LHC-ATLAS におけるトップ クォーク対生成断面積の測定

奥村恭幸 (OKUMURA, Yasuyuki) Nagoya University, Japan

素粒子標準模型とトップクォーク

- 素粒子標準模型 (Standard Model)
 - ゲージ原理による量子場の理論
 - ・素粒子の相互作用を記述
 - ・ゲージ粒子の存在を予言
 - 質量獲得の機構が未解明
 - ヒッグス場 (相転移した真空) と 素粒子の相互作用の理解

- 最大質量の素粒子(173 GeV/c²)
 をもち、質量の起源の解明に対し
 重要なプローブとして働く

トップクォークを用いた質量起源解明

- トップクォークと
 ヒッグス場(ヒッグス粒子)の結合
 湯川相互作用の理解を進める
- ヒッグス場の質量の発散問題
 トップとヒッグス粒子のループ効果の理解
 - ヒッグス場の安定化の機構の理解

トップクォーク測定は質量起源の解明に対して重要なアプローチ エネルギーフロンティア実験 + トップクォーク

Large Hadron Collider

エネルギーフロンティア & ルミノシティフロンティア ハドロンコライダー:

- Proton-Proton collider
- -3.5 TeV + 3.5 TeV = 7 TeV
- 瞬間ルミノシティ
 - L = 10³³/cm²/s (2011 August)

Process	Cross-section	Production-rate
PP inelastic (soft-QCD)	70 mb	70 MHz
W production	100 nb	100 Hz
Z production	30 nb	30 Hz
tt production	165 pb	0.2 Hz

- Longitudinal momentum (proton-beam axis)
- Transverse momentum

5

 $(x_1 - x_2) \times 3.5 \text{ TeV}$

トップクォーク対生成断面積 $\sigma_{t\bar{t}+X} = \int_0^{-1} dx_1 \int_0^{-1} dx_2 \sum f_i(x_1, \mu_F) f_j(x_2, \mu_F) \hat{\sigma}_{ij \to t\bar{t}+X}(\sqrt{\hat{s}})$ July 2009 $\alpha_{s}(Q)$ xf(x,Q²) △ ▲ Deep Inelastic Scattering $\circ \bullet e^+e^-$ Annihilation 0.4 $Q^2 = 10^4 \text{ GeV}^2$ □
 Heavy Ouarkonia $\sum_{i=1}^{n-1} \int_{0}^{1} dx_{1} f_{i}(x_{1},\mu)$ a/10 0.3 0.8 0.2 0.6 0.1 0.4 $\sum_{i} \int_0^1 dx_2 f_j(x_2, \mu_F)$ $= OCD \quad \alpha_s(M_z) = 0.1184 \pm 0.0007$ 10 100 O [GeV] 0.2 ATLAS Preliminary (Date: August 15, 2011) $173.8 \pm 6.7 \pm 4.8$ 2010 data e+iets prel b2010 data u+iets p $166.7 \pm 5.0 \pm 5.0$ 10⁻² 10^{-3} 10⁻¹ $169.3 \pm 4.0 \pm 4.9$ 10⁻⁴ 2010 data I+jets pre 1 $173.9 \pm 1.2 \pm 3.1$ х 2011 data e+jets prel. $175.9 \pm 1.0 \pm 2.7$ 2011 data µ+jets prel プクォーク対生成断面積の精密測定は、 2010+2011 data I+jets prel. $175.9 \pm 0.9 \pm 2.7$ $180.1 \pm 3.6 \pm 3.9$ Run-I best (D0 I+iets) の 7 TeV 陽子・ 陽子衝突での精密検証 $173.0 \pm 0.7 \pm 1.1$ Run-II best (CDF I+jets) $173.2 \pm 0.6 \pm 0.8$ Tevatron July 2011 200 160 180

m_{top} [GeV]

ATLAS 検出器

汎用型検出器

- 精密飛跡検出器
- ・電磁カロリメータ
- ハドロンカロリメータ : |η|<4.9
- ・ミューオン検出器
- : $|\eta| < 2.5$: $|\eta| < 3.2$: $|\eta| < 4.9$: $|\eta| < 2.7$

Vuen chambers Solenoid magnet Solenoid magnet Canada and a constraint of the calorimeters Solenoid magnet Canada and a calorimeters Canada and a calorimeters Canada and a calorimeters Canada and a calorimeters Canada and a calorimeters

終状態の再構成

- 粒子識別
 - 電子, ミュー粒子, 光子, ハドロン
- 運動量測定

 レプトン (a few %)
 ハドロン (10%)

Electron Photon Charged Hadron Neutral Hadron Muon

トップクォーク対生成の終状態

終状態の再構成

トップクォーク候補事象

生成断面積測定

高精度達成のための戦略:

- 検出器を良く理解
 - ・レプトン測定 (e/µ)
 - ・ハドロンカロリメータ測定 (Hadron jets, Missing E_T)
- "効率的"にかつ "効果的" に信号を選別する手法を確立
- 含まれる背景事象を良く理解

Data samples

- ・シングルレプトントリガー
 電子 (20 GeV)
 ミューオン (18 GeV)
- "GOOD Data quality" 条件を 満たす 0.70±0.03 fb⁻¹ を使用

シミュレーションサンプル ・信号アクセプタンス(*A*)

・背景事象数見積もり (BG)

Signal sample		Background sample	
$t\overline{t}$	Z + jets	WW, WZ, ZZ	Wt

信号サンプル & コントロールサンプル

 $Z \rightarrow ee / \mu\mu$ の背景事象の理解

<u>信号サンプル</u>

- トップクォーク対生成事象を抽出
- Missing E_T , Large #jets, Out of Z resonance

レプトン検出器の性能評価

- 電子・ミュー粒子の検出効率の実機性能は、 正確に断面積を測定する際に必要不可欠: **e**' - 信号のアクセプタンス評価(A) – バックグラウンド評価 (BG)Z ボソンコントロールサンプルを用いた "Tag & Probe"法 測定手法の例 (トリガー効率測定) 2本の isolated & high p_T レプトン & Z ボソン質量
 - 内 1 本がトリガー条件を満たしていること
 - ・もう一本は効率測定の "probe" として使用可能

レプトン検出器の性能評価

トリガー効率、レプトン再構成効率、 アイソレーション条件の効率を、別々に測定 – p_T , η , #jets, #vertices の関数として測定 測定結果を、トップクォーク事象や、その他のバックグラウ ンドの検出数理解に用いる \rightarrow 実機性能に基づいた評価

Top events	ee	μμ	еμ
Two lepton selection	19%	36%	26%

Uncertainties	electron	muon
Trigger	±0.5%	±1.0%
Reconstruction	±1.0%	±0.3%
Isolation cut	±3.0%	±0.03%

ハドロンカロリメータとパイルアップ

パイルアップ衝突数は平均6個/バンチ交差

・#jets & Missing E_T が影響を受ける

シミュレーション中で正確に再現し、その影響を 理解した上で測定を遂行する

Jet multiplicity

Validation with Z+jets control region

Missing E_T

Validation with Z+jets control region

Event Selection

1400 candidates are collected from 0.70 fb⁻¹ data

Background estimation

Backgrounds due to detector effects

Backgrounds that have similar event topologies (two leptons, neutrino)

Signal region plots

非常に純度の高いトップクォーク対生成信号のサンプル 83% 標準模型の予言の分布と精度の範囲内で一致

Cross-section extraction

	ee	$\mu\mu$	$e\mu$
Drell-Yan+jets (DD)	$4.0 \begin{array}{c} +2.5 \\ -1.2 \end{array}$	$14.4 \stackrel{+5.4}{_{-4.2}}$	-
Drell-Yan($\rightarrow \tau \tau$)+jets (MC)	$4.9~\pm~2.6$	$11.0~\pm~5.0$	42.5 ± 16.1
Fake leptons (DD)	$2.5~\pm~1.9$	$0.3~\pm~0.6$	$44.0~\pm~24.0$
Single top (MC)	$6.4 \ ^{+1.2}_{-1.1}$	$16.0 \ ^{+1.9}_{-2.2}$	$41.1~\pm~5.5$
Diboson (MC)	5.9 ± 1.0	$8.7 \stackrel{+1.2}{_{-1.5}}$	$32.9~\pm~4.9$
Total (non $t\bar{t}$)	23.6 ± 4.4	50.5 ± 8.4	160.5 ± 34.1
$t\bar{t}$ (MC)	124.0 ± 17.2	$241.3 \substack{+14.5 \\ -17.9}$	745.5 ± 41.8
Total expected events	147.6 ± 17.8	$291.8 \begin{array}{c} +16.6 \\ -19.9 \end{array}$	906.6 ± 53.9
Observed events	165	301	963

Consistent with SM prediction (165^{+11}_{-16} pb)

Uncertainty estimation

 $\sigma_{t\bar{t}} =$

- 1. Data statistics (3%) – Poisson error
- 2. Luminosity (4%)
 - Denominator of x-sec
 - Background estimation
- 3. Modeling in simulation (4%)
 - X-sec prediction for background processes
 - Acceptance dependence of choice of a set of PDF
- 4. Detector performances (5%)
 - Uncertainty on performance measurements
- 5. Data-driven background estimation (2%)
 - Fake rate evaluation

 $\frac{N_{\rm data} - BG}{AL}$

Signal region plots

Lepton & jet η distributions – PDF, top quark mass

jets distribution in ttbar

QCD parameters (Λ_{QCD} , cut-off for p.shower) – Varied with range compatible to their uncertainty

The current P-QCD & EW theory (SM) gives well-consistent description of ttbar production at 7 TeV. More tuning will enable us interesting study in ttbar + high jet multiplicity region

Comparison with Tevatron

Summary 1

初のトップ対生成断面積の精密測定結果 (10%) - ダイレプトン終状態に注目することで、soft-QCD 背 景事象を効果的に抑制

– 検出器の理解を進めることで、実機の評価に基づく断 面積評価を実現

- $\sigma_{t\bar{t}} = 175 \pm 6(\text{stat.}) \,^{+14}_{-11}(\text{syst.}) \, \pm 8(\text{lumi.})$
- 7 TeV 陽子・陽子衝突中のトップクォーク対生成 事象が現在の SM でよく記述されていることを実 験的に証明
 - PDF, strong coupling constant, top mass, BF of top decay

Summary 2

トップクォークをプローブとした"質量起源の解明" に対して重要な基礎を築いた: "tt+jets"や"tt+Missing-E_T" with more data in 2012 (15fb⁻¹, 8 TeV)

0.70 fb⁻¹

ATLAS-CONF-2011-142

Top pair + jets

#jets distributions in top-pair productions

• ISR + Higgs(?)

(1) Exactly one lepton (e/m) (2) large $m_T(W)$, (3) #jets ≥ 4 with $p_T > 25$ GeV, (one of the jets b-tagged)

- Understand detector performance
- Tune ISR related parameters (Λ_{QCD}) and reduce the uncertainties

Phys.Rev.Lett. 108 (2012) 041805

Top pair + Missing ET

tt events (lepton + jets) + "additional Missing E_T" – Top-like quark decaying t + undetected particle

1.1 fb⁻¹

Fermionic top-like new quark pair-production is excluded up to O(400 GeV) Stop pair-production can be reached with 10 times more data in 2012

2012 with 8 TeV & 15 fb⁻¹

おまけ

基本的なサイクルをすることができてラッキーでした

- 検出器を触って (作って&動かして&校正して)
- その性能を理解して
- 自分が面白いと思う 物理測定につなげる

"データをとって" "自分で解析する" ことの面白み

LHC-ATLAS 実験で活躍するために気をつけたこと – 素早いアクションでグループをリード

- やったことをどんどんグループで発表 (自慢) して地位を確立

活躍するのは若手 (博士大学院生 & ポスドク) で 測定器運転でも物理解析でも活躍機会はいくらでもある

おしまい

Top mass

- Measurement is robust for mass difference.
- The measurements will match the best with the SM if the m_{top} = 170 GeV

Cross-section summary

x, Q2 parameter space for tt production (NLO)

