Backward-Going Cosmics in T2K's ND280

Kevin Connolly 京都大学とUniversity of Washington October 3rd, 2011

Outline

- A **brief** introduction to ND280 and the Pi-zero Detector (P0D)
- A different sort of cosmic ray analysis: Backward-going sample
 - Preliminary selection cuts
 - Track Length, Energy Loss, dE/dx
 - MIP Scales
 - Discussion of current status and future prospects
- Some other miscellaneous work and prospects
- Closing thoughts on this Summer's work

T2K:Tokai To Kamioka

~500 members, 59 Institutes, 12 countries

J-PARC: Japan Proton Accelerator Research Complex

The Pi0 Detector (P0D)

			- 712
0.8			
0.4	ha b		-708
432kg Fidu	icia	Mass	<mark>(t</mark> őtal
			704
-0.2			
-0.2 -0.4			- 702
-0.2 -0.4 Super-PØDule	Mass	Dimensions	702 Depth in R.L.
-0.2 -0.4 -uper-PØDule	Mass (kg)	Dimensions (mm×mm×mm)	702 Depth in R.L.
-0.2 -0.4 -uper-PØDule J pstream ECal	Mass (kg) 2900	Dimensions (mm×mm×mm) 2298×2468×305	- 702 Depth in R.L 4.946
0.2 0.4 uper-PØDule Jpstream ECal Jpstream Water Target:	Mass (kg) 2900	Dimensions (mm×mm×mm) 2298×2468×305 2298×2468×888	- 702 Depth in R.L 4.946
0.2 0.4 uper-PØDule Jpstream ECal Jpstream Water Target: Empty	Mass (kg) 2900 3600	Dimensions (mm×mm×mm) 2298×2468×305 2298×2468×888	- 702 Depth in R.L. 4.946 1.370
-0.2 -0.4 -uper-PØDule Jpstream ECal Jpstream Water Target: Empty Filled	Mass (kg) 2900 3600 5100	Dimensions (mm×mm×mm) 2298×2468×305 2298×2468×888	- 702 Depth in R.L. 4.946 1.370 2.379
0.2 0.4 uper-PØDule Upstream ECal Upstream Water Target: Upstream Water Target: Upstream Water Target:	Mass (kg) 2900 3600 5100	Dimensions (mm×mm×mm) 2298×2468×305 2298×2468×888 2298×2468×854	- 702 Depth in R.L. 4.946 1.370 2.379
0.2 0.4 uper-PØDule Upstream ECal Upstream Water Target: Compty Villed Central Water Target: Compty	Mass (kg) 2900 3600 5100 3500	Dimensions (mm×mm×mm) 2298×2468×305 2298×2468×888 2298×2468×854	- 702 Depth in R.L. 4.946 1.370 2.379 1.356
-0.2 -0.4 Super-PØDule Upstream ECal Upstream Water Target: Empty Filled Central Water Target: Empty Filled	Mass (kg) 2900 3600 5100 3500 4900	Dimensions (mm×mm×mm) 2298×2468×305 2298×2468×888 2298×2468×854	- 702 Depth in R.L 4.946 1.370 2.379 1.356 2.287

UW Groud: I.Wilkes.

	ŀ	4500		
Bx residuals Mean: -0.01 G RMS: 0.50 G	5000-	By residuals Mean: -0.07 G RMS: 0.34 G	4000	Bz residuals Mean: 0.00 G RMS: 0.31 G
-	4000		3500	
			3000	
	3000-		2500	
	2000-	8	2000	
	2000		1500	
Monday, October 3, 2	011		- 1000-	

ND280, for Real!

A Little Motivation?

- ~9 months ago I asked:"What sort of capability do we have for momentum reconstruction of P0D-contained tracks?"
- Answer: 笑う
- Interest: Explore methods to reveal more information on track momentum, energy loss
- (Finally)Decided to start exploring these questions in August

Concept

- Given the slight depth of ND280 cosmics have a natural angle cutoff
- Backward-going cosmics can be selected by angle or timing+recon info

The Benefit of Doing things Backwards

 With backward-going cosmic events take TPC momentum measure when cosmic is just about to enter the POD

Event Selection Cuts

- FGD Cosmic Trigger
- Backward-going
- Single Track in TPC
- Single Track in POD
- Track Matching Conditions Met
- Single 3D P0D Vertex Reconstructed
 - "Vertex" in this this case is the stopping location of the cosmic

TPC1 Z Position

TPC Reconstruction's track's first node position in Z: Require Z < -740mm

POD Vertex

POD

Z Position of POD Vertex

Actually...

- There are more cuts:
 - POD Reconstruction quality checks (Some more on this later -- if there's time)
 - Position and direction matching between POD,TPC
 - TPC Vertex "fiducial"-like cut (no events near edges)
 - Track angle CosTheta > 0.9
 - TPC momentum recon quality check
 - TPC PID (really should be removed)
- Analysis-specific cuts:
 - Water-in, water-out

Data Reduction

Candidate Events

All events that pass

requirements

FGD Cosmic Trigger Single 3D POD Vertex Single POD Track Single TPC Track Backward-going POD-TPC Track Matching: Timing, Position, Angle

Analyzed Events

All events that pass analysis selection cuts

TPC Muon PID POD Vertex is Contained Water-In POD Vertex, First Node Sep < 60mm TPC node > 150mm from edge TPC Node Angle , Cos > 0.9 Check TPC Node Momentum Ordering

Track Length, Energy Loss, g/cm^2

- Walter Toki (Colorado State University) recently tabulated and calculated the g/cm² of all POD materials, along with estimated energy loss for each component of the POD
- Implemented these values in analysis to generate the following plots
- Will give a brief outline of a calculation here, and discuss some important reference numbers

Calculation

18

- Get the POD Vertex Z position
- Calculate PODule number based on Z Position
- Assume coming from downstream, thus pass through a number of layers prior to stopping PODule:
 - Lead, Brass, Water, Water Bag(plastic), PODule
- Vertex placed in a PODule, so add additional
 0.5*PODule length or E Loss (generic average)
- Correct for true path length with 1/Cos(theta) factor
- Not Accounted for: gap between TPC and POD

Reference Values Normal Incidence Muon

Energy Loss Complete POD Traversal: Water In ~568 MeV Water Out ~429 MeV

Minimum Traversal: ~81 MeV

g/cm^2 Traversed

Complete POD Traversal:

Water In ~325 g/cm^2

Water Out ~255 g/cm^2

Minimum Traversal: used as min value for range of fits later on. Equal to passing CECal.

Regarding MC

- MC currently used is not yet the official sample
- Manually generated MC from data kinematics
- Only generated MC with water in POD, so no water-out Data/MC comparisons here (yet).
- Am now discussing official cosmic MC generation for ND280 with manager (Mike Wilking, TRIUMF)

Track Length Vs. P

Track Length Vs P

Water OUT

Water IN

Track Length Vs P

Track Length Vs P

Track Length Vs P Water In Water Out

Water-out tracks have greater track length for given momentum

g/cm^2 Vs P

g/cm^2 Vs TPC P

Water OUT

Water IN

g/cm^2 Vs TPC P

Water IN Profile Plots

g/cm^2 Vs TPC P

g/cm^2 Vs TPC P Water In Water Out

Length traversed expressed in g/cm^2 results in identical water-in, water-out results, as hoped for.

g/cm^2 Vs TPC P Water In Water Out

Intercept suggests POD-TPC gap ~13 MeV

g/cm^2 Vs TPC P Water In

Energy Loss Vs P

E Loss Vs TPC P

Water OUT

Water IN

E Loss Vs TPC P

6017

E Loss Vs TPC P

E Loss Vs TPC P Water In Water Out

Energy loss within POD consistent for water-in, water-out.

(For a mippy muon) Expect energy loss "range out" at 430MeV (water out), 570MeV (water in)

Pretty clear there is some sort of systematic offset here. Perhaps unaccounted energy loss between the POD and TPC

E Loss Vs TPC P Water In Water Out

Intercept suggests POD-TPC gap ~30MeV

E Loss Vs TPC P Water In

Misc + Conclusions

Some Comments

- Extracting MIP, Energy Scale
 - Can use dE/dx and ELoss to validate understanding of POD materials, then calculate p.e.-to-MeV scale
- Cosmic Ray data shows that sample should really only be ~1% pions -->
 increase sample size by not cutting on TPC PID=muon (important for
 augmenting water-out)
- Byproduct of this work: Will re-visit current overall MIP calibration for POD, switch from region-calibration to individual scint layer calibration
- Have finally settled down on primary cuts and plots, next step is to consider systematic uncertainties and cut optimization
- Will finalize this analysis into a one-click macro to be run on all cosmic data as it is taken and processed, produce validation plots

Low EDep Node From POD Group Report Summary

"The Shelf" EDep between 10p.e. and 20p.e.

Original Goal: make set of plots as above on the right, pursue a p.e.-to-MeV MIP calibration

From Pop Group Report Current Results:

No more Low EDep shelf. $(^o)/$

Problem traced to beam trigger difference from cosmic trigger, still working on exact cause, but can now cut out bad events.

Conclusions

- Has been an incredibly productive and positive summer
- Have had the joy of being able to create and answer a lot of questions, with plenty more questions to explore
- Intended to work on Coherent Pion analysis this summer but got very distracted by this fun topic
 - However, track matching between POD and TPC is essential for CC COHPi so that work will be directly applicable
- Submitted draft of POD Fiducial Water Mass tech note
- Also managed to finish reading my first ライトノベル this summer, nonphysics milestone reached \(^o^)/
- Thank you all for your time, and special thanks to Nakaya-san and Minamino-san for helping arrange to let me partake in the BIEP summer program!

Vertex Distributions

Vertex Distribution

All events that pass analysis selection cuts

All selection and analysis cuts

Water-out sample size kind of small

Water In Water Out

Vertex Distribution Water-In/Water-out Ratio

All events that pass analysis selection cuts

All selection and analysis cuts

Water-out sample size kind of small

Normalize each water-in, water-out vertex distribution histogram, take ratio

Track Match & Angle

If ΔZ were zero, the two nodes would ideally match pretty well. If ΔZ is not zero, extrapolate from track angle and ΔZ where the matching node would be (do two fits, one for XZ, one for YZ).

Node Position Match

Require: $-50 \text{mm} < \Delta X < 50 \text{mm}$ $-35 \text{mm} < \Delta Y < 65 \text{mm}$

Node Position Match

51

Require: $-50 \text{mm} < \Delta X < 50 \text{mm}$ $-35 \text{mm} < \Delta Y < 65 \text{mm}$

Timing and Angle

• Timing Between TPC and POD track

Require: -100ns $< \Delta T < 50$ ns

 Angle between direction of matched POD, TPC nodes

POD TPC Gap

POD-TPC Gap

- It seems there is a systematic offset in energy loss and g/cm² traversed (will see in a few slides)
- Reconstruction reveals sizable gap between POD and TPC
- Closer look at geometry information reveals answer

18cm reconstruction, real gap

Cartoon Detector Schematic

"/t2k_1/OA_0/Magnet_0/Basket_0/P0D_0/CECal_0/P0Dule_0/Epoxy_0/X_0/Bar_0"

"/t2k_1/OA_0/Magnet_0/Basket_0/P0D_0/CECal_0/P0Dule_0/Epoxy_0/Y_0/Bar_0"

