work back up decay chain constructing invariant mass distributions of combinations of leptons and jets.

- Hardest jets in each event produced by RH or LH squark decays.
- Select smaller of two llq invariant masses from two hardest jets
 - Mass must be < edge position.
- Edge sensitive to LH squark mass.

lq Edge

- Complex decay chain at LHC Point 5 gives additional constraints on masses.
- Use lepton-jet combinations in addition to lepton-lepton combinations.
- Select events with only one dilepton-jet pairing consistent with slepton hypothesis
 - → Require one IIq mass above edge and one below (reduces combinatorics).

- Construct distribution of invariant masses of 'slepton' jet with each lepton.
- 'Right' edge sensitive to slepton, squark and $\tilde{\chi}_{2}^{0}$ masses ('wrong' edge not visible).

Dan Tovey

hq edge

- If tan(β) not too large can also observe two body decay of $\tilde{\chi}_{2}^{0}$ to higgs and $\tilde{\chi}_{1}^{0}$.
- Reconstruct higgs mass (2 b-jets) and combine with hard jet.
- Gives additional mass constraint.

Ilq Threshold

- Two body kinematics of sleptonmediated decay chain also provides still further information (Point 5).
- Consider case where $\tilde{\chi}_{1}^{0}$ produced near rest in $\tilde{\chi}_{2}^{0}$ frame.
 - ✤ Dilepton mass near maximal.
 - → p(II) determined by $p(\tilde{\chi}_2^0)$.

- Distribution of Ilq invariant masses distribution has maximum and <u>minimum</u> (when quark and dilepton parallel).
- Ilq threshold important as contains new dependence on mass of lightest neutralino.

Mass Reconstruction

• Combine measurements from edges from different jet/lepton combinations.

Related edge	Kinematic endpoint				
l^+l^- edge	$(m_{ll}^{\rm mex})^2 = (\tilde{\xi} - \tilde{l})(\tilde{l} - \bar{\chi})/\tilde{l}$				
l^+l^-q edge	$\langle m_{H_{Q}}^{\text{grav}} \rangle^{2} = \begin{cases} \max \left[\begin{pmatrix} (\tilde{y}-\tilde{\xi}) \langle \tilde{\xi}-\tilde{\chi} \rangle, \langle \tilde{y}-\tilde{\eta} \langle \tilde{l}-\tilde{\chi} \rangle, \langle \tilde{y}\tilde{l}-\tilde{\xi} \rangle \langle \tilde{\xi}\tilde{\ell} \rangle \rangle \right] \\ \tilde{\xi} \end{pmatrix} \\ \text{except for the special case in which } \tilde{l}^{2} < \tilde{q}\tilde{\chi} < \tilde{\xi}^{2} \text{ and} \\ \tilde{\xi}^{2}\tilde{\chi} < \tilde{q}\tilde{l}^{2} \text{ where one must use } (m_{\tilde{g}} - m_{\tilde{\chi}^{2}_{1}})^{2}. \end{cases}$				
Xq edge	$(m_{X\chi}^{\rm max})^2 = X + \langle \ddot{q} - \ddot{\xi} \rangle \left[\ddot{\xi} + X - \dot{\chi} + \sqrt{(\ddot{\xi} - X - \dot{\chi})^2 - 4X\dot{\chi}} \right] / (2\dot{\xi})$				
l^+l^-q threshold	$(m t_{\rm eff}^{\rm min})^2 = \begin{cases} [2\tilde{l}(\tilde{q} - \tilde{\xi})(\tilde{\xi} - \tilde{\chi}) + (\tilde{q} + \tilde{\xi})\langle \tilde{\xi} - \tilde{l}\rangle(\tilde{l} - \tilde{\chi}) \\ -(\tilde{q} - \tilde{\xi})\sqrt{\langle \tilde{\xi} + \tilde{l}\rangle^2(\tilde{l} + \tilde{\chi})^2 - 16\tilde{\xi}\tilde{l}^2\tilde{\chi}} \end{cases} / \langle 4\tilde{d}\tilde{\xi})$				
$l_{near}^{\perp} q$ edge.	$(\pi i_{\rm facury}^{ m max})^2 = (\ddot{q} - \tilde{\xi}) \langle \tilde{\xi} - \tilde{l} angle / \check{\xi}$				
$l_{lax}^{\pm}q$ etge	$(m^{max}_{l_{fax}})^2 = (\ddot{q} - \ddot{\xi})(\ddot{l} - \ddot{\chi})/\ddot{l}$				
$l^{\pm}q$ high-edge	$(m_{l_q(\mathrm{bigh})}^{\mathrm{max}})^2 = \max\left[(m_{l_{\mathrm{max}q}}^{\mathrm{max}})^2, (m_{l_{\mathrm{max}}}^{\mathrm{max}})^2\right]$				
$l^{\pm}q$ low-edge	$(m_{l_{\rm f}(\rm Low)}^{\rm max})^2 = \min\left[(m_{\rm lossel}^{\rm max})^2, (\bar{g} - \tilde{\xi})(\tilde{l} - \bar{\chi})/(2\tilde{l} - \bar{\chi})\right]$				
M_{T2} ealge	$\Delta M = v u_{\tilde{\chi}} - v u_{\tilde{\chi}_1^0}$				

Table 4: The absolute kinematic endpoints of invariant mass quantities formed from decay chains of the types mentioned in the text for known particle masses. The following shorthand notation has been used: $\bar{\chi} = m_{\chi_0}^2$, $\tilde{\ell} = m_{\chi_0}^3$, $\tilde{\ell} = m_{\chi_0}^3$, $\tilde{\ell} = m_{\chi_0}^3$, $\tilde{\ell} = m_{\chi_0}^3$, and X is m_A^2 or m_B^3 depending on which particle participates in the "branched" decay.

• Gives sensitivity to masses (rather than combinations).

High Mass mSUGRA

- ATLAS study of sensitivity to models with high mass scales
- E.g. CLIC Point K → Potentially observable ... but hard!

m_{1/2}

- Characteristic double peak in signal M_{eff} distribution (Point K).
- Squark and gluino production crosssection reduced due to high mass.
 - **Gaugino production significant**

AMSB

- Examined RPC model with $tan(\beta) = 10, m_{3/2}=36 \text{ TeV}, m_0=500$ GeV, sign(μ) = +1.
- $\tilde{\chi}^{+/-}_1$ near degenerate with $\tilde{\chi}^0_1$.
- Search for $\tilde{\chi}^{+\prime-}_1 \rightarrow \pi^{+\prime-} \tilde{\chi}^0_1$ ($\Delta m = 631 \text{ MeV} \rightarrow \text{ soft pions}$).

- Also displaced vertex due to phase space (cτ=360 microns).
- Measure mass difference between chargino and neutralino using m_{T2} variable (from mSUGRA analysis).

GMSB

- Kinematic edges also useful for GMSB models when neutral LSP or very long-lived NLSP escapes detector.
- Kinematic techniques using invariant masses of combinations of leptons, jets and photons similar.
- Interpretation different though.
- E.g. LHC Point G1a (neutralino NLSP with prompt decay to gravitino) with decay chain:

GMSB

- Use dilepton edge as before (but different position in chain).
- Use also I_{γ} , II_{γ} edges (c.f. Iq and IIq edges in mSUGRA).
- Get <u>two</u> edges (bonus!) in I_{γ} as can now see edge from 'wrong' lepton (from χ^0_2 decay). Not possible at LHCC Pt5 due to masses.

• Interpretation easier as can assume gravitino massless:

$$M_{\tilde{l}_R}^2 = \frac{(M_{l\gamma}^{(1)})^2 (M_{l\gamma}^{(2)})^2}{(M_{ll}^{\max})^2} \quad M_{\tilde{\chi}_1^0}^2 = M_{\tilde{l}_R}^2 - (M_{l\gamma}^{(1)})^2 \quad M_{\tilde{\chi}_2^0}^2 = M_{\tilde{l}_R}^2 + (M_{l\gamma}^{(2)})^2 \quad (M_{ll\gamma}^{\max})^2 = (M_{l\gamma}^{(1)})^2 + (M_{l\gamma}^{(2)})^2 .$$

Dan Tovey

- Missing E_T for events at SUGRA point 5 with and without R-parity violation
- RPV removes the classic
 SUSY missing E_T signature

 Use modified effective mass variable taking into account p_T of leptons and jets in event

$$m_{T,cent} = \sum_{\eta < 2} p_T^{jet,lepton}$$

R-Parity Violation

- Worst case: $\lambda_{212}^{"}$ no heavy-quark jets
- Test model studied with decay chain:

$$\tilde{q}_{L} \rightarrow \tilde{\chi}_{2}^{0}q \rightarrow \tilde{l}_{R}lq \rightarrow \tilde{\chi}_{1}^{0}llq$$

 Lightest neutralino decays via BPV coupling:

$$\tilde{\chi}_1^0 \rightarrow cds$$

 Reconstruct neutralino mass from 3-jet combinations (<u>but</u> large combinatorics : require > 8 jets!)

Dan Tovey

R-Parity Violation

• Sequential decay of \tilde{q}_L to $\tilde{\chi}_1^0$ through $\tilde{\chi}_2^0$ and \tilde{l}_R producing Opposite Sign, Same Family (OSSF) leptons

R-Parity Violation

• Perform simultaneous (2D) fit to 3jet and 3jet + 2lepton combination (measures mass of $\tilde{\chi}_{2}^{0}$).

• Can also measure squark and slepton masses.

 Different λ"_{ijk} RPV couplings cause LSP decays to different quarks:

$$\tilde{\chi}_1^0 \rightarrow q_1 q_2 q_3$$

- Identifying the dominant λ" gives insight into flavour structure of model.
- Use vertexing and non-isolated muons to statistically separate *c*- and *b*- from light quark jets.
- Remaining ambiguity from *d*→s
- Dominant coupling could be identified at > 3.5 σ

Distinguishing		Vertexing		Muons		Combined
λ " _{ijk} from λ " _{Imn}		χ^2 / df	P/%	χ^2 / df	P/%	σ
uds	udb	59.1/1		28.7/1	-	9.4
	usb	73.0/1	-	31.7/1	-	10.2
	cds	30.5/1	-	4.0/1	4	5.9
	cdb	106.9/1	-	47.2/1	-	12.4
	csb	113.4/1	-	49.2/1	-	12.8
udb	usb	1.6/2	44	0.4/1	54	1.4
	cds	10.3/2	1	13.0/1	-	4.8
	cdb	18.3/2	-	6.8/2	3	5
	csb	16.3/2	-	5.1/2	8	4.6
usb	cds	17.5/2	-	17.2/1	-	5.9
	cdb	12.1/2	-	5.1/1	2	4.2
	csb	9.9/2	1	3.1/1	8	3.6
cds	cdb	56.1/2		37.4/1	-	9.7
	csb	55.8/2	-	35.3/1	-	9.5
cdb	csb	0.6/2	72	1.3/2	51	1.4