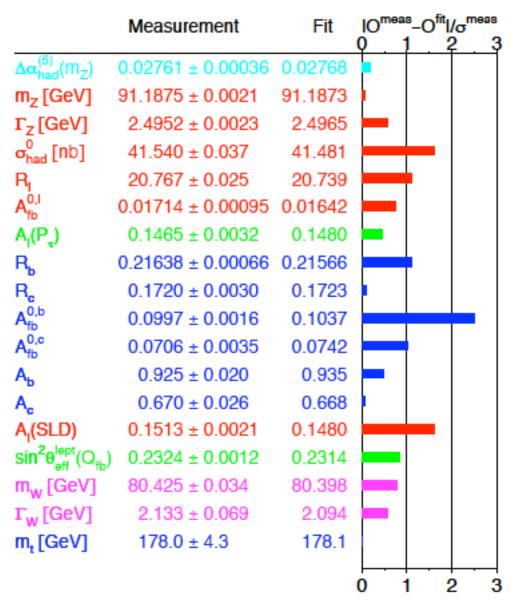

LHCが切り拓く21世紀の 素粒子物理学

- 1. 世紀末の状況
- 2. LHC計画・ATLAS検出器とは
- 3. Data量とトリガー
- 4. Higgs粒子
- 5. 超対称性粒子
- 6. 余次元とブラックホール
- 7. トップとB
- 8. 纏め

1. 20世紀末の状況

標準模型(量子電弱理論+量子色力学)の著しい成功


標準模型

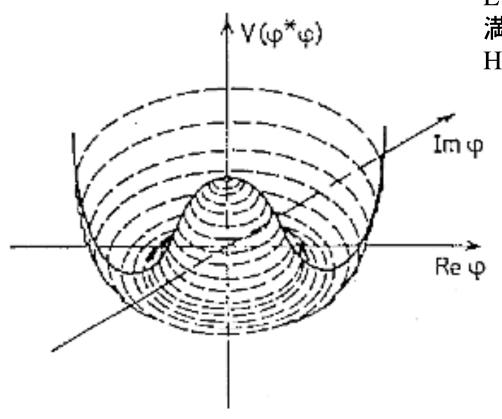
- Lepton/Quarkが対をなして、
 3世代ある。(世代の謎?)
- 力を伝搬するのは
 r,Zº/W⁺⁻、グルオン
 3つの力
 (重力をのぞいて3つ)
 これらは、ゲージ原理
 に支配されている。
- 3. 質量の起源は? (Higgs?)

ニュートリノの質量の起源は別物(?)

Winter 2004

1989-2000年 LEP,SLD,Tatatron実験で 大量のZ/W. (top)を 生成して精密の検証を行う。

色々な物理量をO(0.1%)の高い 精度で測定。一次の輻射補正を 検証した。

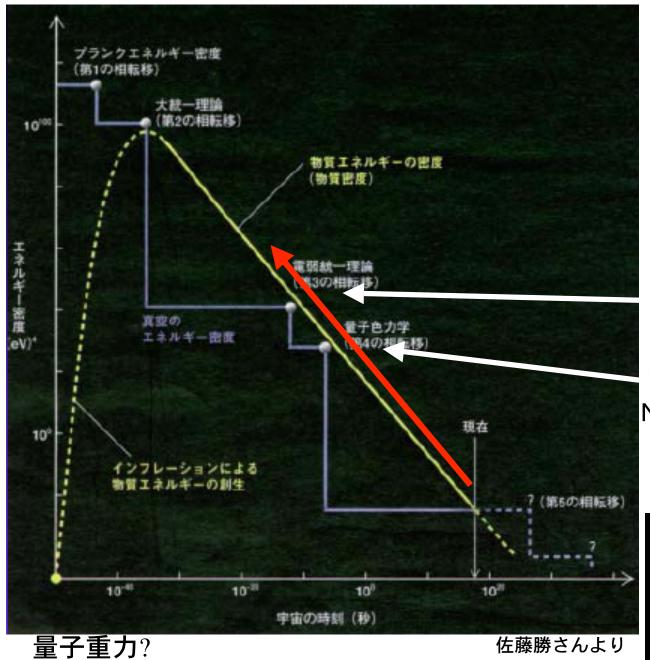

(フロンティア実験での革命)

理論の予言する値と高い精度で 一致。(bのasymmetery) (左図は、ズレを示す)

> ーーー> 非常に高い精度で<mark>合格</mark>

では、何故 "TeV領域"の加速器が必要か?

(作戦目的1) ヒッグス粒子の直接証拠を得て、 その性質を調べる。

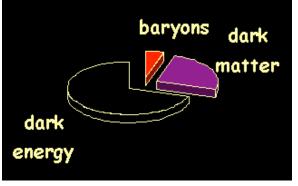

接線方向自由度は、NGBは、Gauge場の縦波 垂直方向は、ヒッグスの質量:形が質量 真空はただの空の入れ物でなく、 EW double Higgs場が 満たされている Higgsのポテンシャルが鍵

自然は元来高い対称性を持っていた。これが、冷えて、対称性を破った基底状態の方がエネルギー的にお得な場合、自発的にここに落ち着き、結果、対称性が壊れた様に見える。

ーー> 自発的対称性の破れ

「質量の起源」の解明

--> LHCの主目的(1)


宇宙の進化一〉 対称性が破れ、 多彩な構造が 出来てきた

SU5 or SO10 or ? GUT

SU2*U1->U1_{em} Higgs?

カイラル対称性 NBとして、π中間子

Dark Energy 70%!?

(LHC 作戦目的2)標準理論を超えた新しい素粒子現象の発見

標準理論は、高いエネルギーですぐに破綻する。補正が大きくなりすぎる。 量子補正〜 A gutoff TeV領域に新しい物理があることが示唆されている。

2-1 超対称性

Fermion/Bosonを交換する対称性 (A) 符号が逆でキャンセル

- (B) GUTの可能性(次の頁)
- (C) EWの精密測定もTeV SUSY
- (D) 暗黒物質(DM)の良い候補
- (E) 時空の構造に密接に結び ついた対称性 量子論と重力を結ぶ上で 重要な役割 19世紀の二つ の柱を統合

2-2 Large 余次元

高いエネルギースケールは 幻影。LEPでみた EWだけが本当のエネルギー スケールで、重力は余計な 次元の効果で小さく見ている だけ。

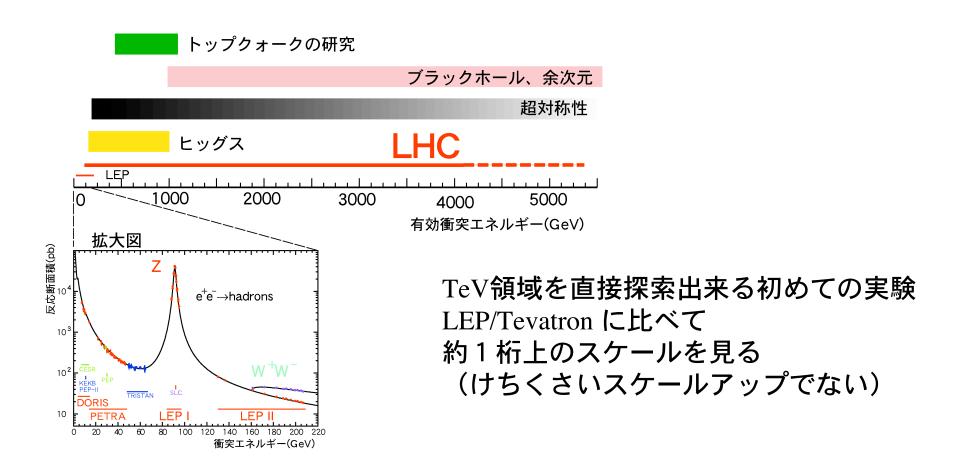
d=4+N (d=6--11?) 余った次元は、丸まっている。 このスケールまで行くと、重 力も大きな力。

string起源のメンブレーン

超対称性の御利益

 $1/\alpha(\mu)$ **Grand Unified Theories** LEP Coupling Constants α_1^{-1} Non-SUSY SU(5) 1TeV付近に M SUSY 20 α_3^{-1} M_{GUT} SUSY SU(5) 10 $10 \quad 10^{2} \quad 10^{3} \quad 10^{4} \quad 10^{5} \quad 10^{6} \quad 10^{7} \quad 10^{8} \quad 10^{9} \quad 10^{10} \quad 10^{11} \quad 10^{12} \quad 10^{13} \quad 10^{14} \quad 10^{15} \quad 10^{16} \quad 10^{17} \quad 10^{11} \quad 10^{12} \quad 10^{13} \quad 10^{14} \quad 10^{15} \quad 10^{16} \quad 10^{17} \quad 10^{11} \quad 10^{12} \quad 10^{13} \quad 10^{14} \quad 10^{15} \quad 10^{16} \quad 10^{17} \quad 10^{17}$ (GeV) Mass Scale μ

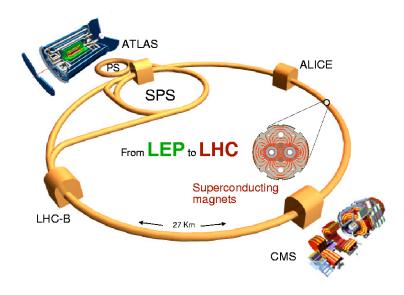
3つの力(電磁気力、弱い力、強い力)の 強さを精密に測定。(@LEP) 登場人物を入れると、その力が高いエネルギー で、どう振る舞うか予想出来る。(繰り込み群 方程式)


超対称性粒子が 1TeV付近にあると、3つの力は 10^{16} GeVで一つの力になる可能性が示された。

--> 力の大統一!!

古今東西の例を紐解くと、かけ声と現実の乖離甚だしく、懐疑的にならざるをえない。

「ヒッグス見つけて、さらにBeyond Standardを発見できる」? ?本当に出せるの?(羊頭狗肉ではないか?)


2. LHC計画・ATLAS検出器とその現状

円周27kmのリング (地下約100m) フランス側 ジュラ山脈 **CERN** Geneva空港 スイス側

LHC(Large Hadron Collider) 計画

- 1. 8.3Tの強力な超伝導dipole マグネット
- 2. 27kmのリング(LEPトンネルの再利用)
- 3. Proton同士を重心系14TeVで衝突
- 4. Design Luminosityは、10³⁴cm⁻²s⁻¹ (100fb⁻¹/年) (国策B程度)
- 5. ATLASとCMSの二つの汎用実験 LHCb(Bの物理)とALICE(QGP)

The Large Hadron Collider (LHC)

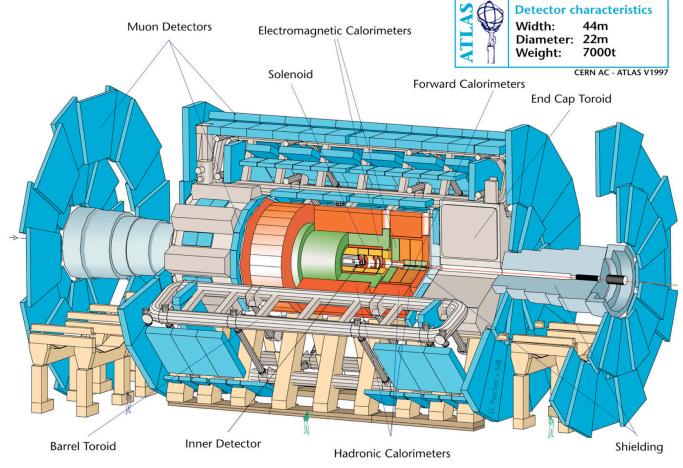
	Beams	Energy	Luminosity	
LEP	e+ e-	200 GeV	10 ³² cm ⁻² s ⁻¹	
LHC	рр	14 TeV	10 ³⁴	
	Pb Pb	1312 TeV	10 ²⁷	

LHC加速器建設状況

1.9K cold mass (75% ready)

LHC DIPOLE: STANDARD CROSS-SECTION ALIGNMENT TARGET AUXILIARY BUS-BARS HRINKING CYLINDER / HE I-VESSEL IRON YOKE (COLD MASS, 1.9K) ヒートシンク

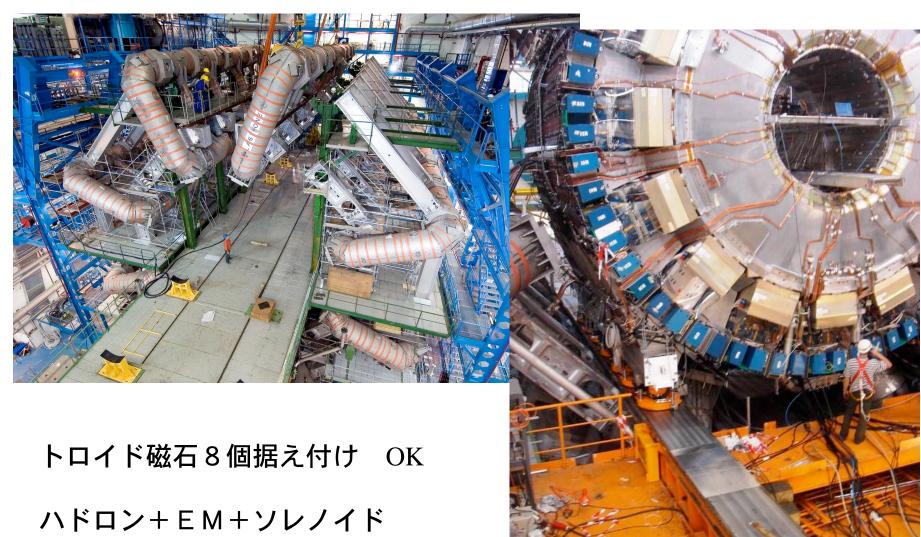
1232本のマグネットの75% Ready


10%強は既にトンネルに溶接、 据え付けられた。 (あと1年で準備完了予定)

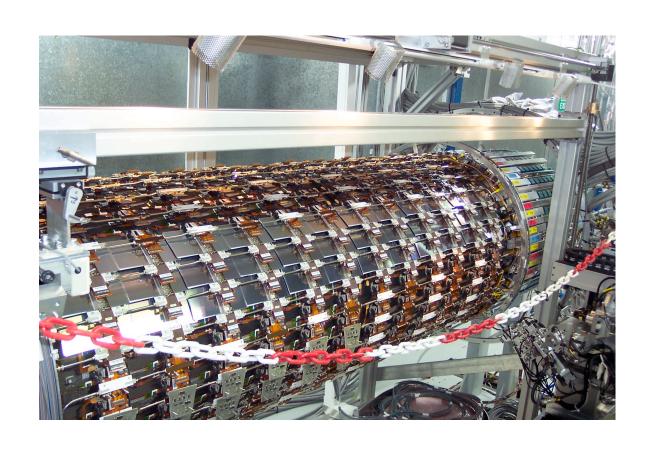
NbTi 超伝導1.9K(He温度)まで冷やして、B=8.3T (7TeV) (injection 0.5T at 450GeV) コイルー>磁場を上下方向に発生させている.

ATLAS検出器

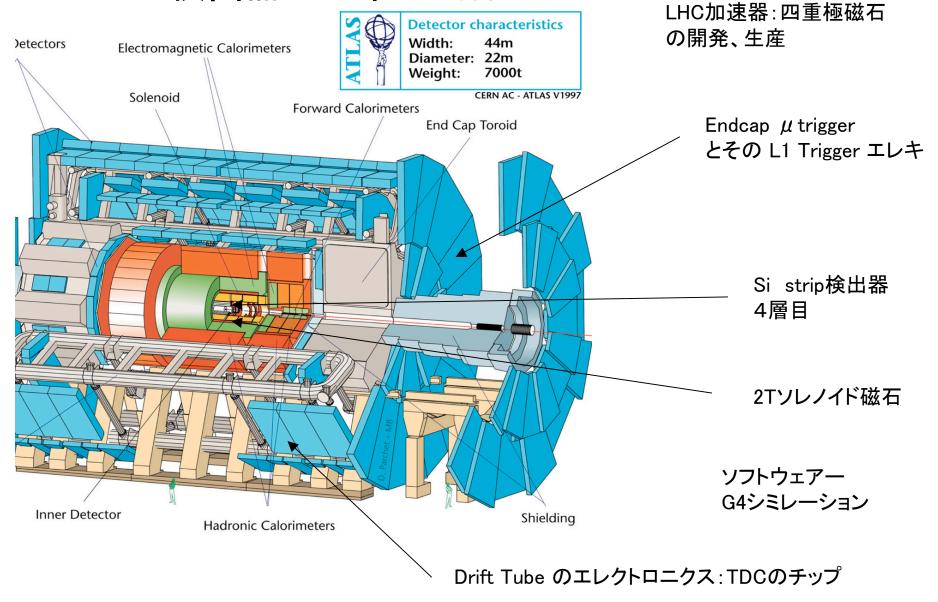
1700人の国際共同実験


E,P分解能

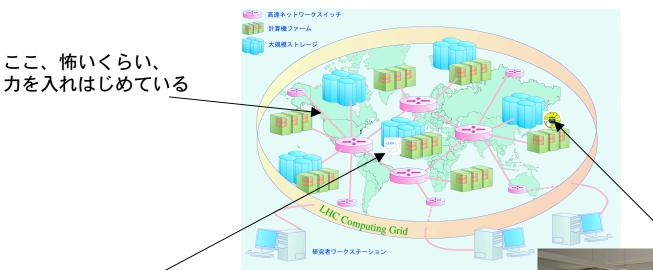
(P~100GeV)


μ~2%e, γ~1.5%Jets ~ 8%

- 1. Si, TRT、2TのソレノイドによるTracking system
- 2. Li.Ar を中心とした カロリメーター
- 3. 空芯トロイド ミューオン検出器
- ---> 詳しくは2限目の資料をご覧ください


- •厳しい放射線環境
- •高速 25nsec (40MHz)
- 1億6千万チャンネル の読み出し
- •320Mbyte/secのデータ (1TB/hour) 桁違い

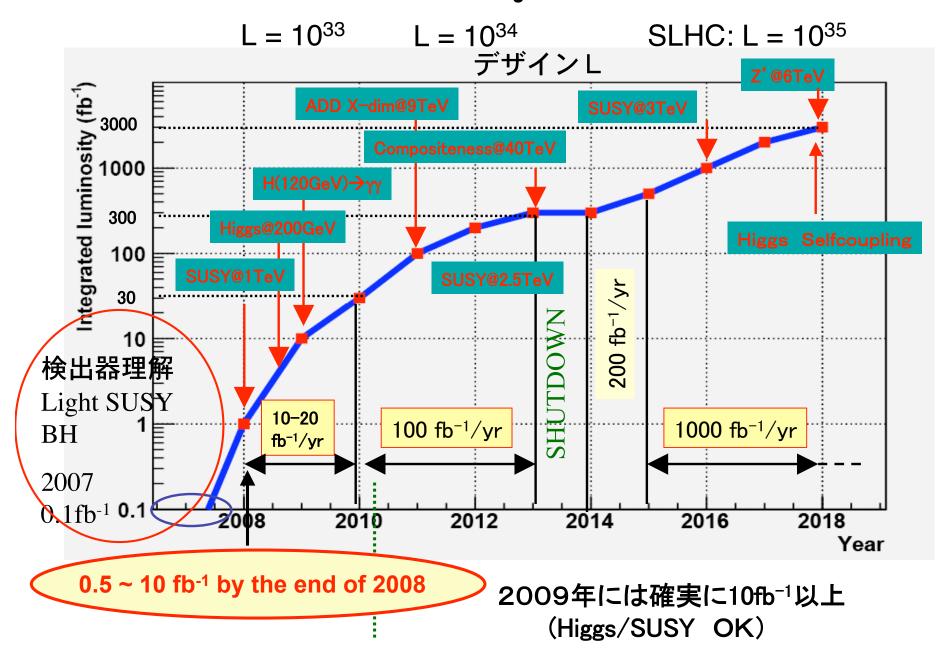
ハドロン+EM+ソレノイド が中に収まっている。 2007年春に完成に向けて 急ピッチで組みあがっている あの穴に、飛跡検出器 TRTとシリコン (SCT 4*2+ ピクセル 3 層) をいれて、外側にMuonを貼りつけて "完成" (2 0 0 7 年春) 組上がっている S C T (4 層目は日本担当)



ATLAS検出器の日本担当分

1TB/hour -> 年間 3PBのデータがつぎつき生成される。 これを解析するには 12PB程度のテープとDISKがそれぞれ 24MSI₂₀₀₀のCPUが必要

2004年最新のスペックで3万台づつDISK,CPU


GRIDで世界の 計算機資源を統合 して使う。

サッカー場ほど 施設は準備

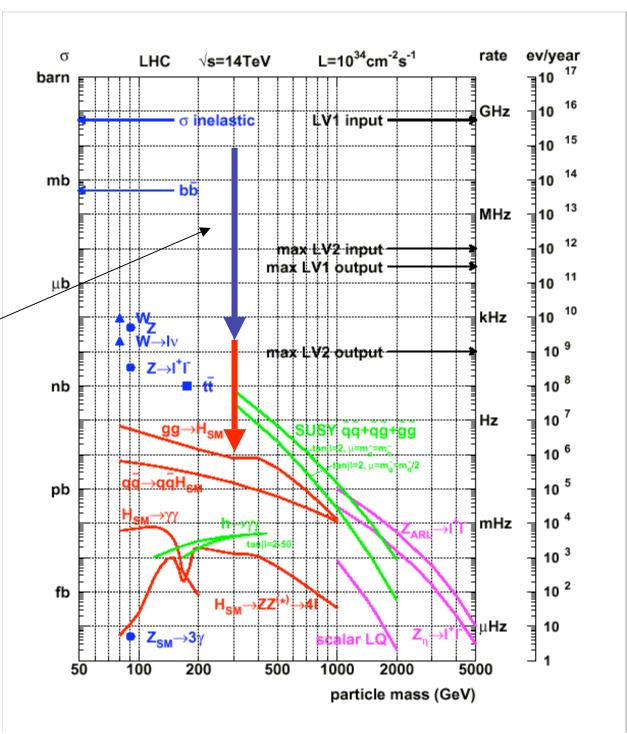
(パイロットモデル)

LHC Luminosity Profile

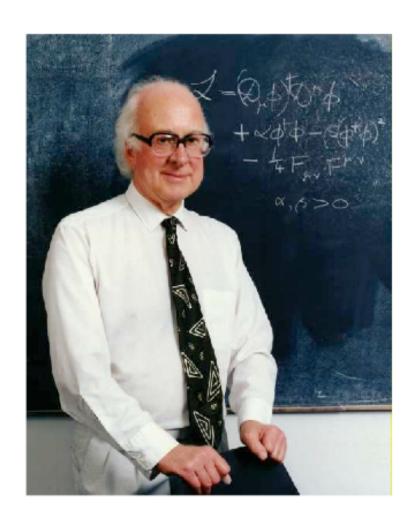
データ量とトリガー

僅かL=10fb-1 (2008)でも膨大な統計量のデーターが観測

代表的な過程	Event rate 2×10^{33}	初めの1年で L=10fb ⁻¹	他との比較 (2007年までの積算)	
W→e ν	30Hz	108	10 ⁷ Tevatron run II	
Z→ee	3Hz	10 ⁷	10 ⁷ Tevatron run I I	
tt	1.6 Hz	10 ⁷	10 ⁴ Tevatron run I I	
bb: D \10CoV	200KHz	2×10^{12}	10 ⁹ BELLE	
bb: P _T >10GeV	(HLT 10Hz)	(108 inc. di- μ)	10°BELLE	
Higgs(130GeV)	200個/時	5 × 10 ⁵		
SUSY(1TeV)	20個/時	5 × 10 ⁴		

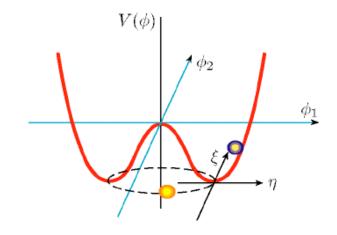

この表が示す様に、LHCは、Top-factory、B-factoryであり、 同時に Higgs/SUSY factoryである。 W.Zは検出器を理解する上で重要なサンプルである。 こう書くと、ちょろい 気がしますが。

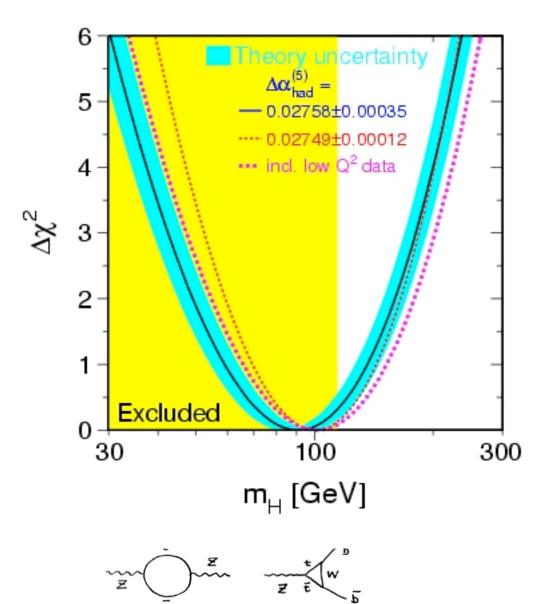
ケチな非弾性散乱 (70mb)に比べて, 面白い物理は 10桁小さい


> Triggerで上手に 40MHz->数百Hz 約6桁落とす。

物理解析で 約3桁落とす。

神業の様な仕事をして Higgs/SUSYを探す。 電子・陽電子と違ってや ることがいっぱいあっ て、面白いです

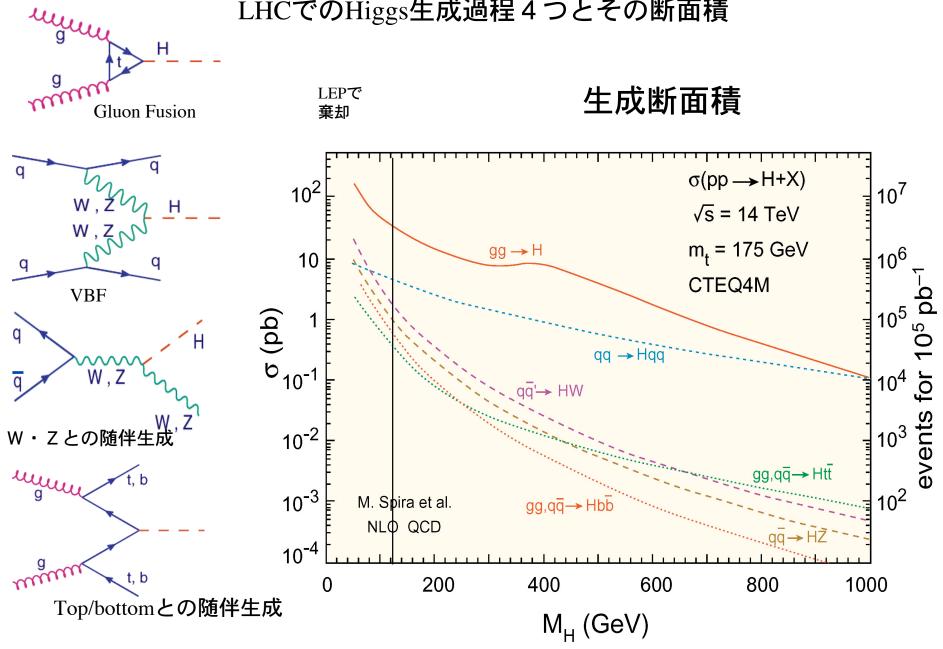


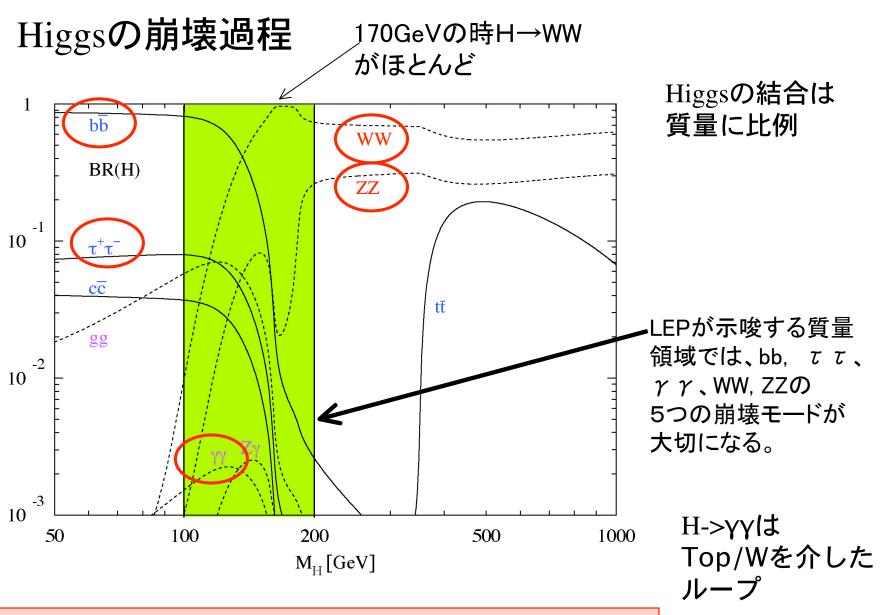

4. Higgs粒子

南部さん "自発的対称性 の破れ"

Higgs粒子は SM唯一の 未発見粒子である

LEPでの電弱相互作用の 精密測定の結果 Higgs < 200 GeVである。

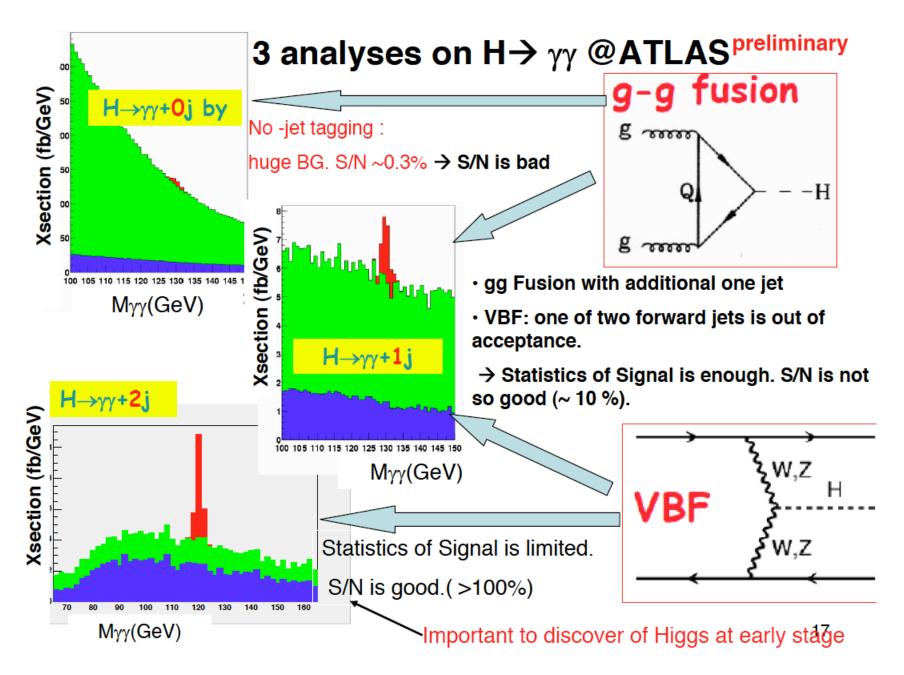

またmSUSYだと < 130-140GeV

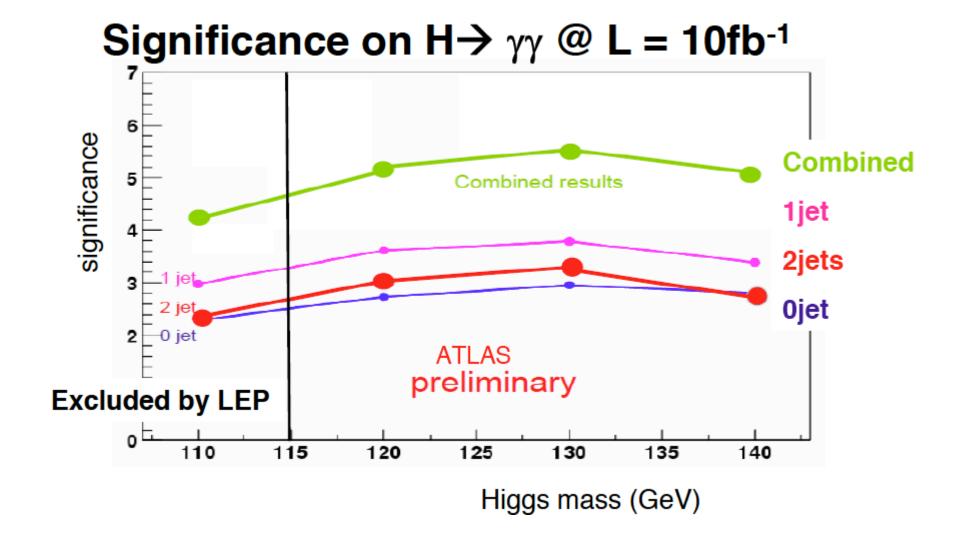

直接探索で 棄却 Mhiggs > 114GeV

ずいぶん追い込んでいる

<- こう言う輻射補正を見ている

LHCでのHiggs生成過程4つとその断面積

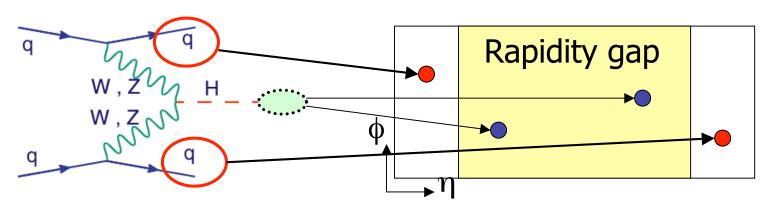


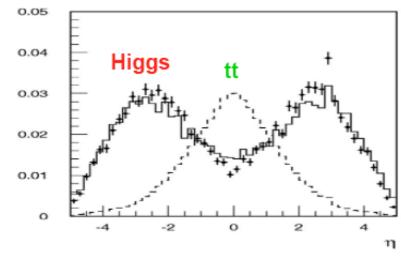

複数のモードで観測可能 →性質を理解する上で極めて重要

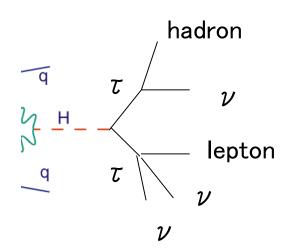
SM Higgsの研究で有効なチャンネルの纏め

生成過程	崩壊過程	有効な領域とその効能			
Gluon Fusion	$H \rightarrow \gamma \gamma$	110-140GeV	発見 Mass 測定 spin=0の傍証		
	H -> ZZ-> 4 I 140-1000 発見・Mass, s		発見・ Mass, spin, coupling測定		
	H -> WW	130-170 GeV	発見		
	Η-> τ τ	110-140GeV	発見・Mass, coupling測定		
Vector Boson	H -> WW 130-200GeV 発見・W coupling測定				
Fusion	Η -> γγ	110-140GeV	<mark>発見</mark> (fake、高次効果研究) Mass測定		
	H -> bb	110-130GeV			
ttH	Η -> τ τ	110-130GeV	Ytの測定		
	H -> WW	130-180GeV			
WH	H -> WW	140-170GeV	発見・W coupling測定		

(1) H-> $\gamma\gamma$ in gg-fusion and VV-fusion



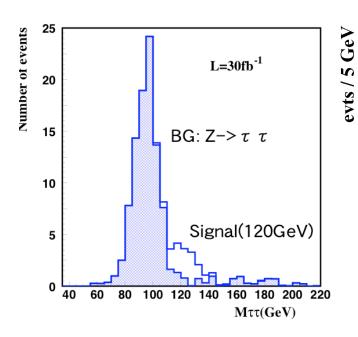

軽いHiggsは、 $H->\gamma\gamma$ だけで 5σ ($L=10\,fb^{-1}$) しかも spin がzero(2も可であるが)であることを示す 重要な証拠


[2] VBF: H → r r も見える

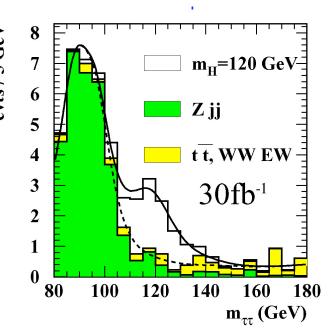
VBFの特徴 QCD起源のBG

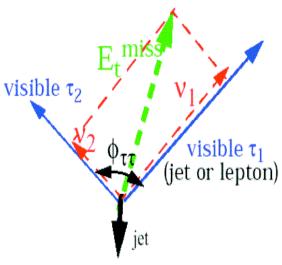
カラーの交換がない。Rapidity Gap が観測され、その間にhiggsが見える

H->tautau (Br=7%)


 $Br*\sigma=300fb$

Tau 34% leptonic decay -> trigger (一方か両方のtauがleptonic decay)

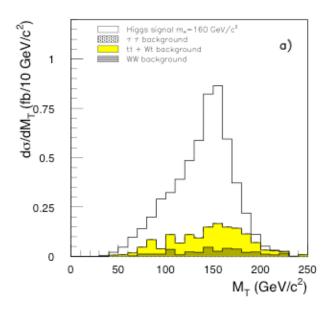

VBF H→ T T のM T T 分布


 $M_{H}=120GeV$

$$\tau^+\tau^- \rightarrow h \nu_{\tau} \ell \nu_{\tau} \nu_{\ell}$$

$$\tau^+\tau^- \rightarrow \ell\ell 4\nu$$

Tauが再構成出来る 分解能は、ハドロン 程度 σ~9GeV


・Backgroundとsignalの形が違う。DYのMzのpeakの横で綺麗に区別がつく。

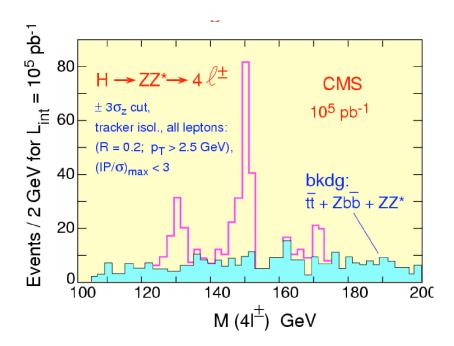
ての再構成にmissing情報 (b-tagは使ってない) → missing Et の研究が鍵

[3] VBF H→WWのM_T分布

$$M_H = 160 GeV$$

$$W^+W^- \rightarrow \ell \nu \ell \nu$$

M>140GeV H->WWが主力に なる。この時は、 WW->lnulnuがkeyチャンネル


peak を作らない。やこびあん (形は似ているが、数はfactor 5以上)

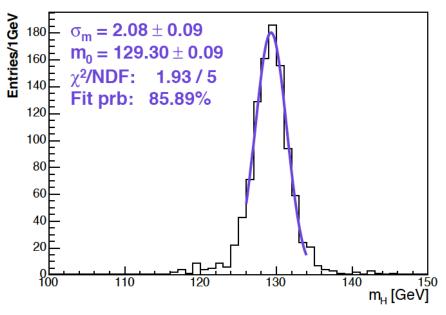
Spinの情報が見ることが可能 Spin Zero -> WW のspinの向きが 逆向き

- ー> leptonは揃った方向に出る。
- -> spinを見ることがこの領域でも 可能。

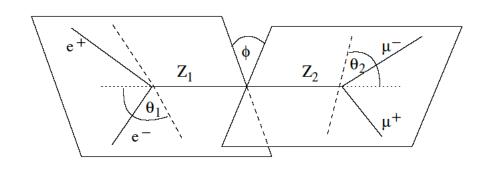
Higgsであること、 Spin と結合(後述)をみることが必要

[4] $H \rightarrow ZZ^* \rightarrow 4$ leptons

M_H=130,150,170GeV (170GeVの付近はH→WWがほぼ100%)


分解能は高い: σ=1.5-2GeV 1% 程度) BGから綺麗に分離可能

140GeVより重い場合の WWと並んでFirst Discovery channel


200GeVより重い場合 First Discovery channel

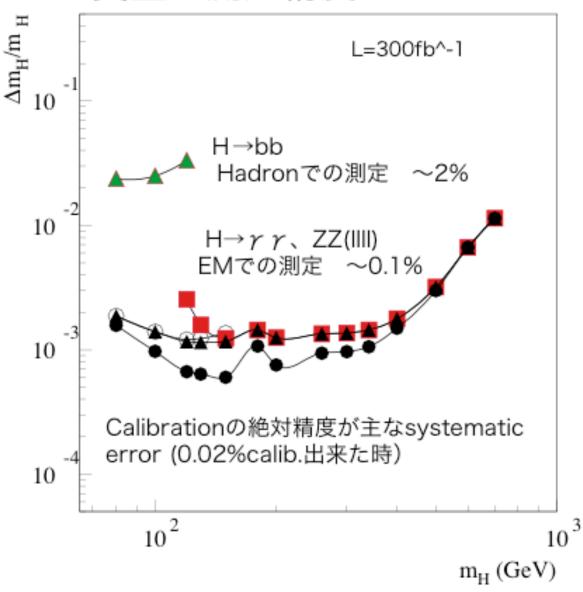
G4 Full simでもOK

H[130] \rightarrow 2e2 μ

このチャンネルspin, CPの直接測定が可能

SM Higgsの発見能力

L=30fb⁻¹で9σ以上の発見が 可能(M_H>114GeV:LEP limit)

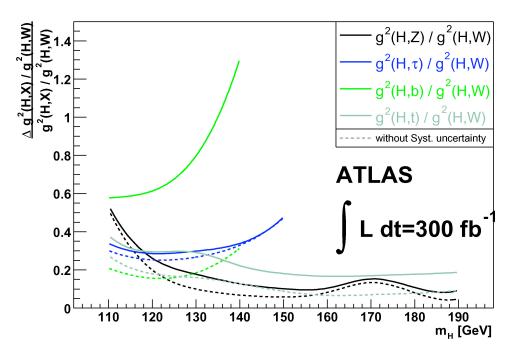


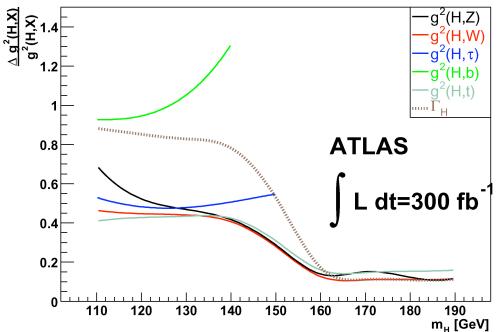
- 軽い場合 VBF・TT
- GF+VBF yy
- 重い場合 VBF・WW
- 200GeV以下の時は 複数のモードで観測可能
- 200GeVより重いと H→ZZ→4leptonで 20σ以上

L=10fb⁻¹で5σ以上
→ 2008-2009年
で発見可能

黄色(H->γγ)がもっとよくなっている。(7σ@L=30fb-1ほど)

質量の測定精度


•測定精度0.1% Calib 絶対精度 が主な誤差.

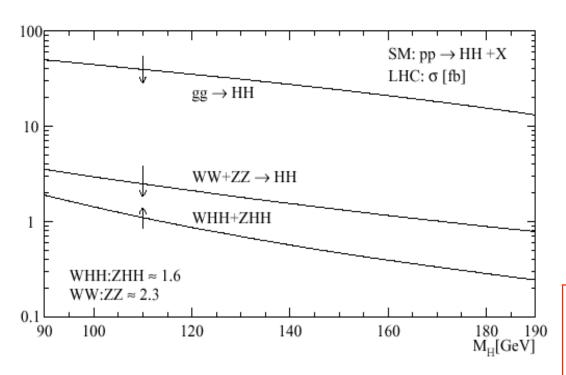

Higgs \mathcal{O} mass $\sqrt{2\lambda}v$

V=246GeV

λ:4次の係数で

外側の壁の傾き

結合定数の比の測定精度 (HWW規格化)


·Y_t, Y_τは10-15%程度 ·Y_bは30-40%程度 (VBF bb必要) ·G_zは、5-10%程度で測定 可能

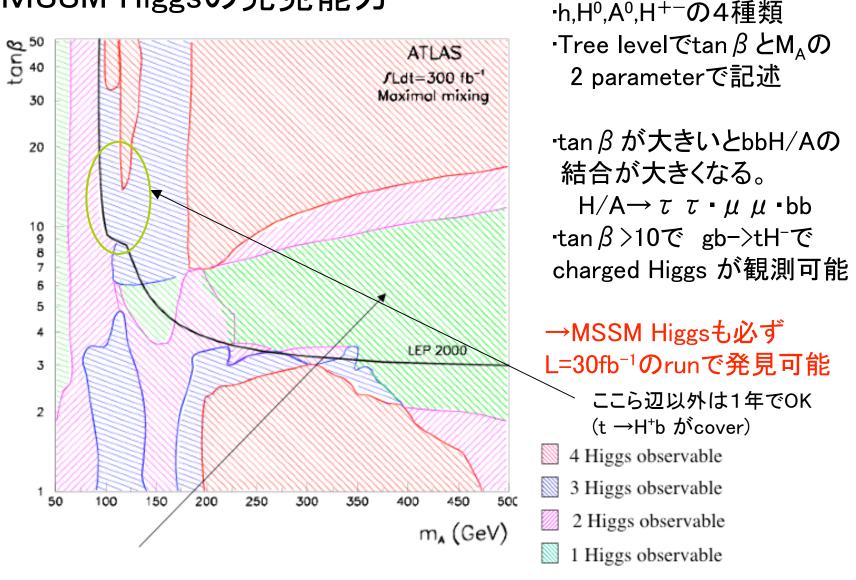
結合定数の絶対測定の精度

 y_t 、 y_τ 、 g_{ZZH} 、 g_{WWH} は、20%程度の精度で決まる。 y_b は50%近い(Mh=115-140GeV)

Higgs Self-couplings

$$\lambda_{\scriptscriptstyle HHH}^{\scriptscriptstyle SM} = 3\,rac{m_H^2}{v}\,,\quad \lambda_{\scriptscriptstyle HHHH}^{\scriptscriptstyle SM} = 3\,rac{m_H^2}{v^2}$$

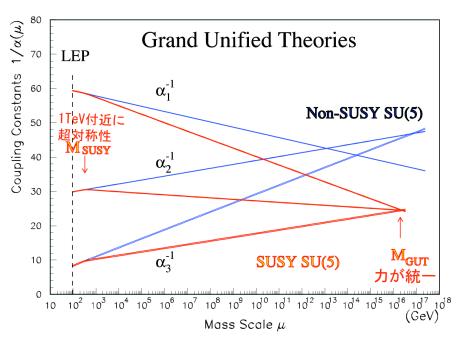
σ×Brが小さい High Luminosityが 必要 ー>SLHC

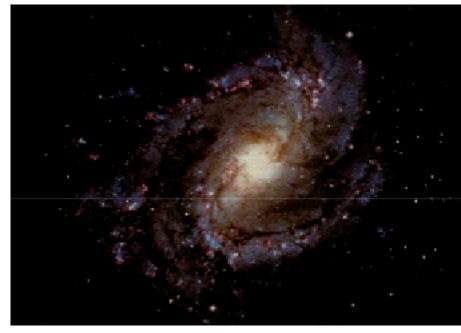

For **6000 fb**⁻¹ (SLHC) $\Delta\lambda \sim 19\%$ for 170 GeV M_H

$$gg \rightarrow HH \rightarrow W^+W^-W^+W^- \rightarrow \ell^{\pm}\nu jj\ell^{\pm}\nu jj$$

Table 8: Expected numbers of signal and background events after all cuts for the $gg \rightarrow HH \rightarrow 4W \rightarrow \ell^+\ell'^+4j$ fi nal state, for $\int \mathcal{L} = 6000 \text{ fb}^{-1}$.

m_H	Signal	$t\bar{t}$	$W^{\pm}Z$	$W^{\pm}W^{+}W^{-}$	$t\bar{t}W^{\pm}$	$t\bar{t}t\bar{t}$	S/\sqrt{B}
170 GeV	350	90	60	2400	1600	30	5.4
200 GeV	220	90	60	1500	1600	30	3.8

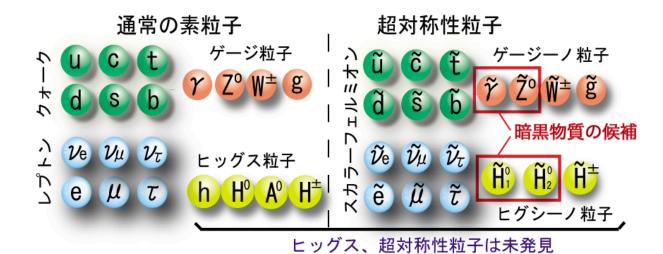

MSSM Higgsの発見能力



この緑の部分は、H_{SM}に似た性質のhが観測されるだけ。

5. TeV領域の新しい物理の探索 超対称性粒子の発見

GUT,Dark Matterなど御利益



フェルミオンとボソンを交換する変換(超対称性変換)

通常の粒子		超対称性粒子	
S=1/2	charged lepton: e, μ , τ neutrino: ν , ν , ν quark: u, c, t d, s, b	S=0	charged scalar lepton: e, μ, τ scalar neutrino: v, v, v scalar quark: u, c, t d, s, b
S=1	photon : γ (B ⁰ and W ⁰) Weak Boson : W ⁺⁻ , Z gluon: g	S=1/2	Bino: \widetilde{B}^0 Wino: \widetilde{W}^{+-} , \widetilde{W}^0 gluino: \widetilde{g}
S=0	Higgs: h, H,A, H +-	S=1/2	Higgsino: \widetilde{H}_{1}^{0} , \widetilde{H}_{2}^{0} , \widetilde{H}^{+-}
S=2	Graviton: G	S=3/2	gravitino: \widetilde{G}

Spinが1/2だけ異なる 超対称性粒子が 存在すると

- (1) 階層問題
- (2) **GUT**
- (3) 時空の対称
- (4) DM問題などを自然に解決してくれる。

(歴史の教訓: 電子<->陽電子が QEDを救った: 二匹目のどじょう)

見えていない->何らかの理由で重くなっている(SUSYが破れている)

SUSYの破れ(2種類)とDMの候補

通常の粒子		超対称性粒子			
S=1/ 2	charged lepton: e, μ , τ neutrino: ν , ν , ν quark: u, d, c, s, t, b	S=0	charged scalar lepton: e, μ, τ scalar neutrino: v, v, v scalar quark: u, d, c, s, t, b		
S=1	$\begin{array}{ccc} photon: \gamma \ (B^0 \ and \ W^0) \\ Weak \ Boson: W^+, \ Z \\ gluon: \qquad g \end{array}$	S=1/2	Bino : $\widetilde{B^0}$ Wino : \widetilde{W}^{+-} , $\widetilde{W^0}$ gluino: \widetilde{g}		
S=0	Higgs: h, H,A, H +-	S=1/2	Higgsino: (\widetilde{H}^0) , \widetilde{H}^0 , \widetilde{H}^{+-}		
S=2	Graviton: G	S=3/2	gravitino: (G)		

2. Gravitino

SUSYの破れ SUSY粒子

ゲージ相互作用を通して伝わる場合:

Gが軽いまま(<1GeV Warm DM)

(Gauge mediation)

宇宙論的にはあまり面白くない。 (warm, slow decay BBNにおいたする)

1. Neutralino

4つの状態は混合する。 そのうち一番軽い状態は 安定で良いDMの候補

質量: O(10)-O(100)GeV 非相対論的な <u>Cold DM</u>

SUSYの破れ SUSY粒子

重力を介して、伝わる場合: G が重くなる。

(Gravity mediation)

mSUGRAの簡単な纏め

うつのパラメター: m_o , $m_{1/2}$, $\tan eta$, A_0 , $sign(\mu)$ (mass @GUT) (VEV) (scalar 3点) (Higgsino mass)

一般的な傾向

→ 次の頁

-Coloured partciles $(ilde{g}, ilde{q})$ は重い

・ $ilde{\chi}_1^0$ はLSPで安定(R-parity) Cold DMの良い候補 -Higgsino mass ($|\mu|$) > 0.8 $m_{1/2}$ (Wino) $(m_0$ >> $m_{1/2}$ の場合以外)

$$\rightarrow \quad \tilde{\chi}_1^0 \approx \tilde{B}^0, \tilde{\chi}_2^0 \approx \tilde{W}^0, \tilde{\chi}_1^{\pm} \approx \tilde{W}^{\pm}, \tilde{\chi}_{3,4}^0, \tilde{\chi}_2^{\pm} \approx \tilde{H}$$

·第3世代の $ilde{f}$ は軽い。(Yukawa+LR mixingの効果)

LHCでの主なSUSY生成過程は $(\tilde{g}\tilde{g},\tilde{g}\tilde{q},\tilde{q}\tilde{q})$ である。 生成断面積は、これらのmass以外にはモデル依存性が小さい。 ただのstrong interaction

 $\tilde{\chi}^0, \tilde{\chi}^{\pm}, l$ らは、g, q の崩壊過程で出てくる (多段cascade崩壊)LEP,Tevatronとの大きな違い

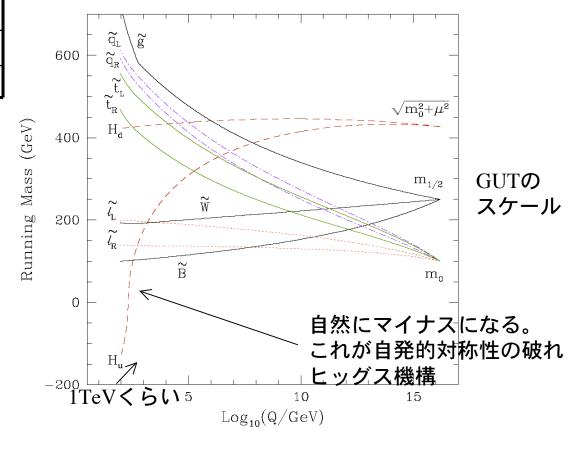
SUSYの破れ(model parameterの整理)

一般にパラメターはCP位相も入れて約120以上ある。<u>"もっともらしい仮定"</u>を入れて、自由度を減らす。加速器物理に一番インパクト(影響)のある条件を調べて、効果を調べることが大切。

S=0	charged scalar lepton: e, μ, τ scalar neutrino: v, v, v scalar quark: u, d, c, s, t, b
S=1/2	Bino : \widetilde{B}^0 (M_1) Wino : \widetilde{W}^{+-} , \widetilde{W}^0 (M_2) gluino: \widetilde{g} (M_3)
S=1/2	Higgsino: $\widetilde{H}^0_1, \widetilde{H}^0_2, \widetilde{H}^{+-}$ (μ)
S=3/2	gravitino: Ğ

 $M_1: M_2: M_3 =$ $\alpha_1: \alpha_2: \alpha_3 =$

 $0.4 \; \mathrm{m}_{1/2} : 0.8 \; \mathrm{m}_{1/2} : 2.8 \; \mathrm{m}_{1/2}$


Higgsino mass (| μ |) > 0.8 $m_{1/2}$ (Wino) (m_0 >> $m_{1/2}$ の場合以外)

$$\tilde{\chi}_{1}^{0} \approx \tilde{B}^{0}, \tilde{\chi}_{2}^{0} \approx \tilde{W}^{0},$$

$$\tilde{\chi}_{1}^{\pm} \approx \tilde{W}^{\pm}, \tilde{\chi}_{3,4}^{0}, \tilde{\chi}_{2}^{\pm} \approx \tilde{H}$$

4.5個のパラメター(mSugra):

 m_o , $m_{1/2}$, $tan \beta$, A_o , $sign(\mu)$ (mass @GUT) (VEV) (scalar 3点) (Higgsino mass) GUT scale(2*10¹6GeV)で、共通の質量、3点結合 ヒッグスセクターもsfermion, gauginoと同じ

LHCでのSUSY粒子の生成過程

陽子は、クォークとグルオンで構成されている。クォークとグルオンから生成されるので $(\tilde{g}\tilde{g},\tilde{g}\tilde{q},\tilde{q}\tilde{q})$ が、主要な生成過程である。

g
ğ

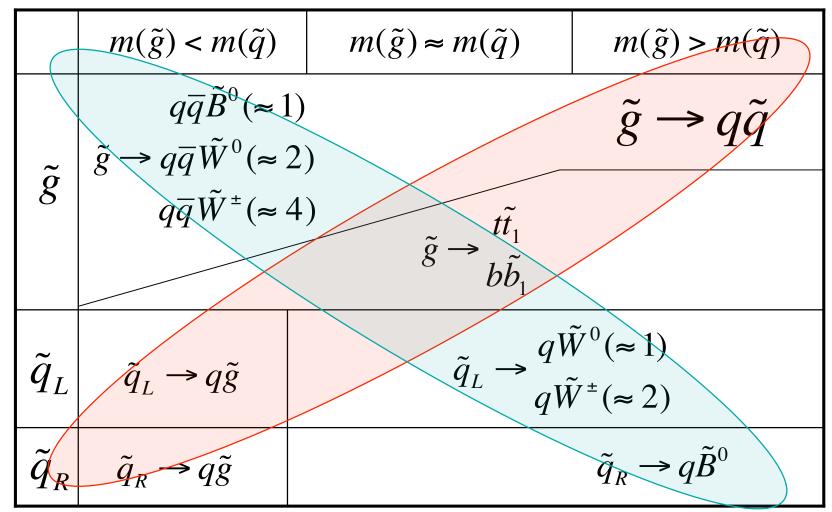
q

g
ğ

q

g
g

q

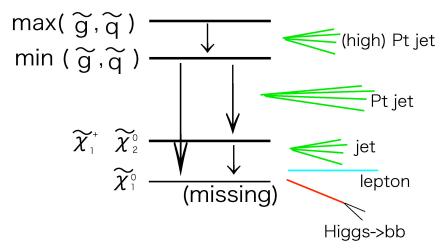

qg随伴生成

- •大きな生成断面積
- •ただの強い相互作用: **9**____ mass以外は SUSY parameter に強く依存しない。
- •High x のpdfが大切
- •K-factor 1.4 SUSY NLO の計算もすすんでいる。

$m(\tilde{q}) = m(\tilde{g}) = 0.5 TeV$	$\sigma \sim 100 \text{pb}$ $\tilde{g}\tilde{g}$ \mathcal{D} main
$m(\tilde{q}) = m(\tilde{g}) = 1TeV$	σ∼3 pb
$m(\tilde{q}) = m(\tilde{g}) = 2TeV$	σ~20fb ũũ,ũἆ ⊅³ main

 \tilde{g}, \tilde{q} Odecay table

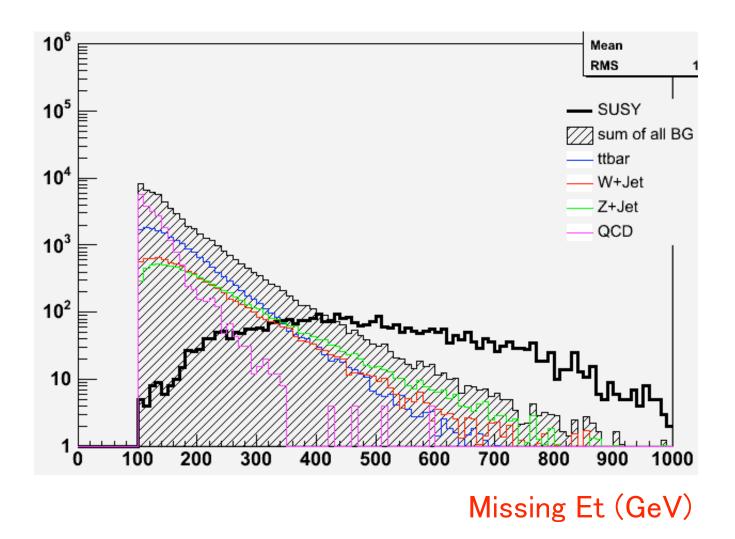
Strong interaction


EW interaction

ここら辺はあまりモデルによらない。Massの関係やB,Wとχの関係、第3世代などが依存、、

多段カスケード崩壊が観測される。 (非常に特徴的)

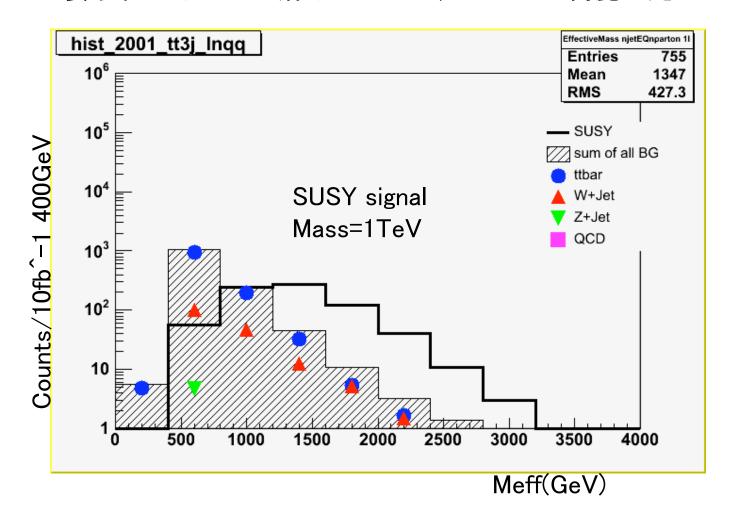
ATLAS Atlantis


大雑把に言うと

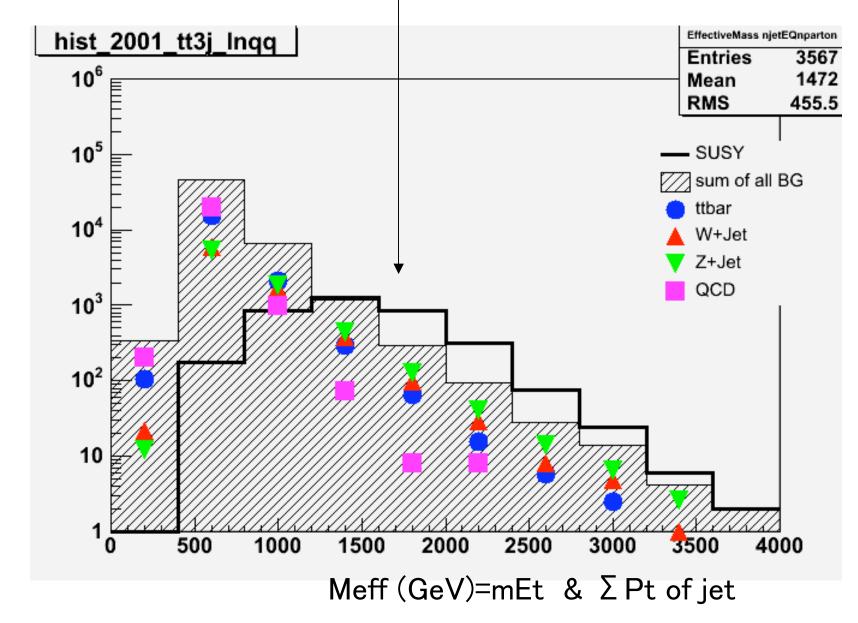
期待されるevent topologyは、

multi leptons
$$E_T$$
 + High P_T jets + b-jets
 τ -jets

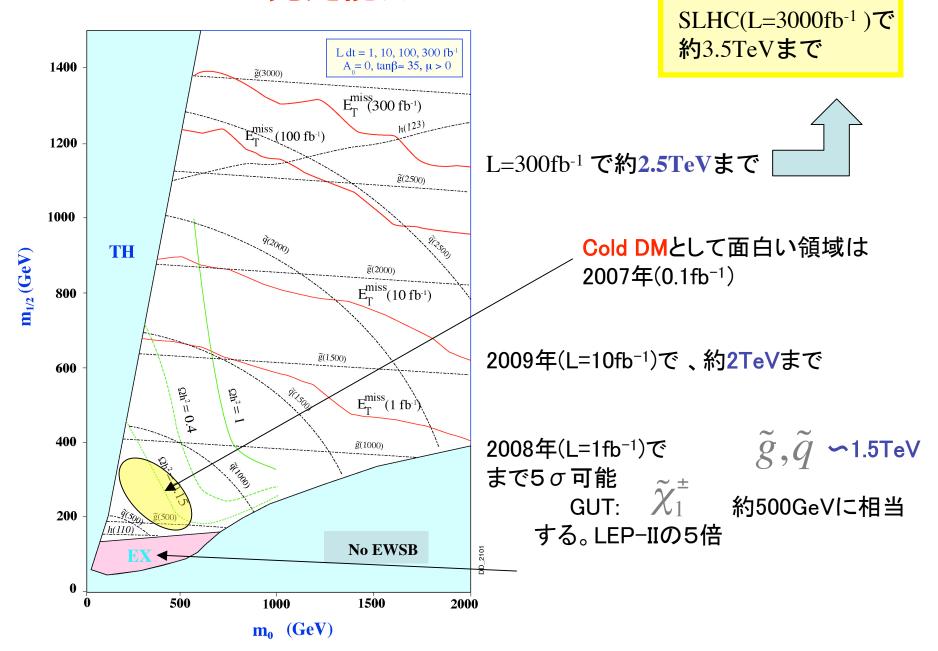
BGは、W/Z+Njets, top, QCD multijtes



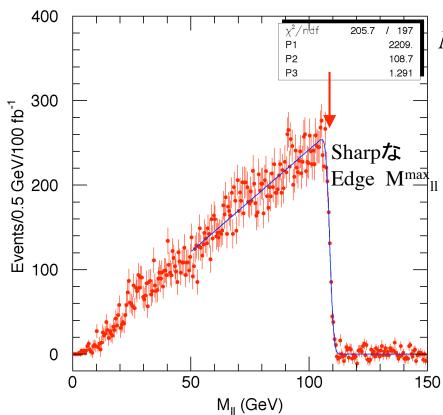
For mEt>700GeV綺麗なexcessが観測される。(1TeVのSUSY) このmissing Et はColored particles mass とNeutralinoの質量差を強く反映


Missing ETの研究がSUSY研究の鍵

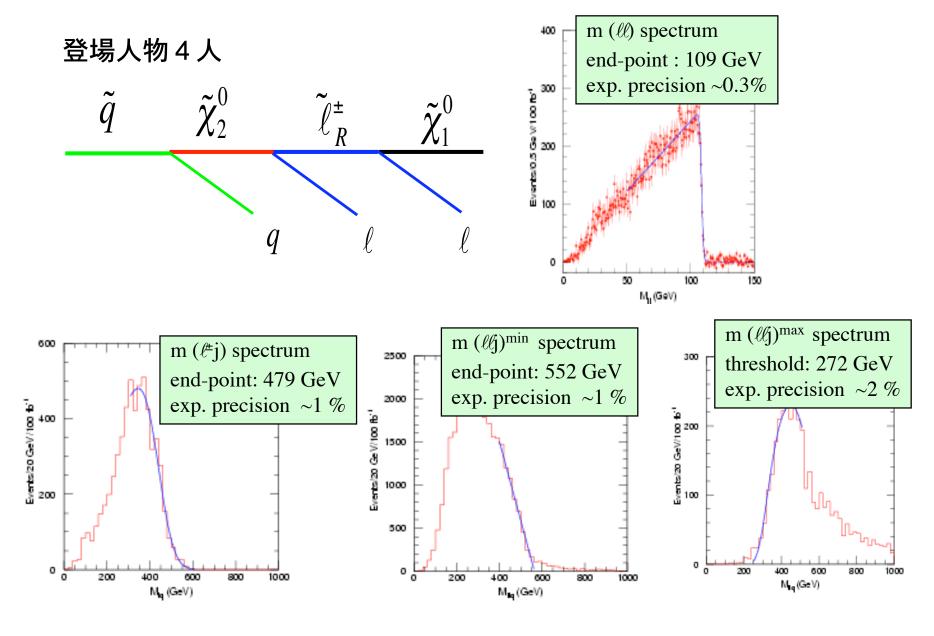
One lepton mode : tt + N jets : W + N jets


レプトンを要求するとBGが落とせる ー> excessが綺麗に見える

この位置がSUSY粒子の質量スケールと強く関係している

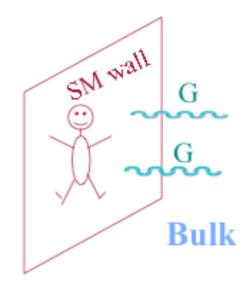


mSUGRAの発見能力


質量の再構成に関して

- $ilde{g}$ $ilde{q}$ $ilde{\chi}_2^0$ $ilde{\ell}_R^\pm$ $ilde{\chi}_1^0$ $ilde{q}$ $ilde{l}$ $ilde{l}$ $ilde{l}$ 下から攻めあげる
- 1. 適当なdecay chainを選ぶ (**key point!**) (奇麗か? 他のSUSY Decay chain? 長いか?)
- 2. mass やP_Tなどのkinematic distributionを作る
- 3. Edgeやendpointからmassの関係に束縛を与える

$$M_{\ell\ell}^{\max} = m(\tilde{\chi}_2^0) \sqrt{1 - \left(\frac{m(\tilde{\ell}_R^{\pm})}{m(\tilde{\chi}_2^0)}\right)^2} \sqrt{1 - \left(\frac{m(\tilde{\chi}_1^0)}{m(\tilde{\ell}_R^{\pm})}\right)^2}$$


- •一般に関係式の方が未知数(質量) より少ない。Modelの助けを借りて Massの絶対値を決める。
- •2body decay chainが最低 3 連発した 場合は model independentに決める ことが出来る。(次のページ)
- •tanβが大きいと段数が増えたり、 τ、bが多くなる。
- •発見と違って、model依存性が強い。
- •Br測定は難しい

4未知数 vs 4条件 → model independentにmassが決まる。(3-12%程度 for 700-800 GeV squark, gluino)

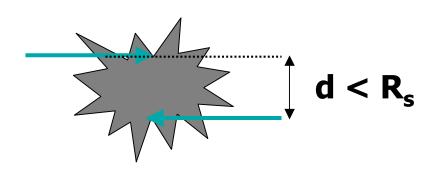
6. TeV scale の余次元 (Black Hole や カルツァクライン) メンブレーン:

メンブレーン:
Gauge bosonは
膜の中にいる
重力は、閉弦で
バルクに飛び出せる

If gravity propagates in 4 + n dimensions, a gravity scale $\mathbf{M_D} \approx 1 \text{ TeV}$ is possible \rightarrow hierarchy problem solved

$$V_4(r) \sim \frac{1}{M_{Pl}^2} \frac{1}{r}$$

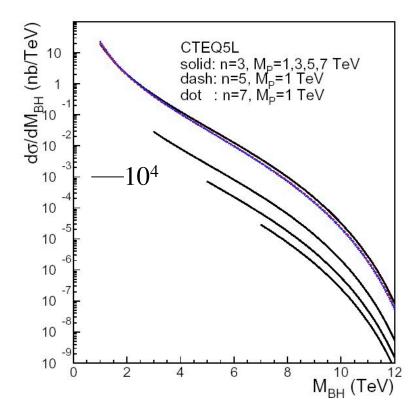
$$V_{4+n}(r) \sim \frac{1}{M_D^{n+2} R^n} \frac{1}{r}$$


 \rightarrow

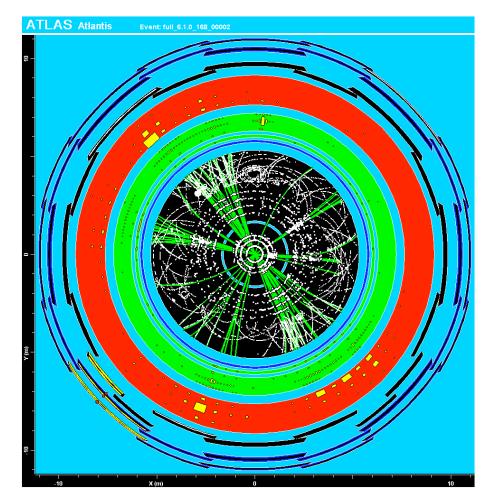
at large distance

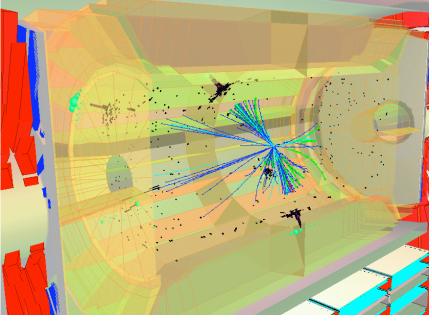
 $M_{Pl}^2 \approx M_D^{n+2} R^n$

n, R = number and size of extra-dimensions


Mp(Planck scale ~TeV) 隠れた次元n

Rsより小さいdでpartonが 衝突すると BHができる。 断面積が大きい。 (7,8TeV以下年間1万個以上)

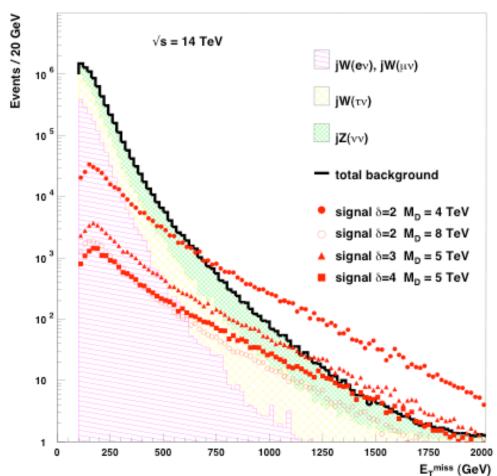

衝突するパートンの不変質量 M_{BH} (Black Holeの質量)


$$R_{\rm S} = \frac{1}{\sqrt{\pi}M_P} \left[\frac{M_{\rm BH}}{M_P} \left(\frac{8\Gamma(\frac{n+3}{2})}{n+2} \right) \right]^{\frac{1}{1+n}}$$

出来たBHは、Hawking Radiation で蒸発。

たくさんの粒子が出てくる。

 M_{Pl} =1TeV, n=2 M_{BH} =6.3TeV

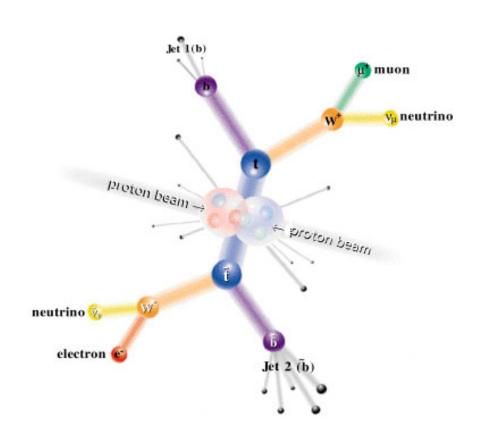

(Energitic 数100GeV のjet, photon, lepton がザクザクいて、まるいeventが特徴)

$$M_{pl}$$
 < 6TeV for n=2-7 (L=10fb⁻¹)

Particle E -> 黒色輻射 ->温度が決まる はずだか実験的に難しい。

KK graviton gg->gK (モノジェット)

\mathbb{E}_T distribution


Events for HL, 100 fb^{-1}

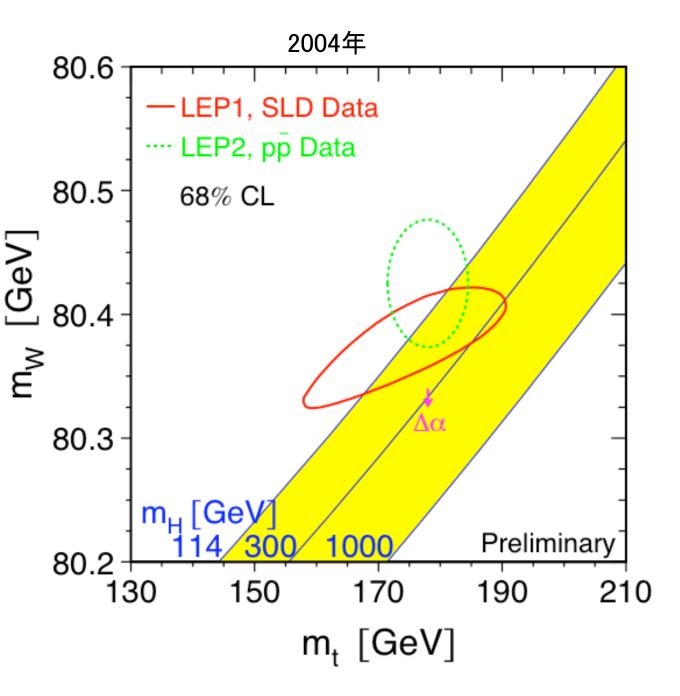
for $E_T^{jet}>1\,{\rm TeV}$

$jZ(\nu\nu)$	$jW(\tau\nu)$	$jW(e\nu)$	$jW(\mu\nu)$
523	151	12	14

δ	M_D (TeV)	Events	$S_{max} = S/\sqrt{B}$
2	5	1430	61.4
	7	366	13.8
	9	135	5.1
3	5	705	26.7
	7	131	5.0
4	5	391	14.8
	7	53	2.0

7.Top & B-Physics

Topの質量測定


- •10⁷ tt/10fb⁻¹ 非常に豊富な統計
- •EWの重要なparameter

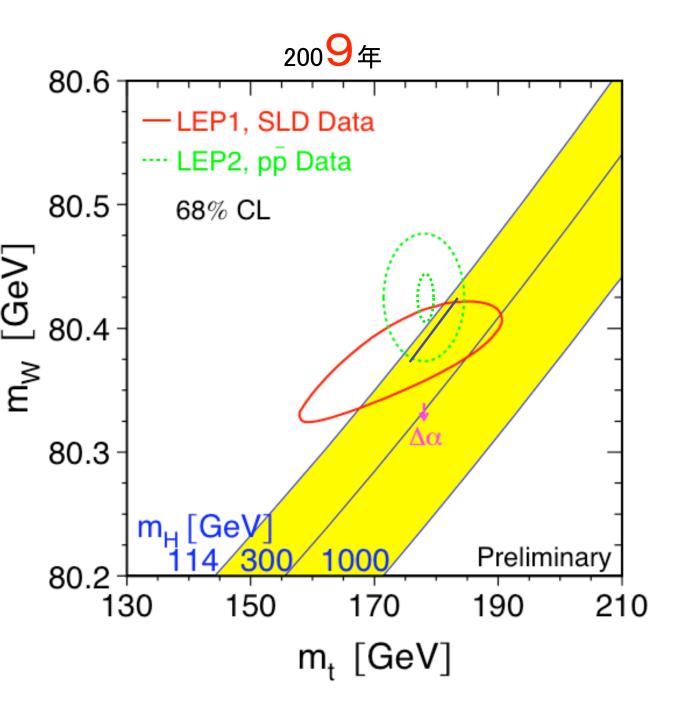
$$\Delta m_t = 1 GeV$$

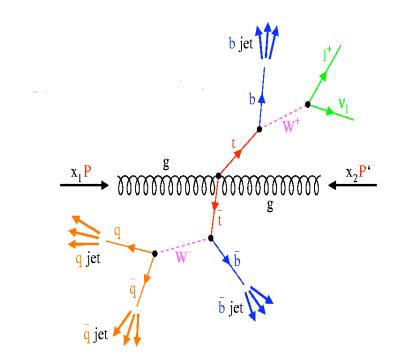
$$\Leftrightarrow \Delta sin^2 \vartheta_{eff} = 3 \times 10^{-5}$$

$$\Leftrightarrow \Delta m_W = 6 MeV$$

$$\geqslant 80.4$$

Topの質量測定

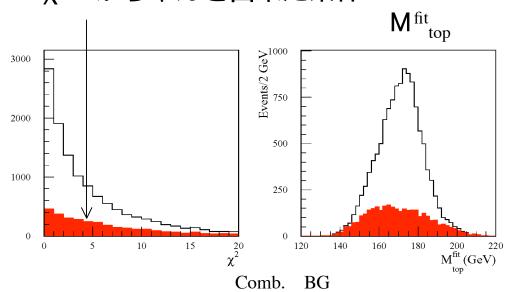

- •10⁷ tt/10fb⁻¹ 非常に豊富な統計
- •EWの重要なparameter


$$\Delta m_t = 1 GeV$$

$$\Leftrightarrow \Delta sin^2 \vartheta_{eff} = 3 \times 10^{-5}$$
80.4

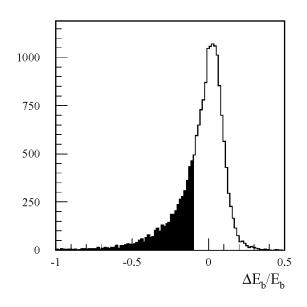
 $\Leftrightarrow \Delta m_{\scriptscriptstyle W} = 6 MeV$

るM_t=1GeV るM_W=15MeV Higgs発見


Semi-leptonic decay channel

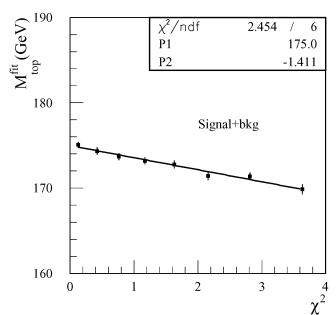
- •Br~2*0.7*0.2=0.28
- •Jetの組み合わせの不定性小さい

Kinematic fitを以下の条件でかけて M_{top}^{fit} と χ^2 を求める。


$$m_{jj} = M_W^{PDG}, m_{lv} = M_W^{PDG}$$

$$m_{jjb} = m_{lvb} = M_{top}^{fit}$$

χ²<4がちゃんと出来た条件



このままM_{top}をfitでだすと、 以前同様に FSRのsystematic error が大きい(1.3GeV)

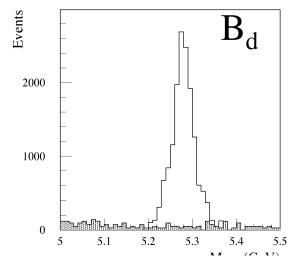
χ²の悪いevent を調べてみると hard なFSR やνを出している。 結果としてEnergyが低くなっている。

 χ^2 のbinごとにsliceしてそれぞれ M_{top} をfitする。十二分な統計がある のでそれぞれの点でも十分な統計精度

χ²→0がM_{top} FSRの出方によらない。

Error Source	Δm(GeV)	
統計 (10fb ⁻¹)	0.1	
q calibration不定	0.2	
ISR	0.1	
FSR	0.5	
b fragmentation	0.1	
b calibration不定(1%)	0.7(まだ)	
組み合わせ	0.1	
合計	0.9 !!!!	

0.9GeV の精度

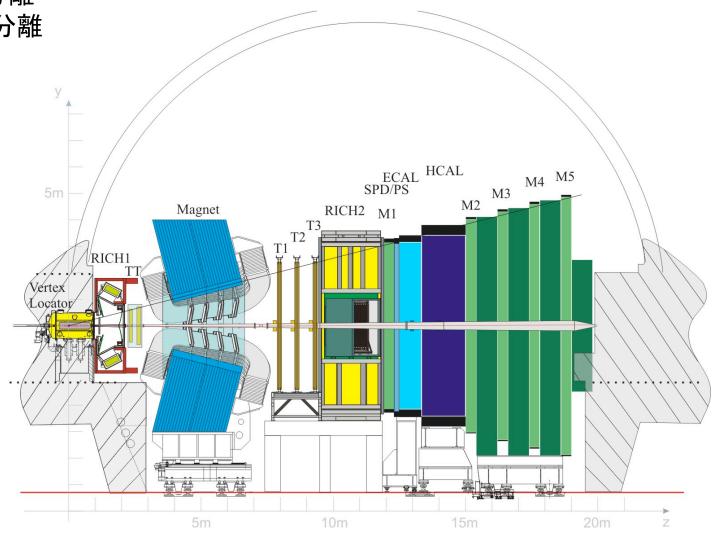

B-physics at ATLAS/LHCb

 $^{(1)}B_d \rightarrow J/\psi(\mu^+\mu^-)K_S^0(\pi^+\pi^-)$ を用いた $\sin 2\beta$ の測定 HLT:Pt>6GeV以上の 2μ 約10Hzで収集

- •K⁰_Sが再構成出来て、B_dが再構成出来る。 S/B=32と非常に高い。
- •反対側のflavour tagは、semi-leptonic decayの Leptonをtagする方法(€D²=0.7%)とleading πを 使う方法(€D²=2.4%)でtagする。
- •250k event/30fb-1 と統計も高い
- → Δsin2β=0.016 (stat.) +-0.005(sys.) 2%の精度でsin2βが測定可能

(約3年の測定)

上には上が、、 LHCbは、B-physicsに特化した検出器: low Pt trigger, RICH:K,π,e,μ分離 119kevent/2fb-1で、2%の測定を行う。



A gg→bb 500 µ bの極めて大きな生成断面積 前方が多い:

LHCb前方に特化して

RICH K, π, μ 分離 特殊な磁場で分離

(2) Physics of B_s meson

 Δm_s from $B_s \rightarrow D_s$ p and $B_s \rightarrow D_s$ a_1

·30ps⁻¹まで検出可能(LHCb 58ps⁻¹)

·0.05ps⁻¹の精度で測定可能 Δm_s ~12ps⁻¹

(3) Rare decay $Br \sim 10^{-9}$

		Signal Bd->μμ	BG
ATLAS	92	14	660

纏め

LHC実験は、2007年実験開始に向けてすすんでいる。 二つの大きな目的

- •質量の起源であるHiggsは、2008-2009 (10fb-1) で 5 σ発見可能 質量の測定精度 0.1% 結合定数の比は、5 - 1 5 %程度で測定
- •SUSYもすぐに発見可能。mSugra 2008年 2TeVまで発見可能 DMの面白いところなど 2007年に(?!) Massの測定も可能(いいdecay chainがあれば、model independentだが、、)
- •数TeVまでの余次元がある場合も発見可能

2007年に、TeV領域の新しい物理が切り拓かれる。