XMASS Experiment (including a brief review of Direct Dark Matter Search Experiments)

Y. Suzuki Kamioka Observatory, Institute for Cosmic Ray Research (ICRR), the University of Tokyo,

and Kamioka Satellite, Institute for the Physics and Mathematic of the Universe (IPMU), the University of Tokyo

12/02/07

Y.Suzuki@談話会(京大物理)

Outline

• Brief Introduction

- Direct Dark Matter (WIMPs) Search Experiments
- Status of the XMASS experiment

"XMASS Experiment"

XMASS: Multi-purpose liq. Xenon detector (10 ton fiducial mass($2.5m\phi$))

- Xenon MASSive detector for Solar neutrino
 pp-solar neutrinos: v+e → v+e
- Xenon neutrino MASS detector
 - Double beta decay ¹³⁶Xe → ¹³⁶Ba + 2e⁻
- Xenon detector for Weakly Interacting MASSive Particles
 Dark Matter: χ+Xe → χ+Xe

→ Phase-I: 100 kg fid. dedicated for dark matter search

- Construction was completed
- Under commissioning in the Kamioka Underground Observatory
- Conducted by Kamioka Observatory (ICRR, Tokyo), IPMU(Tokyo), Kobe, Tokai, Gifu, STEL(Nagoya), Yokohama National, Miyagi U. of Education and Korean institutions (KRIS, Sejong): 10 institutes & 41 Collaborators
- → I will discuss 'phase-I XMASS' in my talk.

12/02/07

1

Y.Suzuki@談話会(京大物理)

Why people believe in Dark Matter

Evidence at the different scale of the Universe

- Rotation curve of a galaxy
- Cluster of Galaxies
 - luminosity vs velocity
 - Gravitational lensing
- CMB

and so on.....

12/02/07

Why people believe in Dark Matter

Evidence at the different scale of the Universe

- Rotation curve of a galaxy
- Cluster of Galaxies
 - luminosity vs velocity
 - Gravitational lensing
- CMB

and so on.....

ravitational Less

12/02/07

 Matter distribution of the

 Y.Suzuki@談話会(京大物理)
 foreground (lens) galaxies
 7

Why people believe in Dark Matter

Evidence at the different scale of the Universe

- Rotation curve of a galaxy
- Cluster of Galaxies
 - luminosity vs velocity
 - Gravitational lensing
- CMB

and so on.....

First in 1933: Fritz Zwicky

 Luminous matter
 << matter from orbital velocities
 ← Virial theorem

12/02/07

Y.Suzuki@談話会(京大物理)

Why people believe in Dark Matter

Evidence at the different scale of the Universe

- Rotation curve of a galaxy
- Cluster of Galaxies
 - luminosity vs velocity
 - Gravitational lensing
- CMB

12/02/07

and so on.....

-0.0002 °К 2.725 °К

Y.Suzuki@談話会(京大物理)

8

WIMPs (Weakly interacting Massive Particles)

• Gives right relic amount at weak scale

$$\Omega_{\chi} = \frac{m_{\chi} n_{\chi}}{\rho_c h^2} \simeq \left(\frac{3 \times 10^{27} \mathrm{cm}^3 \mathrm{sec}^{-1}}{<\sigma_A v >}\right)$$

Natural candidates from SUSY ??? LHC

<NOW>

- Many experiments to look for WIMPs are conducted
 - For the last couple of years, direct dark matter experiments have been very exciting.
 - Indications of low mass DM (a few $\sim 10~\text{GeV})?$
 - By DAMA/LIBRA, CoGeNT, CRESST-II
 - Limits and exclusions?
 By CDMS-II, EDELWEISS, XENON10, XENON100

- Very strong tensions !

12/02/07

Y.Suzuki@談話会(京大物理)

11

Direct searches for WIMPs

- I will not explain the various efforts to reconcile the conflicting experiments.
- Instead, I will discuss on what experimentalists should do in order to clarify or strengthen the observed results.

12/02/07

19

Current Experimental Situation

Current players of the game

kperiment∂	Target	Threshold	Total Exposure	Recoil Identification	Main body of Signal ?	Mod ation
DAMA/LIBRA	Nal	2.0 keV _{ee}	427,000 kg-days	(NR+EM)	-	0
CoGeNT	Ge	0.5 <mark>keV_{ee}</mark>	140 kg-days	(NR+EM)	O by fit w/BG	0
CRESST	CaWO ₄	10.0 keV	>700 kg-days	NR	O by fit w/BG	/
Negative a	nd set Target	limit Threshold	Total Exposure	Recoil Identification	Main body of Signal ?	Modu
Negative a	nd set	limit				
Negative a	nd set ^{Target}	limit Threshold	Total Exposure 612 kg-days	Recoil Identification NR	Main body of Signal ?	Modu ation
Negative a Experimentò CDMS-II CDMS-II (LE)	nd set ^{Target} Ge/Si Ge	limit Threshold 10.0 keV 2.0 keV _{NR}	Total Exposure 612 kg-days 241 kg-days	Recoil Identification NR (NR+reducedEM)	Main body of Signal ?	Modu ation
Negative a Experimento CDMS-II CDMS-II (LE) EDELWEISS	nd set ^{Target} Ge/Si Ge	limit Threshold 10.0 keV 2.0 keV _{NR} 20.0 keV	Total Exposure 612 kg-days 241 kg-days 384 kg-days	Recoil Identification NR (NR+reducedEM) NR	Main body of Signal ?	Modu ation
Negative a Experimento CDMS-II CDMS-II (LE) EDELWEISS XENON100	nd set Target Ge/Si Ge Ge Xe	limit Threshold 10.0 keV 2.0 keV _{NR} 20.0 keV 8.4 keV _{NR}	Total Exposure 612 kg-days 241 kg-days 384 kg-days 1471 kg-days	Recoil Identification NR (NR+reducedEM) NR NR	Main body of Signal ?	Modu ation

energy (keV

P-type Point Contact (PPC)

- High resolution (low C)

BG: Reject surface events

٠

12/02/07

germanium detectors: 440g

Threshold ~ 0.4 keVee (lowest)

→ irreducible excess below 3 keV

But no Nuclear Recoil separation

0

2.8 σ

Y.Suzuki@談話会(京大物理)

Need more data

100 200 300 400 500

23

Davs since Dec-3, 2009

442 effective days, assuming all

the unknown excess is 'signal'

→ Modulation (0.5 – 3.0 keVee):

• Amplitude: 16.6±3.8%

Minimum: Oct 16±12 d

Question: Where is the un-modulated part of signal, S_0 ?

Must be in somewhere underneath of the spectrum !

- In most of the elastic scattering cases, S₀(E) monotonically goes down as energy increase, then backgrounds must sharply goes down below 3~4 keV.
- →This may not be natural
- →Simple Elastic Scattering interpretation may have a internal inconsistency?
- → Inelastic ? also strong tension
- \rightarrow Other scenarios ???

12/02/07

12/02/07

Y.Suzuki@談話会(京大物理)

→ Need clear and quantitative evaluation of the leakage from the surface event

Y.Suzuki@談話会(京大物理)

24

CRESST-II

- CaWO₄(Multi-material target)
 - up to 10 kg, 33 crystals, (0.3kg each)
 - phonon (~10 mK)
 - Scintillation
 - → Reduced light output for nuclear recoils
 - → Light output decreases with increasing mass number of recoiling nucleus
- Data used (2009 2011)
 - 730kg*days
 - 8 detector modules

27

12/02/07

Current Experimental Situation

	M1	M2
e/γ -events	8.00 ± 0.05	8.00 ± 0.05
α -events	$11.5^{+2.6}_{-2.3}$	$11.2^{+2.5}_{-2.3}$
neutron events	$7.5^{+6.3}_{-5.5}$	$9.7^{+6.1}_{-5.1}$
Pb recoils	$15.0^{+5.2}_{-5.1}$	$18.7^{+4.9}_{-4.7}$
signal events	$29.4^{+8.6}_{-7.7}$	$24.2^{+8.1}_{-7.2}$
$m_{\chi} \ [\text{GeV}]$	25.3	11.6
$\sigma_{\rm WN}$ [pb]	$1.6 \cdot 10^{-6}$	$3.7 \cdot 10^{-5}$

• O-band events - 67 events

- 4 source of BG
 - Leakage from e/γ band
 - Leakage from α related
 - Degraded α events
 - Neutron events (O)
 - Pb recoils:
 - ²¹⁰Po→ ²⁰⁶Pb(103keV) $+\alpha$ (out)
- "room for signal" $-36 \sim 44\%$

12/02/07

Y.Suzuki@談話会(京大物理)

Current players of the game

Positive Indication

Experiment∂	Target	Threshold	Total Exposure	Recoil Identification	Main body of Signal ?	Modul ation
DAMA/LIBRA	Nal	2.0 keV _{ee}	427,000 kg-days	(NR+EM)	—	0
CoGeNT	Ge	0.5 keV _{ee}	140 kg-days	(NR+EM)	O by fit w/BG	0
CRESST	CaWO ₄	10.0 keV	>700 kg-days	NR	• by fit w/BG	—

	Negative and set limit									
	Experiment>	Target	Threshold	Total Exposure	Recoil Identification	Main body of Signal ?	Modul ation			
	CDMS-II	Ge/Si	10.0 keV	612 kg-days	NR					
(CDMS-II (LE)	Ge	2.0 keV _{NR}	241 kg-days	(NR+reducedEM)					
	EDELWEISS	Ge	20.0 keV	384 kg-days	NR					
	XENON100	Xe	8.4 keV _{NR}	1471 kg-days	NR					
	XENON10 (LE)	Xe	1.4 keV _{NR}	15 kg-days	(NR+reducedEM)					
1	12/02/07 Y.Suzuki@談話会(京大物理)									

CDMS-II

- Ge(&Si) detector (~10mm thick and $\phi = 76$ mm)
- 230g x19 ~ 4 kg
- Ionization and phonon (<50mK)
 - Ionization yield \rightarrow 1 in 10⁴ raj. for γ 's
 - Timing cut \rightarrow surface events (>10⁶ raj.)
- 10 keV threshold & < 100keV
- Data: 612kg-days
- 2 events found
- Backgrounds: 0.9±0.2
- 0.8±0.1±0.2 surface events
- 0.1 neutron events

12/02/07

Y.Suzuki@談話会(京大物理

Current Experimental Situation

Current and Future direct WIMP Search experiments 35 programs (not complete list : sorry for those projects I have missed)

Experiment s	site	Target & mass	technology	Achieved (cm²)	Sensitivity (cm²)	Status & comments	Year to start
Xenon							
ZEPLIN-III	Boulby	Xe: 8kg	two phase		SI: 10 ⁻⁴³	Stop in 5- 2011	results soon
XENON100	LNGS	Xe: 48kg	two phase		SI: 7x10 ⁻⁴⁵		On going
XENON1T	LNGS	Xe: 1t	two phase		SI: 10 ⁻⁴⁷		2015
XMASS	Kamioka	Xe: 100kg	single phase		SI: 10 ⁻⁴⁵	commissioning	On going
XMASS-1.5	Kamioka	Xe: 1ton	single phase		SI: 10 ⁻⁴⁶		2013
XMASS-II	Kamioka	Xe: 10ton	single phase		SI: 10 ⁻⁴⁷		2016
PANDA-X	Jing Ping	Xe: 25kg	two phase		SI: 10 ⁻⁴⁵		> 2013
LUX	SUSEL	Xe: 100kg	two phase		SI: <10 ⁻⁴⁵	Surface lab	2012
LZS	SUSEL/ SNO	Xe: 1ton	two phase		SI: 10 ⁻⁴⁷		2015
Ar							
WARP	LNGS	Ar:140kg	two phase		SI: 5x10 ⁻⁴⁵	commissioning	
DarkSide50	LNGS	DAr: 50kg	two phase		SI: 10 ⁻⁴⁵	prototype	
ArDM	Canfranc	Ar: 850kg	two phase			Prototype	2011
DEEP3600	SNOLAB	Ar: 1ton	Single phase		SI: 10 ⁻⁴⁵		2012
MiniCLEAN	SNOLAB	Ar: 150kg	Single phase		SI: 10 ⁻⁴⁴		2011
DARWIN	Europe	Ar or Xe: tons	two phase		SI: <10 ⁻⁴⁷		
MAX	DUSEL	Ar and Xe			SI:<10 ⁻⁴⁷	R&D	

12/02/07

31

100

29

coil energy (keV)

Experiments		Target & mass	technology	Sensitivity (cm²)	Achieve (cm²)	Status & comments	Year to start
Ge							
Super-CDMS	SOUDAN	Ge: 15kg	char+phonon	SI: 5x10 ⁻⁴⁵			2011
Super-CDMS	SNOLAB	Ge: 100kg	char+phonon	SI: 3x10 ⁻⁴⁶			2015
CoGeNT-C4	SOUDAN	Ge: 4kg	charge			installation	2011
CDEX	Jing Ping L	PC-Ge:10 kg	charge	SI: 10 ⁻⁴³		1kg test	
Bubble Cham	ber						
PICASSO	SNOLAB	C ₄ F ₁₀ : 2.6kg	BC	SD: 2x10 ⁻³⁷			On going
SIMPLE	Rustrel	C ₂ CIF ₅ : 26 kg	BC			Test 0.2kg	Install 2012
COUPP	SNOLAB	60kg	BC			4kg test	2011
Scintillation (+phonon)						
DAMA	LNGS,	Nal: 250kg	Scintillation	SI: 10 ⁻⁴⁰			On going
KIMS	Yang Yang	CsI: 104.4kg	Scintillation	SD:10 ⁻³⁸			On going
CINDMS	Jing Ping L	CsI(Na)	Scintillation			R&D	
CRESST-II			Sintill+phonon				On going
ROSEBUD	Canfranc	Al ₂ O ₃ etc.	Scintill+phonon			R&D	
DM-Ice	South pole	Nal:>250kg	Scintillation	Test DAMA		Prototype: 17kg	?
EURECA	LSM	Multi-T: 1ton	many	SI: 10 ⁻⁴⁶		Phase-I: 150kg	2015
Tracking							
Drift-III	Boulby	CS2:4kg,24m ³	TPC	SD: 10 ⁻⁴⁰			?
DM-TPC		CF4	PMT+TPC			Prototype test	
NewAGE	Kamioka	CF4	microTPC			Prototype test	
MiMac	LSM	CF4	microTPC			Prototype	2011 1m ³
L2v602/07	World?		Triaciling uki@	淡話会(京大物	(加理)	White paper	

The phase-I XMASS detector

- Detector
 - Single phase (scintillation only) liquid Xenon detector
 - Operated at -100°C and ~0.065MPa
 - 100 kg fid. mass, [835 kg inner mass (0.8 mφ)]
 - Pentakis-dodecahedron

 \leftarrow 12 pentagonal pyramids: Each pyramid \leftarrow 5 triangle

- $-\,$ 630 hex & 12 round PMTs with 28-39% Q.E.
- photocathode coverage: > 62% inner surface

Y.Suzuki@談話会(京大物理)

Detection Principle

- WIMPs scattering off nuclei in targets, produce nuclear recoils.
- $\chi + N \rightarrow \chi + N$
 - V_{sun} ~ 232 km/s
 - $E_{recoil} \le 100 \text{ keV}$
 - Less than 1 WIMPs/day interactions in 100 kg material

12/02/08

Internal backgrounds

- Kr (Q_β = 687 keV)
 - Distillation: Kr has lower boiling point
 - 5 orders of magnitude reduction (test)
 0.1ppm→1ppt with 4.7kg/hr K.Abe et al. for XMASS collab., Astropart. Phys. 31 (2009) 290
 - Distillation: 10 days before filling into the detector (~ 1 ton)
- Rn
 - target value
 - ²²²Rn: target 1.0mBq for 835 kg inner volume
 - ²²⁰Rn: target 0.43mBq for 835 kg inner volume
 - Filtering by circulation
 - liquid → gas (30litter-GXe/min) → liquid
 Charcoal
 - liquid (a few litter-LXe/min)

Under study

```
12/02/07
```

Y.Suzuki@談話会(京大物理)

PMT holder

PMT Holders

12/02/07

Y.Suzuki@談話会(京大物理)

Assemble PMTs

- 642 PMTs are attached during 13 days.
- 200g/PMT
- ~200kg for all PMTs

12/02/07

Filler (total 2.8ton) attachment.

Y.Suzuki@談話会

12/02/07

Y.Suzuki@談話会(京大物理)

46

Manufacturing detector vessel

- A challenge: Manufacturing a large flange with soft OFHC copper. Inside: Electropolished
- Due to insufficient strength of its neck part, it needed to be reinforced by adding ribs.
- It took four months.

47

Each components and construction status

Calibration

12/02/08

Calibration system

Gamma source

- To check
 - Position reconstruction
 - Energy resolution
- From inside and outside of the detector.
- LED
 - PMT Gain (1pe)
 - 8 LEDs are attached to the PMT holde
- Laser + diffuser
 - PMT Timing

12/02/08

53

Calibration source rod

- \phi12mm, length 1560mm, 1.54kg
- Lift up and down by ϕ 0.3mm SUS301 wire
- Calibration source is attached at the end of rod.

55

55

12/02/07

59

Event Display

2		 XMASS I liquid Xe 2x10⁻⁴⁵ c Commis detector – Energy 	Summary phase I (100kg fiducial) is a single pha enon detector which has a sensitivity cm ² (SI cross section) sioning runs are on going to understa r performance and backgrounds y resolution and vertex resolution were as e	ise to and the expected:
		~1cm 122 ke – Radon • Direct d exciting low mas • We 'hop	position resolution and ~4% energy resolut eV γ. backgrounds are close to be expected. ark matter search experiments are in and interesting stage: Some indications is DM, but there are conflicting results be' that we will show some results in t	ion for a very ons for ts. next
12/02/07 Y.Suzuki@談話会(京大物理)	61	12/02/07	Y.Suzuki@談話会(京大物理)	62
END				
12/02/07 Y.Suzuki@談話会(京大物理)	63			