

Jet calibration in ATLAS @ LHC

隅田 土詞 (CERN → 京都) 7th Oct 2011 HEP 研究室セミナー

(Self-) Introduction

- ⁻ パフォーマンステスト
- Jetキャリブレーションの systematic uncertainty 見積り
- Pile-upのJetへの影響のstudy
- Jetの牛成断面積測定

Kyoto HEP seminar, 7 Oct 2011

ボス

Jet calibration in ATLAS@LHC

Toshi SUMIDA

Outline

- Introduction
 - ATLAS @ LHC
 - ATLAS の最新結果 (ちょっとだけ)
- Calorimetry in ATLAS
 - 電磁カロリメータ: Liquid Argon (LAr)
 - ハドロンカロリメータ: Tile Calorimeter (TileCal)
- Jet calibration in ATLAS
 - ジェット(jet)って?
 - 物理から測定まで
 - Jet のキャリブレーション
 - ▶ 基本メソッド
 - "in-situ" validation/calibration
 - ジェットキャリブレーションにおける systematic uncertainty
 - 最近の話題/問題
 - 主に pile-up、 Jet topology/physics dependence, そして TeV jet へ…
- ・まとめと今後の展望

Kyoto HEP seminar , 7 Oct 2011

ATLAS @ LHC

LHC

- Large Hadron Collider
 - CERNにある世界最大の 陽子陽子衝突型加速器
 - スイスのジュネーブ
 とフランスの国境
 - ▶ 全周: 27 km
 - 最大衝突エネルギー
 7+7 TeV (陽子-陽子)
- ・4+2個の実験
 - ATLAS, CMS
 - 汎用検出器
 - LHC-B
 - Bの物理
 - ALICE
 - 重イオン衝突実験
 - ⁻ LHCf, TOTEM
 - 超前方散乱、全断面積測定

LHC status

- ・2010/2011 の年ラン
 - $\sqrt{s}: 3.5+3.5 = 7 \text{TeV}$
- peak luminosity
 - -2.1×10^{32} / 3.3×10^{33} cm⁻² s⁻¹
- integrated luminosity
 - ⁻ 45 / ~4000 pb⁻¹

✓ 多分今年中に 5fb⁻¹!

Parameter	2010	2011	Nominal
Beam energy	3.5 TeV	3.5TeV	7 TeV
Beam squeeze	3.5 m	1.0m	0.55 m
Transverse emittance	2-3 µm rad	2.5 µm rad	3.75 µm rad
Protons per bunch	up to 1.2x10 ¹¹	1.6x10 ¹¹	1.15x10 ¹¹
Bunch separation	150 ns	50 ns	25 ns
Number of bunches	368	1380	2808
max peak luminosity (cm ⁻² s ⁻¹)	2.1x10 ³²	3.3x10 ³³	>10 ³⁴

ATLAS実験

A Toroidal LHC ApparatuS
 100GeV~TeVスケールでの様々な物理に対応した汎用検出器

最近の結果 from ATLAS

- Higgs to WW
 - 2fb⁻¹の最新 plot
 - ▶ 未 approved

- SUSY 0-lepton analysis
 - 1fb⁻¹ (arXiv:1109.6572)
 - q < 1 TeV は絶望的 (DM大変)
 - 細かく topology を分けた解析 (simplified model)へ

Calorimetry in ATLAS

コライダーでの座標表示

- pseudo-rapidity
 - $\eta = -\ln(\tan(\Theta/2))$
 - Θ: 天頂角
 - 0:検出器中心から垂直の面
 - coverage in ATLAS : $|\eta| < \sim 4.9$
- ・ビーム軸周りの方位角
 - $-\pi < Φ < π$ (rad)
- ・検出器中心から延びる方向

- "longitudinal" (あんまり気にしない)

- ・物理オブジェクト同士の"距離"
 - ⁻ ΔR = $\sqrt{(\Delta \eta^2 + \Delta \Phi^2)}$
 - ちょっと乱暴だけど、便利だし
 実際の大きさも中心領域では
 似たようものなので、まぁいいか?

Kyoto HEP seminar, 7 Oct 2011

The ATLAS Calorimeter

- 電磁カロリメータ
 - Liquid Argon : "LAr"
 - 鉛アコーディオン型radiator + LAr (ionization)
 - Segment: 0.025 x 0.025 η-Φ, longitudinal (こ3段 ("**cell**")
 - ⁻ Resolution: $\sigma E/E = 10\%/\sqrt{E \oplus 0.7\%}$
- ・ ハドロンカロリメータ
 - ⁻ "TileCal"
 - 鉄 absorbers + タイル型plasticシンチレータ
 - Coverage
 - Long Barrel: |η| < 1.0
 - Extended Barrel: 0.8< |η| < 1.7
 - ⁻ η-Φ Segment: 0.1 x 0.1, longitudinal に3段
 - Resolution: σ_E/E (jet) = ~50%/ $\sqrt{E \oplus 3\%}$
 - goal :Jet energy scale uncertainly: 1-2%
- ・その他
 - Hadron Endcap Calorimeter
 - *"*HEC", |η|<3.2</p>
 - Forward Calorimeter
 - **FCAL**["], 3.1<|η|<4.9</p>
 - ✓ いずれも技術は LAr

Toshi SUMIDA

Jet について

陽子-陽子衝突で起こること

- 高エネルギーでのハドロン衝突 = パートン + パートン衝突
 ⁻ 2→2 プロセス
 - · gg 反応(一番多い)

▶ qq 反応

Kyoto HEP seminar, 7 Oct 2011

もう少し…

ハドロン衝突で起こっていること (₩ + jet 生成の場合)

Hard interaction described by matrix element

Resonant decay

Initial state radiation

Final state radiation; parton shower

Multiple interaction

Initial and final state radiation for each interaction

Beam remnants

Color connection

Hadronization

Underlying Event と Multiple Interactions

何故ジェットを測るのか

- もちろん、コライダーでは何でも測る - e/γ
 - ▶ EM calo, track 有/無
 - -μ
 - tracker, chamber
 - ⁻ τ(ちょっと難しい)
 - ⁻ q (u, d, s, c, (b)), g→qq
 - 全部jetになる
 - ✓ ジェットも測る
- 物理解析/測定
 - ⁻ Jet 生成 (di-jet, multi-jet)
 - $^{-} W/Z \rightarrow q\bar{q}^{()}, W \rightarrow I_{V}, Z \rightarrow II$
 - t →bW
 - [−] H→**bb**, γγ, ττ, **WW, ZZ**
 - ğ→qq→qqX
 - 重要な物理には全部何かしらジェットが出てくる。
 - 上の項目は下の項目のバックグラウンドになる。

✓ つまり一番最初の反応 (2→2)から、
 統計が増えて様々な解析を行う全ての段階で、
 ジェットの E, pTを正確に測る事は非常に重要。

Vhatakefeiジェットとは何か

Jet reconstruction **Inputs to Jet Rec.**

・ジェットを組む、とは

- エネルギークラスター構築
 - ・ EM/Hadron shower でできた caloring for constructing する
 - threshold は pedestal の "σ" の整数倍が基準
 - noise を抑える事が重要
 - typical なの値: 40MeV
 - "4-2-0 method"
 - E>4oのcellをseedにして その周りの E>2o の cell、
- 1. Cells with $|\mathbf{E}| > 4\sigma_{\text{noise}}$ seed the cluster
- 2. Cells with $|E| > 2\sigma_{noise}$ iteratively added
- 3. Neighbor cells with |E|>o form surface of the cluster
- Noisy cells (~0.1%) are masked and not used.
- さらにその周りの全て cell energy を加える 3D (R, η, Φ) Topological Clustered and MFT
 - ✓ electric noise に強い
- この Topoクラスターを
 - jet reconstruction algorithm への input Requirements
 - ▶ 昔: SIS-cone, ATLAS-cone, kt
 - default: "Anti-kt" アルゴリズム, w/ R=0.4/0.6
 - 2008年くらいに採用
 - Infrared-safe, collinear safe
 - ✓ 素性が良い

Kyoto HEP seminar, 7 Oct 2011

Jet Requireme

Not a

Cluster

.810

Cluster

Kyoto HEP seminar , 7 Oct 2011

Jet calibration in ATLAS@LHC

Toshi SUMIDA

33

Jetのキャリブレーション

Jet のキャリブレーション

- ジェットは組んだが、その組んだジェ・Dエネルギーはどうなっている?
 - 基本的に、カロリメータで測るのは "EM scale" energy:
 - LAr: ビームテストでの electron を使った calibration が base
 - Tile: ¹³⁷Cs を使った独自システムでの calibration が base
 - ジェットの reconstruction も今のところ EM energy で行われている
- ・"本当の"ジェットと比べると?
 - Truth jet:ハドロンレベルの情報を使って
 Anti-kt アルゴリズムでジェットを再構成したもの
 - Recojet: カロリメータから出発したジェット
 - ハドロンは e/γよりも落とすエネルギーが小さい (e/h~1.3)
 - invisible energy (原子核の励起, slow neutron, etc.)
 - ・ Dead material によるエネルギー損失
- ので、再構成されたジェットのエネルギーに対して、 補正 factor をかける必要がある
 - MC を使って、Truth jet を作る
 - E(reco)/E(true): をある E, ηの bin でplot すると、
 右の図の様になるので基本的にこの中心値の"逆数"を
 true energy に戻すための補正 factor として使う
 - "Numerical Inversion"と呼ぶ

 $E_0 =$

 $\pi^{-1} (1-h/e) (E/E_0)^{m-1}$

<u>-eerrivet</u> calib

2.6 GeV

 π^{\pm}

Kyoto HEP seminar, 7 Oct 2011

Jet のキャリブレーション(続き)

- さらに、各 E, η bin での inversion factorに対して、 log(E)の polynominal で fit する
 - この結果を parameter として database に持つ
 - この constants を
 "Jet Energy Scale" または "JES" という
 - EM scale に JES をかけて得られたエネルギーを "EM+JES" と呼ぶ
- 重要な物理量であるジェットの pT (横方向運動量)は
 TopoCluster を massless と見做して、4-vector を組む

Jt

lib ti

Pythia QCD jets (nominal) Alpgen + Herwig + Jimmy Perugia2010 Tune

E^{jet}/E^t

1.08

1.06

1.04

1.02

・どれだけ正確にジェットをキャリブレーションできているか

- "正確に"とは "精度良く" (resolution) ということではない。 ある E, pr binで、中心値をどう間違い得るか、の指標。

・ JES uncertainty の source

- 全部MCに頼ってのcalibrationなので、
 jet energy response は 物理モデル
 (パートン放出、ハドロン化、シャワー生成)に依る
 ~3%
- Dear material の MC での記述が間違っていたら…
 - 2-3%
- ノイズの大きさと threshold の関係

JES uncertainty

▶ 1-2%

JES uncertainty (続き)

- 2010 data での結果
 - 4% @ p_T=30GeV, 0.3<|η|<0.8
 - forward では~10%
 - 右の絵に pile-up
 (同時に複数の collisionが起こる場合)
 の不定性は入っていない

 - ・酷い事になっている in 2011 (次回)

"In-situ" JES validation

- MC に頼り切りでは、どこで間違えるかわからないので、
 データを使った jet calibration の確認をして、JES の不定性を評価したい
 - di-jet inter-calibration
 - barrel と forward を比べて、η での一様性を保障する
 - multi-jet method
 - ▶ high-p⊤ ジェットと low-p⊤ recoil jet system を比べる
 - 一番高い pr までいける
 - gamma-jet balance method
 - robust な EM scale の energy 測定と比較する
 - track-jet/calo-jet
 - track だけで jet を組んで、それと比較
 - neutral particle がないので resolution は落ちるが
 - response 自体は良くわかっている
 - pile-up が大きいと、track-jet の方が得?
 - ⁻ Z-jet balance
 - Zのmassが大きいので、low Pt jet のvalidation ができる

まとめ

- ・ジェットとは
 - 高エネルギーパートンを元とするハドロンの束
- ・ジェットのキャリブレーション
 - カロリメータの EM-scale でのレスポンス
 - エネルギークラスターの構築
 - ジェットの再構築
 - ・を行なって、MCで求めた "JES" をかける
- ・キャリブレーションがどれくらい合っているか
 - "JES uncertainty"
 - ▶ 複数の物理モデルや、検出器の物質を変更したMCで 系統誤差を評価
 - "In-situ" validation
 - ▶ データを使って JESを検証

- ・次回
 - 本当は、最近は single particle measurement (E/p analysis) を使って、JES uncertainty を評価しているが、 ややこしいので省略した。
 - In-situ measurementsの現状 in 2011
 - 現在、高い pile-up rate での JES の求め方、 pile-up で足された energy の補正、 それを考慮した JES uncertainty の評価について study が進行中。
 - 以上、次があれば報告します。

