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SupersymmetrySupersymmetry
• Supersymmetry (SUSY) fundamental 

continuous symmetry connecting 
fermions and bosons

Qα|F> = |B>, Qα|B> = |F>
• {Qα,Qβ}=-2γμ

αβpμ: generators of SUSY ~ 
‘square-root’ of translations
– Connection to space-time symmetry 

• SUSY stabilises Higgs mass against loop 
corrections (gauge hierarchy/fine-tuning 
problem)
– Leads to Higgs mass ≤ 135 GeV
– Good agreement with LEP constraints from 

EW global fits
• SUSY modifies running of SM gauge 

couplings ‘just enough’ to give Grand 
Unification at single scale.
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SUSY SpectrumSUSY Spectrum

• Expect SUSY 
partners to 
have same 
masses as SM 
states
– Not 

observed 
(despite best 
efforts!)

– SUSY must 
be a broken 
symmetry at 
low energy

• Higgs sector 
also expanded

• SUSY gives rise to partners of SM states with opposite spin-statistics 
but otherwise same Quantum Numbers. 
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SUSY & Dark MatterSUSY & Dark Matter
• R-Parity Rp = (-1)3B+2S+L

• Conservation of Rp
(motivated e.g. by string 
models) attractive
– e.g. protects proton from 

rapid decay via SUSY states
• Causes Lightest SUSY 

Particle (LSP) to be 
absolutely stable

• LSP neutral/weakly 
interacting to escape 
astroparticle bounds on 
anomalous heavy elements.

• Naturally provides solution to 
dark matter problem of 
astrophysics / cosmology 

• R-Parity violating models still 
possible not covered here.
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SUSY @ ATLASSUSY @ ATLAS
• LHC will be a 14 TeV proton-proton 

collider located inside the LEP 
tunnel at CERN.

• Luminosity goals:
– 10 fb-1 / year (first 3 years)
– 100 fb-1/year (subsequently).

• First data in 2007. 
• Higgs & SUSY main goals.

• Much preparatory work carried out 
historically by ATLAS 
– Summarised in Detector and 

Physics Performance TDR (1998/9). 
• Work continuing to ensure ready to 

test new ideas in 2007.
• Concentrate here on more recent 

work.
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Model FrameworkModel Framework
• Minimal Supersymmetric Extension of the Standard Model (MSSM) 

contains > 105 free parameters, NMSSM etc. has more difficult to 
map complete parameter space!

• Assume specific well-motivated model framework in which generic 
signatures can be studied.

• Often assume SUSY broken by gravitational interactions 
mSUGRA/CMSSM framework : unified masses and couplings at the 
GUT scale 5 free parameters
(m0, m1/2, A0, tan(β), sgn(μ)).

• R-Parity assumed to be conserved.
• Exclusive studies use benchmark 

points in mSUGRA parameter space:
• LHCC Points 1-6;
• Post-LEP benchmarks (Battaglia et al.);
• Snowmass Points and Slopes (SPS);
• etc…

LHCC 
mSUGRA
Points

1 2

3

45
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SUSY SignaturesSUSY Signatures
• Q: What do we expect SUSY events @ LHC to look like?
• A: Look at typical decay chain:

• Strongly interacting sparticles (squarks, gluinos) dominate 
production.

• Heavier than sleptons, gauginos etc. cascade decays to LSP.
• Long decay chains and large mass differences between SUSY states

– Many high pT objects observed (leptons, jets, b-jets).
• If R-Parity conserved LSP (lightest neutralino in mSUGRA) stable 

and sparticles pair produced.
– Large ET

miss signature (c.f. W lν).

• Closest equivalent SM signature t Wb.

lqq
l

g~ q~ l~χ0
2

~ χ0
1

~
p p
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ATLAS

5σ

• Use 'golden' Jets + n leptons + ET
miss discovery channel.

• Map statistical discovery reach in mSUGRA m0-m1/2 parameter space.
• Sensitivity only weakly dependent on A0, tan(β) and sign(μ).
• Syst.+ stat. reach harder to assess: focus of current & future work.

Inclusive SearchesInclusive Searches

ATLAS

5σ
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SUSY Mass ScaleSUSY Mass Scale
• First measured SUSY parameter 

likely to be mass scale:
– Defined as weighted mean of 

masses of initial sparticles.
• Calculate distribution of 'effective 

mass' variable defined as scalar 
sum of masses of all jets (or four 
hardest) and ET

miss:
Meff=Σ|pT

i| + ET
miss.

• Distribution peaked at ~ twice 
SUSY mass scale for signal events.

• Pseudo 'model-independent' 
measurement.

• Typical measurement error 
(syst+stat) ~10% for mSUGRA
models for 10 fb-1.

Jets + ET
miss + 0 leptons 

ATLAS

ATLAS

10 fb-1

10 fb-1
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Exclusive StudiesExclusive Studies
• With more data will attempt to measure weak scale SUSY parameters 

(masses etc.) using exclusive channels.
• Different philosophy to TeV Run II (better S/B, longer decay chains) 

aim to use model-independent measures. 

• Two neutral LSPs escape from each event 
– Impossible to measure mass of each sparticle using one channel alone

• Use kinematic end-points to measure combinations of masses.
• Old technique used many times before (ν mass from β decay 

spectrum, W (transverse) mass in W lν).
• Difference here is we don't know mass of neutral final state particles.

lqq
l

g~ q~ lR
~χ0

2
~ χ0

1
~p p
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Dilepton Edge MeasurementsDilepton Edge Measurements
• When kinematically

accessible χ0
2 can undergo 

sequential two-body decay 
to χ0

1 via a right-slepton
(e.g. LHC Point 5).

• Results in sharp OS SF 
dilepton invariant mass 
edge sensitive to 
combination of masses of 
sparticles.

• Can perform SM & SUSY 
background subtraction 
using OF distribution 

e+e- + μ+μ- - e+μ- - μ+e-

• Position of edge measured 
with precision ~ 0.5%
(30 fb-1). 

~~χ0
2

~χ0
1

l l
l

e+e- + μ+μ-

~

~

30 fb-1

atlfast
Physics 
TDR

Point 5

e+e- + μ+μ-

- e+μ- - μ+e- 5 fb-1

FULL SIM

Modified 
Point 5 
(tan(β) = 6)

ATLAS ATLAS
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Measurements With SquarksMeasurements With Squarks
• Dilepton edge starting point for reconstruction of decay chain.
• Make invariant mass combinations of leptons and jets.
• Gives multiple constraints on combinations of four masses. 
• Sensitivity to individual sparticle masses.
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‘Model-Independent’ Masses‘Model-Independent’ Masses
• Combine measurements from edges 

from different jet/lepton 
combinations to obtain ‘model-
independent’ mass measurements.

χ0
1 lR

χ0
2 qL

Mass (GeV)Mass (GeV)

Mass (GeV)Mass (GeV)

~

~

~

~

ATLAS ATLAS

ATLAS ATLAS

Sparticle Expected precision (100 fb-1)
qL ± 3%
χ0

2 ± 6%
lR ± 9%
χ0

1 ± 12%

~

~

~

~

LHCC
Point 5
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Sbottom/Gluino MassSbottom/Gluino Mass
• Following measurement of squark, slepton

and neutralino masses move up decay 
chain and study alternative chains.

• One possibility: require b-tagged jet in 
addition to dileptons.

• Give sensitivity to sbottom mass (actually 
two peaks) and gluino mass.

• Problem with large error on input χ0
1 mass 

remains reconstruct difference of gluino
and sbottom masses.

• Allows separation of b1 and b2 with 300 fb-1.
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Stop MassStop Mass
• Look at edge in tb mass distribution.
• Contains contributions from 

– g tt1 tbχ+
1

– g bb1 btχ+
1

– SUSY backgrounds
• Measures weighted mean of end-points
• Require m(jj) ~ m(W), m(jjb) ~ m(t)

• Subtract sidebands from m(jj) 
distribution

• Can use similar approach with 
g tt1 ttχ0

i
– Di-top selection with sideband 

subtraction
• Also use ‘standard’ bbll analyses 

(previous slide)

~

~ ~

~ ~
~

120 fb-1

ATLAS
LHCC Pt 5 
(tan(β)=10)

120 fb-1

ATLAS
LHCC Pt 5 
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mtb
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~
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RH Squark MassRH Squark Mass
• Right handed squarks difficult as rarely decay via ‘standard’ χ0

2 chain
– Typically BR (qR χ0

1q) > 99%.
• Instead search for events with 2 hard jets and lots of ET

miss.
• Reconstruct mass using ‘stransverse mass’ (Allanach et al.):

mT2
2 =     min       [max{mT

2(pT
j(1),qT

χ(1);mχ),mT
2(pT

j(2),qT
χ(2);mχ)}]

• Needs χ0
1 mass measurement as input.

• Also works for sleptons.

qT
χ(1)+qT

χ(2)=ET
miss

~ ~

~χ0
1qR

q
~

ATLAS

ATLAS

ATLAS
30 fb-1 30 fb-1 100 fb-1

Left slepton
Right 

squark

Right 
squark

~

~

SPS1a

SPS1a
SPS1a

Precision ~ 3%
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Heavy Gaugino MeasurementsHeavy Gaugino Measurements
• Also possible to identify dilepton edges from 

decays of heavy gauginos.
• Requires high stats.
• Crucial input to reconstruction of MSSM 

neutralino mass matrix (independent of 
SUSY breaking scenario).

ATLAS
100 fb-1 ATLAS

100 fb-1

ATLAS
100 fb-1

ATLAS

SPS1a

SPS1a
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Mass Relation MethodMass Relation Method
• New idea for reconstructing SUSY masses!
• ‘Impossible to measure mass of each sparticle using one channel 

alone’ (Slide 10).
– Should have added caveat: Only if done event-by-event!

• Assume in each decay chain 5 inv. mass constraints for 6 unknowns (4 
χ0

1 momenta + gluino mass + sbottom mass).
• Remove ambiguities by combining different events analytically 

‘mass relation method’ (Nojiri et al.).
• Also allows all events to be used, not just those passing hard cuts 

(useful if background small, buts stats limited – e.g. high scale SUSY).

Preliminary

ATLAS

A
TL

A
S

SPS1a

~
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Chargino Mass MeasurementChargino Mass Measurement
• Mass of lightest chargino very 

difficult to measure as does not 
participate in standard dilepton
SUSY decay chain.

• Decay process via ν+slepton
gives too many extra degrees 
of freedom - concentrate 
instead on decay χ+

1 W χ0
1.

• Require dilepton χ0
2 decay 

chain on other ‘leg’ of event 
and use kinematics to calculate 
chargino mass analytically.

• Using sideband subtraction 
technique obtain clear peak at 
true chargino mass (218 GeV).

• ~ 3 σ significance for 100 fb-1.

PRELIMINARY

lqq
l

g~ q~
lR
~χ0

2
~ χ0
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p
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1

~ ~q

qq q

qχ0
1

~

W
g~

Modified 
LHCC Point 5: 
m0=100 GeV; 
m1/2=300 GeV; 
A0=300 GeV; 
tanß=6 ; μ>0

100 fb-1

~
~ ~
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Measuring Model ParametersMeasuring Model Parameters
• Alternative use for SUSY observables (invariant mass end-points, 

thresholds etc.).
• Here assume mSUGRA/CMSSM model and perform global fit of model 

parameters to observables
– So far mostly private codes but e.g. SFITTER, FITTINO now on the market;
– c.f. global EW fits at LEP, ZFITTER, TOPAZ0 etc. 
Point                m0 m1/2 A0 tan(β)   sign(μ)
LHC Point 5     100  300    300      2            +1
SPS1a              100  250   -100      10          +1

Parameter          Expected precision (300 fb-1) 
m0 ± 2%
m1/2 ± 0.6%
tan(β) ± 9%
A0 ± 16%
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SUSY Dark MatterSUSY Dark Matter
Baer et al. hep-ph/0305191

LEP 2 No REWSB

LHC Point 5: >5σ error (300 fb-1)

σχp=10-11 pb

σχp=10-10 pb

σχp=10-9 pb

• Can use parameter measurements 
for many purposes, e.g. estimate 
LSP Dark Matter properties (e.g. 
for 300 fb-1, SPS1a)
– Ωχh2 = 0.1921 ± 0.0053
– log10(σχp/pb) = -8.17 ± 0.04 SPS1a: >5σ

error (300 fb-1)
Micromegas 1.1 
(Belanger et al.)
+ ISASUGRA 7.69

ATLAS

300 fb-1

σχp

ATLAS

300 fb-1

DarkSUSY 3.14.02 
(Gondolo et al.)
+ ISASUGRA 7.69

Ωχh2
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SUSY Dark MatterSUSY Dark Matter
• SUSY (e.g. mSUGRA) parameter space strongly constrained by 

cosmology (e.g. WMAP satellite) data. mSUGRA A0=0, 
tan(β) = 10, μ>0

'Bulk' region: t-
channel slepton
exchange - LSP 
mostly Bino. 
'Bread and Butter' 
region for LHC 
Expts. 

'Focus point' 
region: significant 
h component to 
LSP enhances 
annihilation to 
gauge bosons

~

Ellis et al. hep-ph/0303043

χ0
1

χ0
1

l

l
lR

~

~
~

χ0
1

τ1

τ

γ/Z/h
τ1

~

~ ~

Disfavoured by  BR (b → sγ)  = 
(3.2 ± 0.5) • 10-4 (CLEO, BELLE)

0.094 ≤ Ω χ h2 ≤ 0.129 
(WMAP)

Slepton Co-
annihilation 
region: LSP ~ 
pure Bino. Small 
slepton-LSP 
mass difference 
makes 
measurements 
difficult.

Also 'rapid 
annihilation funnel' 
at Higgs pole at 
high tan(β), stop 
co-annihilation 
region at large A0DC1/2Rome
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Coannihilation SignaturesCoannihilation Signatures

• ET
miss>300 GeV

• 2 OSSF leptons 
PT>10 GeV
• >1 jet with PT>150 
GeV
• OSSF-OSOF 
subtraction applied

• ET
miss>300 GeV

• 1 tau PT>40 
GeV;1 tau PT<25 
GeV
• >1 jet with 
PT>100 GeV
• SS tau
subtraction

• Small slepton-neutralino mass 
difference gives soft leptons 
– Low electron/muon/tau energy 

thresholds crucial.
• Study point chosen within region:

– m0=70 GeV; m1/2=350 GeV; A0=0; 
tanß=10 ; μ>0;

– Same model used for DC2 study.
• Decays of χ0

2 to both lL and lR
kinematically allowed.
– Double dilepton invariant mass 

edge structure;
– Edges expected at 57 / 101 GeV

• Stau channels enhanced (tanβ)
– Soft tau signatures;
– Edge expected at 79 GeV;
– Less clear due to poor tau visible 

energy resolution.

ATLAS

ATLAS

Preliminary

Preliminary

100 fb-1

100 fb-1

~~~
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Focus Point ModelsFocus Point Models
• Large m0 sfermions are heavy
• Most useful signatures from heavy neutralino decay
• Study point chosen within focus point region :

– m0=3000 GeV; m1/2=215 GeV; A0=0; tanß=10 ; μ>0
• Direct three-body decays χ0

n → χ0
1 ll

• Edges give m(χ0
n)-m(χ0

1) 
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ATLAS ATLAS

~ ~ ~ ~
~ ~

~ ~

Preliminary

Preliminary



2525 Kyoto, January 2005Kyoto, January 2005Dan ToveyDan Tovey

SUSY Spin MeasurementSUSY Spin Measurement
• Q: How do we know that a SUSY signal is really due to SUSY?

– Other models (e.g. UED) can mimic SUSY mass spectrum
• A: Measure spin of new particles.
• One proposal – use ‘standard’ two-body slepton decay chain 

– charge asymmetry of lq pairs measures spin of χ0
2

– relies on valence quark contribution to pdf of proton (C asymmetry)
– shape of dilepton invariant mass spectrum measures slepton spin

~

150 fb -1

spin-0=flat

Point 5

ATLAS

−+

−+
−+

+
−

=
ll
llA

mlq

Straight
line distn

(phase-space)
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Spin-½, 
mostly winoSpin-0

Spin-½

Spin-0

Spin-½, 
mostly bino

Polarise

Measure
Angle

ATLAS

150 fb -1
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DC1 SUSY ChallengeDC1 SUSY Challenge
• First attempt at large-scale simulation of 

SUSY signals in ATLAS (100 000 events: 
~5 fb-1) in early 2003.

• Tested Geant3 simulation and ATHENA 
(C++) reconstruction software framework 
thoroughly.

No b-tag
With b-tag

llj endpoint

ATLAS

ATLAS

ATLAS
ATLAS

SUSY 
Mass 
Scale

Dijet mT2
distribution

ll endpoint

Modified 
LHCC Point 5: 
m0=100 GeV; 
m1/2=300 GeV; 
A0=300 GeV; 
tanß=6 ; μ>0

Preliminary

Preliminary

Preliminary

Preliminary
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DC2 SUSY ChallengeDC2 SUSY Challenge
• DC2 testing new G4 simulation and 

reconstruction.
• Points studied:

– DC1 bulk region point (test G4)
– Stau coannihilation point (rich in signatures -

test reconstruction)
• Further studies planned in run up to Rome 

Physics Workshop (Focus Point model etc.)

ATLAS

Preliminary

ll endpoint

μ+μ- endpoint

ATLAS

Preliminary

ATLAS

ll endpoint

Preliminary

μ+μ- endpoint

DC1 Point

Coannihilation
Point

DC1 Point

Coannihilation
Point

Work in Progress!
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Preparations for 1st PhysicsPreparations for 1st Physics
• Preparations needed to ensure efficient/reliable searches 

for/measurements of SUSY particles in timely manner:
– Initial calibrations (energy scales, resolutions, efficiencies etc.);
– Minimisation of poorly estimated SM backgrounds;
– Estimation of remaining SM backgrounds;
– Development of useful tools.

• Different situation to Run II (no previous σ measurements at same √s)
• Will need convincing bckgrnd. estimate with little data as possible.
• Background estimation techniques will change depending on 

integrated lumi. 
• Ditto optimum search channels & cuts.
• Aim to use combination of

– Fast-sim;
– Full-sim;
– Estimations from data.

• Use comparison between different techniques to validate estimates 
and build confidence in (blind) analysis.

• Aim to study with full-sim (DC2) data
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Background EstimationBackground Estimation
• Main backgrounds:

– Z + n jets
– W + n jets
– ttbar
– QCD

• Generic approach :
– Select low ET

miss background calibration 
samples;

– Extrapolate into high ET
miss signal region.

Jets + ETmiss + 0 leptons 

ATLAS

10 fb-1

• Used by CDF / D0
• Extrapolation non-trivial.

– Must find variables uncorrelated with ET
miss

• Several approaches developed.
• Most promising: Use Z ( ll) + jets to 

estimate Z ( νν) / W ( lν) + jets

QCD
W+jet
Z+jet
ttbar

• Also:
– Single top
– WW/WZ/ZZ

ATLAS
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Top BackgroundTop Background
• Estimation using simulation possible 

(normalised to data ttbar selection) –
cross-check with data

• Isolate clean sample of top events 
using mass constraint(s).

• Then plot ET
miss distribution (large 

statistical errors), compare with same 
technique applied to SUSY events 
(SPS1a benchmark model).

• Reconstruct leptonic W momentum 
from ETmiss vector and W mass 
constraint (analytical approach –
quadratic ambiguity).

• Select solution with greatest W pT.
• Select b-jet with greatest pT.

• Plot invariant mass of combination.

ttbarATLAS

Preliminary

SUSY

ATLAS

Preliminary
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• Select events in peak and examine 
ETmiss distribution. 

• Subtract combinatorial background with 
appropriately weighted (from MC) 
sideband subtraction.

• Good agreement with top background 
distribution in SUSY selection.

Top BackgroundTop Background

Histogram – 1 lepton SUSY selection (no b-tag)
Data points – background estimate 

ttbar

ATLAS

Preliminary

SUSY

ATLAS

Preliminary

• With this tuning does not select 
SUSY events (as required)

• Promising approach but more work 
needed (no btag etc.)
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SupersummarySupersummary
• The LHC will be THE PLACE to search for, and hopefully study, SUSY 

from 2007 onwards (at least until ILC).
• SUSY searches will commence on Day 1 of LHC operation.
• Many studies of exclusive channels already performed.
• Lots of input from both theorists (new ideas) and experimentalists 

(new techniques).
• Renewed emphasis on use of full simulation tools.
• Big challenge for discovery will be understanding systematics.
• Big effort ramping up now to understand how to exploit first data in 

timely fashion
– Calibrations
– Background rejection
– Background estimation
– Tools 

• Massive scope for further work!
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BACK-UP SLIDES
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llq Edgellq Edge

• Hardest jets in each event produced 
by RH or LH squark decays. 

• Select smaller of two llq invariant 
masses from two hardest jets
– Mass must be < edge position.

• Edge sensitive to LH squark mass.

~~χ0
2

~χ0
1

l l
l

qL

q

~

• Dilepton edges provide starting point for other measurements. 
• Use dilepton signature to tag presence of χ0

2 in event, then work back 
up decay chain constructing invariant mass distributions of 
combinations of leptons and jets.

ATLAS

Physics
TDR

~

e.g. LHC Point 5

1% error
(100 fb-1)

Point 5
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lq Edgelq Edge
• Complex decay chain at LHC Point 5 gives 

additional constraints on masses.
• Use lepton-jet combinations in addition to 

lepton-lepton combinations.
• Select events with only one dilepton-jet 

pairing consistent with slepton hypothesis
Require one llq mass above edge and one 
below (reduces combinatorics).

• Construct distribution of 
invariant masses of 'slepton' 
jet with each lepton.

• 'Right' edge sensitive to 
slepton, squark and χ0

2 
masses ('wrong' edge not 
visible).

~

ATLAS

ATLAS

Physics
TDR

Physics
TDR

1% error
(100 fb-1)

Point 5

Point 5
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hq edgehq edge
• If tan(β) not too large can also observe two body decay of χ0

2 to 
higgs and χ0

1.
• Reconstruct higgs mass (2 b-jets) and combine with hard jet.
• Gives additional mass constraint.

~χ0
2

~χ0
1

b
h

qL

q

~

b

Physics
TDR

Point 5

~
~

ATLAS

1% error
(100 fb-1)
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llq Thresholdllq Threshold
• Two body kinematics of slepton-

mediated decay chain also provides 
still further information (Point 5).

• Consider case where χ0
1 produced 

near rest in χ0
2 frame. 

Dilepton mass near maximal.
p(ll) determined by p(χ0

2).

• Distribution of llq invariant 
masses distribution has 
maximum and minimum (when 
quark and dilepton parallel). 

• llq threshold important as 
contains new dependence on 
mass of lightest neutralino.

~
~

~

ATLAS

ATLAS

Physics
TDR

Physics
TDR

2% error
(100 fb-1)

Point 5

Point 5
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Mass ReconstructionMass Reconstruction
• Combine measurements from 

edges from different 
jet/lepton combinations.

• Gives sensitivity to masses 
(rather than combinations).
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High Mass mSUGRAHigh Mass mSUGRA
• ATLAS study of sensitivity to models 

with high mass scales
• E.g. CLIC Point K Potentially 

observable … but hard!

• Characteristic double peak in signal 
Meff distribution (Point K).

• Squark and gluino production cross-
section reduced due to high mass.

• Gaugino production significant

ATLAS

1000 fb -1
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AMSBAMSB
• Examined RPC model with 

tan(β) = 10, m3/2=36 TeV, m0=500 
GeV, sign(μ) = +1.

• χ+/-
1 near degenerate with χ0

1.
• Search for χ+/-

1 π+/-χ0
1

(Δm = 631 MeV soft pions).

• Also displaced vertex due to phase 
space (cτ=360 microns).

• Measure mass difference between 
chargino and neutralino using mT2
variable (from mSUGRA analysis).

~ ~
~~
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GMSBGMSB
• Kinematic edges also useful for GMSB models when neutral 

LSP or very long-lived NLSP escapes detector.
• Kinematic techniques using invariant masses of 

combinations of leptons, jets and photons similar.
• Interpretation different though.
• E.g. LHC Point G1a (neutralino NLSP with prompt decay to 

gravitino) with decay chain:

~~
χ0

2

~
χ0

1l
l l

~

G
γ
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GMSBGMSB
• Use dilepton edge as before (but different position in chain).
• Use also lγ, llγ edges (c.f. lq and llq edges in mSUGRA).
• Get two edges (bonus!) in lγ as can now see edge from 'wrong' lepton 

(from χ0
2 decay). Not possible at LHCC Pt5 due to masses.

• Interpretation easier as can assume gravitino massless:
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R-Parity ViolationR-Parity Violation

• Use modified effective mass 
variable taking into account pT of 
leptons and jets in event 

• Missing ET for events at 
SUGRA point 5 with and 
without R-parity violation

• RPV removes the classic 
SUSY missing ET signature

mT ,cent = pT
jet ,lepton

η< 2
∑
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R-Parity ViolationR-Parity Violation

• Baryon-Parity violating case 
hardest to identify (no leptons).

– Worst case: λ"212 - no heavy-quark jets

• Test model studied with decay 
chain:

• Lightest neutralino decays via BPV 
coupling:

• Reconstruct neutralino mass from 
3-jet combinations (but large 
combinatorics : require > 8 jets!)

Phase space 
sample 8j +2l

˜ χ 1
0 → cds

˜ q L → ˜ χ 2
0q → ˜ l Rlq → ˜ χ 1

0llq
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R-Parity ViolationR-Parity Violation

˜ χ 2
0

˜ χ 1
0R

~l

l l
q
q

q
q

Lq~ Test point

Decay via allowed where 
m(    ) > m( ) ˜ χ 2

0
R

~l
R

~l
• Use extra information from 

leptons to decrease background.
• Sequential decay of      to     

through      and      producing 
Opposite Sign, Same Family 
(OSSF) leptons

˜ χ 1
0

˜ χ 2
0

Lq~

R
~l
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R-Parity ViolationR-Parity Violation

Gaussian fit:
= 118.9 ± 3 GeV, (116.7 GeV) 
= 218.5 ± 3 GeV (211.9 GeV)

m( ˜ χ 1
0 )

m( ˜ χ 2
0 )

• Jet energy scale 
uncertainty ≈ 3%
⇒ 3 GeV systematic

No peak in 
phase space 
sample

• Perform simultaneous (2D) fit to 3jet and 3jet + 2lepton combination 
(measures mass of χ0

2).

• Can also measure squark and slepton masses.

~
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R-Parity ViolationR-Parity Violation
• Different λ”ijk RPV couplings 

cause LSP decays to different 
quarks:

• Identifying the dominant λ”
gives insight into flavour 
structure of model.

• Use vertexing and non-isolated 
muons to statistically separate 
c- and b- from light quark jets.

• Remaining ambiguity from d   s
• Dominant coupling could be 

identified at > 3.5 σ

˜ χ 1
0 → q1q2q3

Combined
χ2 / df P / % χ2 / df P / % σ

uds udb 59.1/1  -  28.7/1  - 9.4
usb 73.0/1  -  31.7/1  - 10.2
cds 30.5/1  -  4.0/1 4 5.9
cdb 106.9/1  -  47.2/1  - 12.4
csb 113.4/1  -  49.2/1  - 12.8

udb usb 1.6/2 44  0.4/1 54 1.4
cds 10.3/2 1  13.0/1  - 4.8
cdb 18.3/2  -  6.8/2 3 5
csb 16.3/2  -  5.1/2 8 4.6

usb cds 17.5/2  -  17.2/1  - 5.9
cdb 12.1/2  -  5.1/1 2 4.2
csb 9.9/2 1  3.1/1 8 3.6

cds cdb 56.1/2  -  37.4/1  - 9.7
csb 55.8/2  -  35.3/1  - 9.5

cdb csb 0.6/2 72  1.3/2 51 1.4

Distinguishing Vertexing Muons
λ " ijk  from λ " lmn
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