PLAN

- Introduction to $2\beta 0\nu$
- NEMO3
 - > description, performances
 - \succ results $2\beta 2\nu$
 - \succ results $2\beta 0v$: data phase 1
 - Fight against radon: result
- Prospects: SuperNEMO R&D
- Conclusion

S. Jullian LAL Paris–Sud University jullian@lal.in2p3.fr

1.08 year

Why looking for 2β0v

1. Proton decay experiments

Super Kamiokande experiment

p _____ $e^+\pi^{\circ}$ at a level of 1.6 10³³ years (5.4 10³³ y updated)

p \rightarrow v K⁺at a level of 6.7 10³² years

robust consequence SU(5) is not the right GUT

2. Neutrino oscillation experiments

 v_{μ} beam from accelerator K2K (≈ 1 GeV)

 $\nu_{e},\,\nu_{\mu}$ atmospheric K and S.K (~ GeV)

 v_e from sun, reactors, Davis, Sage, Gallex, S. Kamioka, Chooz, SNO, Kamland (~ MeV)

 $\begin{array}{c} & & m_{v} \neq 0 \text{ but a tiny mass} \\ \text{next soon OPERA } v_{\mu} \rightarrow v_{\tau} ? \\ \text{miniboone } v_{s} ? \\ \text{MINOS } v_{\mu} \text{ disappearance} \end{array}$

3. If GUT is the line guide then beyond SU5 v's are v_M with a tiny mass

> $2\beta 0\nu$ mass mechanism ?

Double beta $\beta\beta(0\nu)$ decay: Physics beyond the standard model

 $\beta\beta(0v): 2n \rightarrow 2p+2e^{-1}$

$\Delta L = 2$ Process

- > Majorana Neutrino $v = \overline{v}$ and effective mass $\langle m_v \rangle$
- Right-handed current in weak interaction
- ➤ Majoron emission
- SUSY particle exchange

Expected values of <m_v> from neutrinos oscillations parameters


```
< m_v > = \sum_{1}^{3} m_i U_{ei}^2 e^{i\alpha j}
```

Pascoli and Petcov, hep-ph/0310003 (best fit $v_{atm} + v_{sol}$)

Quasi-Degenerate (QD): $< m_v > 50 \text{ meV}$

Inverted Hierarchy (IH): $15 \text{ meV} < <m_v > < 50 \text{ meV}$

Normal Hierarchy (NH): <m_v> < 5 meV

2β could give the absolute neutrino mass

Present limits for different isotopes: direct measurements

Isotope	T _{1/2} (90%CL)(y)	<m<sub>v>(eV)</m<sub>	Mass (kg.y)	Experiment
⁴⁸ Ca	> 1.8 1022	< 6.3 - 39.4	0.005	Candle
⁷⁶ Ge	> 1.9 10 ²⁵	< 0.35 - 1.05	35.5	Heidelberg- Moscou
⁷⁶ Ge	> 1.57 10 ²⁵	< 0.3 - 1.1	8.9	IGEX
⁸² Se	> 1.9 10 ²³	< 1.3 - 3.6	0.9	NEMO3
⁹⁶ Zr	> 1.0 10 ²¹	< 2.3	0.008	NEMO2
¹⁰⁰ Mo	> 3.5 10 ²³	< 0.7 - 1.2	7.5	NEMO3
¹¹⁶ Cd	> 1.3 10 ²³	< 1.7	0.16	Solotvina
¹³⁰ Te	> 1.8 1024	< 0.2 - 1.1	10.8	CUORICINO
¹³⁶ Xe	> 4.4 10 ²³	< 2 - 3	2.3	Gotthard
¹⁵⁰ Nd	> 1.2 10 ²¹	< 3	0.009	TPC M.Moe

Running experiments

For mass $\approx 10 \text{ kg}$

Experiment	isotope	Mass (kg)	Type of detector	Lab.	Expected back- ground (counts/ FWHM .kg.y)	Sensitivity T _{1/2} (y)	Limit <m<sub>v> (eV)</m<sub>
CUORICINO	¹³⁰ Te	11	Bolometer	Gran Sasso (Italie)	0.5	7 x 10 ²⁴	0.3
NEMO3	¹⁰⁰ Mo ⁸² Se	6.9 0.93	Tracko- Calo	Modane (France)	0.3 0.1	4 x 10 ²⁴ 8 x 10 ²³	0.20-0.35 0.65-1.8

NEMO3 Collaboration

CENBG, IN2P3-CNRS Bordeaux University, **France** Charles University, Praha, Czech Republic CTU, Praha, Czech Republic **INEL**. Idaho Falls. USA INR, Moscow, Russia IReS, IN2P3-CNRS Strasbourg University, France ITEP. Moscou. Russia JINR. Dubna. Russia Jyvaskyla University, Finland LAL, IN2P3-CNRS Paris-Sud University, France LSCE, CNRS Gif sur Yvette, France LPC, IN2P3-CNRS Caen University, France Manchester University, Great-Britain Mount Holyoke College, USA RRC kurchatov Institute, Moscow, Russia Saga university, Saga, Japon UCL, London, Great-Britain

The NEMO3 detector

Fréjus Underground Laboratory : 4800 m.w.e.

<u>Source</u>: 10 kg of $\beta\beta$ isotopes cylindrical, S = 20 m², e ~ 60 mg/cm²

Tracking detector:

drift wire chamber operating in Geiger mode (6180 cells) Gas: He + 4% ethyl alcohol + 1% Ar + 0.1% H₂O

<u>Calorimeter</u>: 1940 plastic scintillators coupled to low radioactivity PMTs

Magnetic field: 25 Gauss Gamma shield: Pure Iron (e = 18 cm) Neutron shield: 30 cm water (ext. wall) 40 cm Wood (top and bottom) (since march 2004: water + boron)

 \Rightarrow Able to identify e⁻, e⁺, γ and α

Sources preparation

AUGUST 2001

ββ decay isotopes in NEMO-3 detector

ββ events selection in NEMO-3

Typical $\beta\beta 2\nu$ event observed from ¹⁰⁰Mo

Electron + N γ 's ²⁰⁸Tl (E γ = 2.6 MeV)

Electron – positron pair **B** rejection

NEMO3: detector performances

RUN with radioactive sources

> energy calibration : absolute ²⁰⁷Bi 2e⁻ lines ≈ 0.5 ≈ 1 MeV ⁹⁰Sr β^- end point ≈ 2.2 MeV \succ time of flight ⁶⁰Co γ_1, γ_2 2 lines ≈ 1.5 MeV \succ tracking detector: σ_{T} , σ_{II} neutron source $(n,\gamma) \longrightarrow e^- > 4.5 \text{ MeV}$ > aging? absolute calibration ²⁰⁷Bi during 2 years

Transversal and Longitudinal Resolution on the Vertex

²⁰⁷Bi sources at 3 well known positions in each sector (emission of two e- conversion at ≈ 1 and 0.5 MeV)

1 e⁻ channel at 1 Mev: σ_{\perp} (1 MeV) = 0.25 cm $\sigma_{//}$ (1 MeV) = 0.95 cm (Z=0) 2e- channel (1 MeV+ 0.5 MeV)

 $\sigma_{\perp} (1 \text{ MeV}) = 0.6 \text{ cm}$ $\sigma_{//} (1 \text{ MeV}) = 1.3 \text{ cm}$ (Z=0)

Performances of the calorimeter

Tube in each sector where calibration sources are introduced (3 positions) <u>3 electron energies</u> : 486 keV and 976 keV with ²⁰⁷Bi, and 2.28 MeV with ⁹⁰Sr

At 1 MeV ($Q_{\beta\beta} \approx 3$ MeV for ¹⁰⁰Mo and ⁸²Se):

	FWHM	σ _E /E
Ext.Wall (PMTs 5")	14 %	5.8 % /√E(MeV)
Int. Wall (PMTs 3")	17 %	7.1 % /√E(MeV)

Absolute calibration: method

2003/09/08 11.51

Aging measurements

⁶⁰Co run: alignment of the 1940 units calo

Time resolution (in ns) as a function of the electron energy (in MeV), obtained with two-electron events

Performance of the detector

Tracking Detector:

- > 99.5 % Geiger cells ON
- > Vertex resolution:

2 e⁻ channels (482 and 976 keV) using ²⁰⁷Bi sources at 3 well known positions in each sector $\sigma_{\perp} (\Delta Vertex) = 0.6 \text{ cm}$ $\sigma_{//} (\Delta Vertex) = 1.3 \text{ cm}$ (Z=0)

e+/e⁻ separation with a magnetic field of 25 G ~ 3% confusion at 1 MeV

<u>Time Of Flight</u>:

> Time Resolution ($\beta\beta$ channel) ~ 250 ps at 1 MeV

ToF (external crossing e⁻) > 3 ns

external crossing e⁻ totaly rejected

<u>Calorimeter</u>:

- > 97% of the PMTs+scintillators are ON
- Energy Resolution: calibration runs (every ~ 40 days) with ²⁰⁷Bi sources
 Ext. Wall Int.Wall 5" PMTs
 FWHM (1 MeV) 14% 17%
- Daily Laser Survey to control gain stability of each PM

Expected Performance of the detector has been reached

ββ events selection in NEMO-3

Typical $\beta\beta 2\nu$ event observed from ¹⁰⁰Mo

a $\beta\beta0\nu$ -like event due to Radon from the gas

Run 2220, event 136.604, May 11th 2003

Event selection criteria

- Two tracks of negative charge associated to isolated PM
- Energy deposit in each scintillator E > 200 keV.
- Event vertex is inside the foil
- Distance track-to-vertex: $\Delta XY < 4$ cm, $\Delta Z < 8$ cm;
- TOF cut: internal hypothesis probality > 4%, external hypothesis probability<1%;
- Reject events with the alpha particle found using *alpha_search* means:
 - if only 1 extra hit in the tracking detector $\begin{cases} \Delta t > 40 \ \mu sec \\ \Delta xy < 4 \ cm \end{cases}$

 $\Delta xy < 4 \text{ cm}$ $\Delta Z < 10 \text{ cm}$

vertex

- if at least 2 hits search for a short track
 Δt > 2 µsec only but all hits on time
- Reject events with two tracks at one side of the foil and a geiger hit in time at the opposite side fo the foil close to the vertex: Möller scattering of β decay in gas (Radon).

¹⁰⁰Mo 2β2ν preliminary results

(Data Feb. 2003 - Dec. 2004)

7.37 kg.y

 $T_{1/2} = 7.11 \pm 0.02 \text{ (stat)} \pm 0.54 \text{ (syst)} \times 10^{18} \text{ y}$

$2\beta 2\nu$ preliminary results for other nuclei

Ca48 analysis 1st preliminary result

Hideaki Ohsumi analysis

Search for $2\beta 0\nu$ decay in NEMO-3

Origin of Background at high energy

Two natural isotopes which have the greatest Q_{β} values $^{214}\text{Bi}: Q_{\beta} \approx 3.27 \text{ MeV}$	s > 3 MeV:
$^{208}\text{T1}: Q_{\beta}^{P} \approx 4.99 \text{ MeV}$	
Design NEMO-3 detector for 10 kg:	
$\begin{cases} ^{214}\text{Bi in source foils} < 0.3 \text{ mBq/kg} \\ ^{208}\text{Tl in source foils} < 0.02 \text{ mBq/kg} \end{cases}$	$(^{40}K = 800)$
Total activity of the detector (30 tons) \approx 1120 Bq	$^{214}\text{Bi} = 300$
	$^{208}\text{Tl} = 20$

In the Modane Underground Laboratory: Fast neutron flux (> 1 MeV): $3.5 \pm 1.5 \ 10^{-6} \ n.cm^{-2}s^{-1}$ Thermal neutron flux (~0.025 eV): $1.6 \pm 0.1 \ 10^{-6} \ n.cm^{-2}s^{-1}$

How NEMO-3 tags the background

- Electron and positron
- ➢ Gamma : 50% efficiency at 1 MeV Energy Threshold = 30 keV
- \succ Time of Flight : Time Resolution ≈ 250 ps at 1 MeV
- e⁺/e⁻ separation with a magnetic field of 25 G 3% confusion at 1 MeV

→ Delayed tracks (<700 µs) to tag delayed α from Bi²⁰⁷ $^{214}\text{Bi} \rightarrow ^{214}\text{Po} (164 µs) \rightarrow ^{210}\text{Pb}$

ββ0ν Analysis: Background Measurement

NEMO-3 can measure each component of its background !

> External Background ²⁰⁸Tl (PMTs)

Measured with (e⁻, γ) external events

> ²⁰⁸Tl impurities inside the foils

~ $10^{-3} \beta \beta 0 \nu$ -like events year⁻¹ kg ⁻¹ with 2.8<E₁+ E₂<3.2 MeV

External Neutrons and High Energy gamma Measured with (e⁻,e⁻)_{int} events with E₁+E₂ > 4 MeV

 $\leq 0.02 \beta \beta 0 v$ -like events year⁻¹ kg ⁻¹ with 2.8 $\leq E_1 + E_2 \leq 3.2 MeV$

Measured with $(e^{-}, 2\gamma)$, $(e^{-}, 3\gamma)$ events coming from the foil

~ 0.1 $\beta\beta$ 0v-like events year⁻¹ kg ⁻¹ with 2.8<E₁+ E₂<3.2 MeV

Only 2 $(e^-, e^-)_{int}$ events with $E_1 + E_2 > 4$ MeV observed after 260 days of data (without boron)

{ 4253 keV (26 Mar. 2003) 6361 keV (8 Nov. 2003)

In agreement with expected background

sources	A (μBq/k) from(e⁻,Nγ)	A (μBq/k) HPGe meas.				
¹⁰⁰ Mo	92 ± 18	< 110				
metal.		400				
¹⁰⁰ Mocomp	115 ± 13	< 100				
⁸² Se	316 ± 46	400 ±100				
In agreement with HPGe measurements						

> ¹⁰⁰Mo ββ2ν decay $T_{1/2} = 7.7 \ 10^{18} \text{ y}$ (SSD) ~ 0.3 ββ0ν-like events year⁻¹ kg ⁻¹ with 2.8<E₁+E₂<3.2 MeV

ββ0ν Analysis: Background Measurement

Radon in the NEMO-3 gas of the wire chamber

Due to a tiny diffusion of the radon of the laboratory inside the detector A(Radon) in the lab ~15 Bq/m³

~ 1 $\beta\beta$ 0v-like events/year/kg with 2.8 < E₁+E₂ < 3.2 MeV

Radon is the dominant background today for ββ0v search in NEMO-3 !!!

Nuclear Matrice Elements Ref. Simkovic (1999), Stoica (2001), Suhonen (1998, 2003), Rodin (2005), Caurier (1996)

Limit on Majoron and V+A Phase 1 (Feb. 2003 – Sept. 2004: 1.08 y of data) with radon bkg (limits @ 90% CL)

		Limit on V+A	
¹⁰⁰ Mo:	$T_{1/2} (\beta \beta 0 v V + A) > 2.3 \ 10^{23} y$	⁸² Se: $T_{1/2} (\beta \beta 0 \nu V + A) > 1.0 \ 10^{23} y$	
	$\lambda < (1.5 - 2.0) \ 10^{-6}$	$\lambda < 3.2 10^{-6}$	
	Tomoda (1991), Suhonen (1994)	Tomoda (1991)	

Radon was the dominant background for ββ0v search in NEMO-3

Radon in the NEMO-3 gas of the wire chamber

Due to a tiny diffusion of the radon of the laboratory inside the detector A(Radon) in the lab ~15 Bq/m³

Two independent measurements of radon in NEMO-3 gas

Radon detector at the input/output of the NEMO-3 gas

 $\sim 20 \ counts/day$ for 20 mBq/ m^3

> (1e⁻ + 1 α) channel in the NEMO-3 data:

Delayed tracks (<700 µs) to tag delayed α from ²¹⁴Po ²¹⁴Bi \rightarrow ²¹⁴Po (164 µs) \rightarrow ²¹⁰Pb

 $\sim 200 \ counts/hour \ for \ 20 \ mBq/m^3$

Good agreement between the two measurements

A(Radon) in NEMO-3 $\approx 20-30 \text{ mBq/m}^3$

Free-Radon Purification System 1/2

May 2004 : Tent surrounding the detector

Free-Radon Air factory

Starts running Oct. 4th 2004 in Modane Underground Lab. 1 ton charcoal @ -50°C, 7 bars

Activity: $A(^{222}Rn) < 15 \text{ mBq/m}^3 !!!$

Flux: 125 m³/h a factor 1000

Radon purification of the air surronding the detector - **Results** -

- > A(Radon) in the tent after flushing free-radon air..... ~ 5 Bq/m^3

╢

• source of radon inside the tent

- ground and electronics degasing
- 20-21 oct. 2004: the detector has been roughly isolated from the ground and electronics

₩

> A(Radon) in the upper part, surrounding the detector... ~ 0.15 Bq/m³

air flux: 125 m³/h

Activity of Radon surrounding the detector has been reduced by a factor ~ 100

Radon level inside the detector

- Results -

NEMO-3 Expected sensitivity

Prospects

- We live a « prenatal period » for the double beta decay experiments ≈ 10 kg of isotopes NEMO3 ≈ 0.2 eV ¹⁰⁰Mo with a small background
 CUORECINO ≈ 0.2 eV ¹³⁰Te, the background would be improved soon
 ⁷⁶Ge ≈ 0.3 eV with backgrounds
- NEMO3 phase 2 : a zero background exp. with 10 kg ⁸²Se or a dream 10 kg of ¹⁵⁰Nd
- ⁷⁶Ge experiment : a 10 kg exp. backgrounds would be improved: GERDA
- then experiments with at least 100 kg of isotope to reach

 $< m_v > \approx a \text{ few } 10 \text{ meV}$

Projects near future: 10 years

Experiment	isotope	Mass kg	Type of detector	Lab.	Background (counts FWHM Kg.y)	Sensitivity T _{1/2} (y)	Limit	Comment
CUORE	¹³⁰ Te	200	Bolometer	Gran Sasso	0.001	3 x 10 ²⁶	0.015-0.090	R&D start
GERDA phase I	⁷⁶ Ge	15	Ge Detector	Gran Sasso	0.01	3 x 10 ²⁵	0.3-0.9	2006
GERDA phase II	⁷⁶ Ge	100	Ge Detector	Gran Sasso	0.001	2 x 10 ²⁶	0.09- 0.29	2009
Super NEMO	⁸² Se ou ¹⁵⁰ Nd	100	Tracko-Calo	?	0.002	2 × 10 ²⁶	0.03-0.06	R&D 2005→ 2007
Majorana	⁷⁶ Ge	500	Ge Detector	?	0.01	4 10 ²⁷	0.034- 0.039	for 10 years of running
EXO	¹³⁶ Xe	200 1000	TPC	WIPP (US)	0.015 0-0.0018	210 ²⁶ 8.3 x 10 ²⁶	0.39-1.2 0.0510.14	Start 2005 ?
MOON	¹⁰⁰ Mo	10 1000	Tracko-calo	?		10 ²⁷	0.2-0.3 0.03	R&D in progress
CANDLES	⁴⁸ Ca	0.180	CaF ₂ (200kg)	Otho (Japon)	0.3		0.5	start
COBRA	¹³⁰ Te ¹¹⁶ Cd	10	CdZnTe	Boulby U.K	0.2, 0.03	1 x 10 ²⁴	0.7	R&D in progress
DCBA	¹⁵⁰ Nd	20	TPC	?			0.05	R&D in progress
XMASS	Xe	800	Calo.	Kamioka				R&D in Progress 100 kg

What we learnt with NEMO3

- to identify and measure all the sources of background
- to build a very low-background detector
- to prove the reliability of the chosen techniques
- to purify $\beta\beta$ isotopes by removing parents of ²¹⁴Bi, ²⁰⁸Tl
- to remove background due to Radon (recently)
- to develop ultra low background H P Ge detectors

technique can be extrapolated R&D program approved recently in France 3 years: 2005, 2006, 2007

From NEMO to SuperNEMO

Factor 100 on the $\beta\beta(0\nu)$ period T_{1/2}, reach few 10²⁶ years

Light Majorana neutrino exchange: $< m_v > \sim 50 \text{ meV}$

SuperNEMO preliminary design

Plane geometry

Source (40 mg/cm²) 12m², tracking volume (~3000 channels) and calorimeter (~1000 PMT)

Modular (~ 5 kg of enriched isotope/module)

Top view

Side view

Need of cavity of ~ 60m x 15m x15m Possible in Gran Sasso or in Modane if a new cavity

Choice of the nucleus

No strong theoritical criteria. Nucleus choice depends on:

- enrichment possibilities
- experimental technics

 $-\mathbf{Q}_{\beta\beta}$ value (phase space factor, background)

CONCLUSIONS

- The ranges of values of the <u>BBNME</u> is still an open problem
- Need more coherent efforts in computation of BBNME
- Need new spectroscopic probes

	Q _{ββ} (MeV)	Isotopic Abundance
⁴⁸ Ca→ ⁴⁸ Ti	4.271	0.187
⁷⁶ Ge→ ⁷⁶ Se	2.040	7.8
⁸² Se→ ⁸² Kr	2.995	9.2
⁹⁶ Zr→ ⁹⁶ Mo	3.350	2.8
¹⁰⁰ Mo→ ¹⁰⁰ Ru	3.034	9.6
¹¹⁰ Pd→ ¹¹⁰ Cd	2.013	11.8
¹¹⁶ Cd→ ¹¹⁶ Sn	2,802	7.5
¹²⁴ Sn→ ¹²⁴ Te	2,228	5.64
¹³⁰ Te→ ¹³⁰ Xe	2.533	34.5
¹³⁶ Xe→ ¹³⁶ Ba	2.479	8.9
¹⁵⁰ Nd→ ¹⁵⁰ Sm	3.367	5.6

R&D for the source of ⁸²Se

Goal: To be able to produce 100 kg of ⁸²Se with internal contaminations less than 2 μBq/kg in ²⁰⁸Tl and 10 μBq/kg in ²¹⁴Bi (60 decays/year)

Production: 5kg of ⁸²Se funded by ILIAS 100 kg possible Development of ICR for enrichment ?

Purification: 2x100 g natSe already processed at INEEL5kg of 82Se funded by ILIAS1kg of 82Se2kg of 82Se2kg of 82Se2kg of 82Se20065kg of 82Se2007

then radiopurety measurements to qualify the process
1) H P Ge
2) device "à la NEMO"

Thickness: ~250 m² with 40 mg/cm² thickness

(6% (FWHM) at 3 MeV)

Participants: CENBG, LAL, LSCE (France) ITEP, Kurchatov, JINR (Russia) INEEL, MHC (USA)

Conclusion

- > NEMO3 is running for \approx 5 years
- R&D program for SuperNEMO 2005, 2006, 2007 a real challenge !
- Coordination started at the European level (ILIAS)
- Neutrinoless double beta decay can be one of the experimental key for understanding neutrino physics: a long way but promising ?

Thank you

Serge Jullian, LAL, Paris–Sud University

jullian@lal.in2p3.fr