Physics of CMB Polarization and Its Measurement

HEP seminar at Kyoto University April 13th, 2007

> Akito KUSAKA University of Tokyo

Outline

Physics of CMB and its Polarization > What does WMAP shed light on? > Unsolved Problems: Beyond SM CMB Polarization as a Probe for Inflation Measurement of CMB Polarization > Detection Techniques > Experimental Status and Prospects Current Measurements (1st generation)

2nd Generation Experiments, and beyond

Physics of CMB and Its Polarization

Cosmology After WMAP

NASA/WMAP Science Team

4% Atoms

WMAP (+ Others)• Flat ΛCDM

- > $\Omega_{a\parallel} \sim 1$
- > $\Omega_{\Lambda} = 0.74 \pm 0.06$
- > $\Omega_{\rm m} h^2 = 0.13 \pm 0.01$ ($\Omega_{\rm m} \sim 0.26$)
- > $\Omega_{\rm b}h^2 = 0.022 \pm 0.001$
- +Implications
 - > Dark Energy ~ Λ
 - Consistent w/ Inflation

Solved and Unsolved Problems

Solved: Time Evolution of the Universe

Unsolved Problems

Inflation

- > Is it true?
- > What's the correct model?
- Shape of potential: Physics at GUT Scale?
- Signature: Primordial Gravitational-Wave (CGB?)
- > Detectable via CMB Polarization

• Dark Energy

- > Equation of State: $w = p/\rho$
- > Dark Energy = Cosmological Constant?

(i.e., *w* = −1 ?)

Cluster Survey, Weak Lensing, CMB SZE, ABO, SNe Ia, etc...

Digression: Can we go further with CMB?

Cosmic Variance

- We want to measure the "PDF" of CMB.
- We only have one realization (our sky), i.e., one event.
- TT at small l (incl. first peak) is now cosmic variance limited.
- To go further:
 - > *TT* at large *l*
 - Polarization

Three-Year WMAP, Hinshaw et al.

TT (Temperature) Correlation

Black: WMAP Three-Year Green: WMAP First-Year Gray Band: Cosmic Variance Expectation

CMB Polarization

 CMB is from last (Thomson) scattering
 →Linearly polarized

● Anisotropy
 →Non-zero overall polarization

A CMB Polarization Primer (Hu & White)

E-mode and B-mode

Polarization: Tensor-field

- Tensor = "Bar" without direction
- c.f. Vector = "Bar" with direction
- Decomposable into Emode and B-mode
 - Analogous to the vector field decomposition to (rot. free mode) + (div. free mode)

B-mode Polarization

- Only sourced by gravitational wave from Inflation
 - Unique signal of Inflation
 - Intensity of B-mode → Tensor/Scalar ∝ V
 - V: Inflation potential, GUT scale ?
- Gravitational lensing converts *E*-mode →
 B-mode at large *l*.

TT is around here (~ $10^{3}\mu$ K)

CMB Task Force

r = (T/S)² T/S~0.1 if V~GUT scale

More on CMB Polarization

Lensing B-mode

- Not only contamination for primordial Bmode
- > Can be a probe for mass distribution \rightarrow information for Dark Energy w
- E-mode and TE-correlation
 - Improvement in cosmological parameters
 - Consistency check (robustness w.r.t. assumptions such as adiabaticity)
- TB- and EB-correlation
 - Zero (otherwise, there is parity violation)

Measurement of CMB Polarization

Primary Target: B-mode

Two possible targets • Small *l* (*l*~5: ~50°)

- > Free from lensing B
- Originates from reionization
- Advantageous to Satellite
- Large *l* (*l*~100: ~2°)
 - Could be lensing B dominant (subtract?)
 - Ground based is competitive

CMB Task Force

l~5 *l*~100

NOTE: atmosphere is not polarized

Basics of Polarization

• Stokes parameters (I, Q, U, V)

- A set of parameters fully characterizing intensity and polarization of radio wave.
- > /: Intensity (\rightarrow 7 in CMB)

 $Q = E_{x}^{2} - E_{v}^{2}$

> *Q*, *U*: Two linear polarization (\rightarrow *E*, *B* in CMB)

 $U = 2E_x E_v - U$

+U

> V: Circular polarization (zero in CMB)

+Q

Two technologies: Bolometer vs. HEMT
Feasibility
Array
Choice of band
Which region of 20GHz~500GHz
"Foreground" contribution

HEMT (+ diode detector)

- "Usual" way of radio wave detection: amp. → rectification
- Established technology
 - > WMAP, DASI, CAPMAP, ...
- Limited by quantum noise: T_{det} ∝ hv/k
 > Good in low v (v<100GHz)

WMAP receiver

HEMT Amp.

Diode detector

HEMT (+ diode detector)

Pseudo-correlation polarimeter (from CMB task force)

 (Pseudo-)Correlation polarimeter Gain diff. cancellation
 Recent technology breakthrough (MMIC+packaging) for arraying

CAPMAP polarimeter

~30cm

~3cm

Bolometer

- Direct detection of total "power" of radio wave
- No quantum noise limit
- Technically challenging
- Low $v \rightarrow$ large heat load \rightarrow Difficulty in low v
 - Overcome by antenna coupled bolometer
- Promising detector type in future

Berkeley Bolometer

Bolometer

SPT Bolometer Array

 Good at making large array
 Antenna coupled bolometer has polarization sensitivity (PSB) |Ex|², |Ey|² measurement

Berkeley PSB Bolometer (from CMB task force)

"Foreground"

- Contamination for "Background" measurement: "Foreground"
- Primary, inevitable systematic error
- Two large sources
 - Synchrotron radiation from cosmic ray
 - Dust emission (dust aligned in *B* field)

PLANCK "Blue Book"

Spectra of CMB and foreground sources

Choice of Technology

HEMT

- > Quantum noise limit: $T_{det} \sim h v/k_{B}$
- ➤ Good at v<100GHz</p>
- > Relatively established
- MMIC + packaging technology for array
- (Pseudo-)correlation polarimeter

Bolometer

- > No quantum noise limit
- ➤ Good at v>100GHz
- Also good at v<100GHz with antenna coupling
- > Challenging
- Suitable for array
- Brute force" polarimeter
- (Correlator type is also possible)

Multi-pole analysis

- TT correlation (scalar field)
 - Spherical harmonics expansion

Three-Year WMAP, Hinshaw et al.

- Polarization (tensor field)
 - Tensor spherical harmonics expansion
 - Simple FT of div. and rot. field (for small patch of the sky)
- Practical difficulty
 - Irregular sampling
 - Border of patch

Current Status

- Significantly non-zero EE correlation is found
 - WMAP, DASI, CBI, BOOMERanG, CAPMAP

WMAP TE correlation

- Improvement of limits on cosmological parameters
- No significant BB measurement, yet

EE Correlation

Three-Year WMAP, Page et al.

Coming Experiments

Targets

- > Primordial *B* from inflation
- Lensing B for mass profile measurement (experiments w/ high resolution)
- > E to improve limits on cosmological parameters
- Detector improvement
 - > Large array \rightarrow Better statistics
 - > Better detector sensitivity

Coming Experiments

Balloon Taking data (Main target=SZE)

Bolometer

 (AMiBA), BICEP, BRAIN/CIOVER, EBEX, MBI-B, MAXIPOL, PAPPA, PolarBeaR, Polatron(?), QUaD, (SPT), Spider

HEMT

> BaR-SPOrt(?)/SPOrt(?), QUIET
 OBOIOMETER + HEMT (depending on freq.)
 > PLANCK

See the following site for compilation http://lambda.gsfc.nasa.gov/links/experimental_sites.cfm

QUIET

- O/UImaging ExperimenT
- Detector: HEMT
 - Two bands: W-band (90GHz) and Q-band (40GHz)
 - HEMT array (91 elements for W, 19 elements for Q)
 - The only next generation HEMT experiment
 - The only next generation (*B* competitive) program straddling across 60GHz
 - NOTE: 60GHz = WMAP implies lowest foreground
- Site: Chile, Atacama
- Collaboration
 - ~10 US institutes (incl. CAPMAP&CBI) + Oxford, MPI Bonn
 - > ~20 staff + students
- Cost: ~a few M USD

QUIET

Sensitivity

All the figures from QUIET web site http://quiet.uchicago.edu/

The QUIET Telescopes

Rendering of three of the 2m telescopes mounted on the CBI platform.

W-band platel array

The platelet array consists of 103 equally thick platelets. Each platelet has a series of holes machined into it.

100 Phase I, large-scale (Julk⁸) 10 (3a 1 $c_t\,\ell(t\!+\!1)/(2\pi)$ 0.1 BB (1σ, T/S=0.18) 0.01 0.001 0.0001 200 400 600 800

Deployment: 2007 Fall, First Science Result: 2008 Summer

Next Next Generation

Ultimate CMB experiment

- > Satellite
- Target: B-mode at low l
- > Bolometer
- (Ground Based)
- Japanese community may take part
 - > Tohoku
 - > KEK

Beyond Einstein Program http://universe.nasa.gov/program.html

Summary

Our Description of Cosmology Inflation and Dark Energy Output Beneficial Action of CMB Sensitive to Inflation • Detector Technology > Bolometer vs. HEMT Ourrent Measurement: E-mode found • Experiments Dedicated to B-mode: coming soon...