

What is the World Made of ?

Standard Model

Standard Model

The Birth of the Universe (13.7 Billion Years Ago)

 \Box CP Violation process occurred 10^{-10} seconds after the explosion.

CP Violation and Hot Topics From BABAR Experiment (page 5)

What Was Happened to the Antimatter

CP Violation and Hot Topics From BABAR Experiment (page 6)

What Was Happened to the Antimatter ?

- \Box How do we know there is almost no antimatter around ?
 - When a matter and antimatter meet, they annihilate into pure energy
 - \rightarrow leaving only photons and neutrinos

- The fact: we don't see this kind of energy in our daily life
- □ Can we see the evidence of antimatter ?

□ The magnetic field makes negative particles curl left, positive particles curl right

CP Violation and Hot Topics From BABAR Experiment (page 7)

Why is the Universe Exclusively Made of Matter ?

- □ Andrei Sakharov (JETP, 5, No 1, 1967)
- **1.** Baryon violating interactions
- 2. Thermal non-equilibrium situation
- 3. CP Violation

Nobel Peace Prize in 1975 \rightarrow

- □ Testing the Sakharov's criteria:
- **1**. No evidence that baryon number is violated
- 2. In thermal equilibrium particles are identical \rightarrow No asymmetry

CP violation is necessary to understand matter-antimatter imbalance

CP Violation in B Mesons

BABAR Experiment in USA

BABAR at Stanford Linear Accelerator Center (SLAC), California

Sister B-factory machine is at KEKB (Tsukuba) in Japan

Wednesday, March 14, 2012 Department of Physics

CP Violation and Hot Topics From BABAR Experiment (page 10)

BELLE Experiment in Japan

CP Violation and Hot Topics From BABAR Experiment (page 11)

${\sf CP} \ {\sf Violation} \ {\rm in} \ B \ {\sf Meson}$

\Box BABAR and Belle directly measured CP violation in B system

BABAR : e^+ (3.1 GeV) - e^- (9 GeV) Belle : e^+ (3.5 GeV) - e^- (8 GeV)

In 1999 BABAR and Belle had first colliding beam

In 2001 BABAR and Belle reported the first measurement of direct

CP violation in *B* meson \hookrightarrow fundamental matter-antimatter asymmetry

BABAR Collaboration

5/40 France LAPP, Annecy LAL Orsav U of Massachusetts, Amherst LPNHE des Universités Paris VI et VII Ecole Polytechnique, Laboratoire Leprince-Ringuet CEA, DAPNIA, CE-Saclay

Germany [6/31]

Ruhr Universitaet Bochum Universitaet Dortmund Technische Univeritaet Dresden Universitaet Heidelberg Universitaet Rostock Universitaet Karlsruhe

INFN, Pisa & Univ & Scuola Normale Superiore INFN, Perugia & Univ INFN, Roma & Univ "La Sapienza" INFN, Torino & Univ INFN. Trieste & Univ

The Netherlands

[1/3]NIKHEF, Amsterdam

Norway [1/4]U of Bergen

U of Manchester

Rutherford Appleton Laboratory U of Warwick

October 17, 2006

U of Maryland

U of Mississippi

U of Notre Dame

U of South Carolina

SUNY, Albany

Ohio State U

U of Oregon

Princeton U

Stanford U

SLAC

MIT

CP Violation and Hot Topics From BABAR Experiment (page 13)

BABAR Collaboration

University of South Alabama: R. Godang

Wednesday, March 14, 2012 Department of Physics

CP Violation and Hot Topics From BABAR Experiment (page 14)

SLAC Control Room

SLAC Main Control Room

CP Violation and Hot Topics From BABAR Experiment (page 15)

BABAR Data: $\Upsilon(nS)$

Final BABAR Data

- BaBar data sets:
 - 122 x 10⁶ Υ(3S) decays
 - 99 x 10⁶ Υ(2S) decays
 - "offpeak" samples of 1.4fb⁻¹ and 2.4fb⁻¹ collected ~30 MeV below the Υ(2S) and Υ(3S)
 - 79 fb⁻¹ "continuum background" samples of Υ(4S) with similar detector conditions

BELLE II Machine

CP Violation and Hot Topics From BABAR Experiment (page 17)

CP Violation and Hot Topics From BABAR Experiment (page 18)

CP Violation in B Meson

CP Violation Discovery

Nobel Price in Physics 2008

CP Violation and Hot Topics From BABAR Experiment (page 21)

Mobile, Alabama USA

Wednesday, March 14, 2012 Department of Physics

CP Violation and Hot Topics From BABAR Experiment (page 22)

University of South Alabama

http://www.southalabama.edu

Established in 1964

CP Violation and Hot Topics From BABAR Experiment (page 23)

USA Undergraduate Students

SESAPS Conference at LSU, 2010

Wednesday, March 14, 2012 Department of Physics

CP Violation and Hot Topics From BABAR Experiment (page 24)

CP Violation and Hot Topics From BABAR Experiment (page 25)

How the elementary particles get their mass ?

Spontaneous symmetry-breaking: the Higgs generates mass by self-interaction

★ It implies the existence new particle so called "Higgs boson"

□ Higgs particle is named after Peter Higgs

□ Leon Lederman (Nobel 1988) called it "God Particle"

Challenge: The Higgs mass is a free parameter in the SM

 \hookrightarrow What is the Higgs mass?

 \Box LEP ($e^+ - e^-$) at CERN (2002) searched for the SM Higgs

 \hookrightarrow Yield a lower limit: $M_H > 114.4$ GeV (C.L. only)

Wednesday, March 14, 2012 Department of Physics

CP Violation and Hot Topics From BABAR Experiment (page 26)

Search for SM Higgs (CP-Even Scalar)

Search for SM Higgs at Tevatron

NMSSM Higgs PRD 76, 051105, 2007: Dermisek, Gunion, McElrath Next-to-Minimal Supersymmetric Standard Model (NMSSM) Light CP-Odd Pseudoscalar: $A^0\equiv a_1^0\equiv a_1=cos\; heta_A\;a_{MSSM}+sin\; heta\;a_S$ For $m_{a_1} < 2m_b$, the lightest CP-even Higgs (h^0) $h^0 \rightarrow a_1 a_1$ can avoid LEP limits tanβ =10, M_{1,2,3} =100,200,300 GeV 1630508-011 10⁻³ **F** = **Electroweak Symmetry** $\mu = 150 \text{ GeV}, \text{ any F}$ any μ, F<15 Breaking (EWSB) fine tuning **10**⁻⁴ $tan \ \beta$ = ratio of the vacuum $B(\Upsilon \rightarrow \gamma a_1^0)$ expectation values 10⁻⁵ $m_{a_1} < 2m_{ au}$ $2m_{ au} < m_{a_1} < 7.5 \; { m GeV}$ 10⁻⁶ $7.5 \; { m GeV} < m_{a_1} < 8.8 \; { m GeV}$ $8.8 \; { m GeV} < m_{a_1} < 9.2 \; { m GeV}$ 10⁻⁷ -0.5 0.0 0.5 -0.5 0.0 0.5 a_1° non-singlet fraction (cos θ_{A})

Prediction Higgs A⁰: PRD 81, 075003 (2010): Dermisek, Gunion

BABAR Data: $\Upsilon(nS)$

Final BABAR Data

- BaBar data sets:
 - 122 x 10⁶ Υ(3S) decays
 - 99 x 10⁶ Υ(2S) decays
 - "offpeak" samples of 1.4fb⁻¹ and 2.4fb⁻¹ collected ~30 MeV below the Υ(2S) and Υ(3S)
 - 79 fb⁻¹ "continuum background" samples of Υ(4S) with similar detector conditions

CP Violation and Hot Topics From BABAR Experiment (page 33) $\Upsilon(2S,3S) o \gamma A^0$, $A^0 o \mu^+ \mu^-$ BABAR

- □ Search for A^0 scalar boson in the radiative decays of $\Upsilon(2S)$ and $\Upsilon(3S)$
- \Box If A^0 exists its decays depends on its mass
- \square Assuming no invisible (neutralino) decays ${\cal B}(A^0 o\mu^+\mu^-)pprox$ sizable at low $m_{A^0}<2m_ au$
- \Box Require 2 oppositely charged tracks and one γ at least one of which is identified as a muon
- $\Box \ E_{\gamma} > 200 \text{ MeV (COM), while allowing}$ additional γ with energy lower than 200 MeV

 \Box Use kinematic fit of $\gamma \mu^+ \mu^-$ system,

including the beam energy and decay vertex constraints

CKM Matrix

□ In SM, quark can change flavor by weak interactions:

$$\left(egin{array}{ccc} d'\ s'\ b' \end{array}
ight) = \left(egin{array}{ccc} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{array}
ight) \left(egin{array}{ccc} d\ s\ b\ b \end{array}
ight)$$

Cabibbo-Kobayashi-Maskawa (CKM) matrix

[Weak eigenstates] = $[V_{CKM}]$ [quark mass eigenstates]

The CKM matrix contains complex numbers

Wolfenstein's CKM matrix form:

$$V_{CKM}=\left(egin{array}{ccc} 1-rac{1}{2}\lambda^2 & \lambda & A\lambda^3(
ho-i\eta) \ -\lambda & 1-rac{1}{2}\lambda^2 & A\lambda^2 \ A\lambda^3(1-
ho-i\eta) & -A\lambda^2 & 1 \end{array}
ight)$$

- $\lambda \sim 0.22$ (expansion parameter)
- A, ρ , and η can be measured in B decays

Unitarity Triangle (UT)

Status of UT Triangle

CP Violation and Hot Topics From BABAR Experiment (page 38) Measuring Angle γ

GLW on $B^{\pm} \rightarrow DK^{\pm}$ PLB 253, 1991 & PLB 265, 1991

GLW BABAR Results PRD 82 072004, 2010

ADS on $B^{\pm} \rightarrow DK^{\pm}$ Continue...

Wednesday, March 14, 2012 Department of Physics

CP Violation and Hot Topics From BABAR Experiment (page 45)

ADS BABAR Results Continue...

ADS Results on $D^0 \to K^+ \pi^- \pi^0$ PRD 84 012002, 2011 (NEW)

Current Understanding of Our Universe

\star A lot of things need to be discovered

Wednesday, March 14, 2012 Department of Physics

CP Violation and Hot Topics From BABAR Experiment (page 49)

We Are Not Alone

Wednesday, March 14, 2012 Department of Physics

CP Violation and Hot Topics From BABAR Experiment (page 50)

Wednesday, March 14, 2012 Department of Physics

CP Violation and Hot Topics From BABAR Experiment (page 51)