Searches for ultra-high energy cosmic neutrinos with the IceCube neutrino detector

石原安野(Aya Ishihara)

aya@hepburn.s.chiba-u.ac.jp

Chiba University

Aya Ishihara 2012/12/5 Kyoto University

- であるガンマ線爆発(GRB)といった極限爆発現象は遠方(若い)宇宙に分布
 - Was young Universe more active, if so why/how?
- 起源のわからない高エネルギー粒子が宇宙から地球に飛来している。どこから?
 エネルギーはLHC加速器の1000万倍以上に達する (100EeV=10keV(x-ray) x 10,000,000,000,000,000!)

解明に向けた障壁

- 地球で観測される最高エネルギー粒子は電荷を持っているため宇宙磁場に 曲げられてきており来た方向が分からない。
- 高エネルギー深宇宙を直接光で観測することが出来ない。
 - 。ガンマ線は3Kの宇宙背景輻射と反応してしまい、エネルギーを失ってしまう
 - 。 見られる範囲は10万光年(天の川銀河の直径)ほどで、現在の宇宙の大きさの わずか約1/47万

Neutrinos in the Astronomical Objects

high energy cosmic-ray sources, e.g. AGN, GRB...

Why Ultra-high Energy Neutrinos? *PeV and above*

- Cosmic frontier PeV
 gamma-ray horizon
 limited to a few tens of
 kpc (our galaxy radius)
- Cosmogenic neutrino production is a 'guaranteed' v source
 - Energies above dominant atmospheric neutrinos

The highest energy neutrinos

cosmogenic neutrinos induced by the interactions of cosmic-ray and CMB photons

Off-Source (<50Mpc) astrophysical neutrino production via

GZK (Greisen-Zatsepin-Kuzmin) mechanism

The main energy range: $E_v \sim 10^{8-10} \text{ GeV}$ $p\gamma_{27K} \rightarrow \pi^+ + X \rightarrow \mu^+ + \nu \rightarrow e^+ + \nu's$ **Carries important physics** Location of the cosmic-ray sources Cosmological evolution of the Various cosmic-ray sources GZK v Cosmic-ray spectra at sources models The highest energy of the cosmc-rays Composition of the cosmicrays Particle physics beyond the energies accelerators can reach

どのような宇宙ニュートリノ検出器が必要か?

High energy neutrino telescopes in the world

Since 1976 - DUMAND, Lake Baikal. NESTOR, ANTARES, and NEMO...

The IceCube Collaboration

http://icecube.wisc.edu

36 institutions, ~270 members

Canada

University of Alberta

US

Bartol Research Institute, Delaware Pennsylvania State University **University of California - Berkelev University of California - Irvine Clark-Atlanta University** University of Maryland **University of Wisconsin - Madison** University of Wisconsin - River Falls Lawrence Berkeley National Lab. **University of Kansas** Southern University, Baton Rouge University of Alaska, Anchorage University of Alabama, Tuscaloosa Georgia Tech **Ohio State University**

Barbados

University of West Indies 2012/11/28

Sweden **Uppsala Universitet Stockholms Universitet**

UK **Oxford University** **Universität Mainz DESY-Zeuthen** Universität Dortmund **Universität Wuppertal** Humboldt-Universität zu Berlin **MPI Heidelberg RWTH Aachen** Universität Bonn **Ruhr-Universität Bochum**

Belgium

Université Libre de Bruxelles Vrije Universiteit Brussel **Universiteit Gent** Université de Mons-Hainaut

Germany

Switzerland **EPFL**, Lausanne

ANTARCTICA Amundsen-Scott Station

Japan

Chiba University

> The first results from the full IceCube

New Zealand **University of Canterbury** Aya Ishihara

The Largest Neutrino Detector in the world: The IceCube Detector

South Pole Dome (old station) Array of 78 sparse **1.5km** and 8 dense strings 5160 optical sensors Amundsen-Scott South Pole station LED 1km Aya Ishihara 10 2012/11/28

暗く、しかし光をよく通す巨大なマテリアル

 μ , τ or cascades

チェレンコフ光

from MC simulation

Ultra-high Energy Signal Events

20PeV muon 300PeV nu induced cascade Track lascade lTrack: 0/0 shown, min E(GeV) == NCasc: 2/2 shown, min E(GeV) ==

Not flavor sensitive except some special cases, however, we distinguish muon/tau tracks induced by nu mu, nutau CC and cascades induced by nu e CC and NC by 3 flavors of neutrinos

Comparison between IceCube's 3D eventsand SK 2D events・丸ーつーつが光電子増倍管・カーワークが光電子増倍管

A big challenge: IceCube検出器の建設

2006年に建設開始2010年末に建設終了 IC86 = full IceCube (2011~)

Event rates

Strings	Data (year)	Livetime	trigger rate (Hz)	HE v rate (per day)	
AMANDAII(19)	2000-2006	3.8 years	100	~5 / day	
IC40	2008-09	375 days	1100	~40/ day	
IC59	2009-10	350 days	1900	~70/ day	
IC79	2010-11	320 days	2250	~100/day	
IC86-I	2011- 2012	~ year	2700	processing	
IC86-II	current		2700	running	

IC86 achieving ~ 99% uptime

Neutrino Example

With 40 strings, 2009 May

IceCube Events

With 79 strings, 2010 June

Energy threshold ~10 GeV >10⁸ muons/day >100 neutrinos/day

With 40 strings, 2008 Dec

2012/11/30

Digital Optical Module

- PMT: 10 inch Hamamatsu
- Waveforms, times digitized in each DOM
- Power consumption: 3 W
 Digitize at 300 MHz for 400 ns with custom chip
- 40 MHz for 6.4 µs with fast ADC
- Flasherboard with 12 LEDs
- Local HV

Dynamic range 500 photoelectron/15ns

Clock stability: $10^{-10} \approx 0.1$ nsec / sec Synchronized to GPS time every ≈ 10 sec Time calibration resolution = 2 nsec

25 cm PMT 33 cm Benthosphere

Waveform examples from spe to 10000 pe

2012/11/30

single pe level

Time resolution: ~1ns for bright pulses

• Time difference between neighboring DOMs fired with (bright) flasher pulses: 1 ns.

UHE neutrino analysis 2010-2012

Total 75 GBytes/day	from the South	n Pole to th	e North
Name in Filter	Actual BW used (MB/day)	Rate of selected events (Hz)	
MuonFilter_11	18400	30.25	→ NPE > 1000
SlopFilterTime_11	480	0.45	
EHEFilter_11	3500	2.33 —	
SlopFilterTrig_11	2850	0.81	
DeepCoreFilter_11	9040	26.86	
CascadeFilter_11	8750	27.12	
IceTopSTA3_InIceSMT_11	2100	3.17	
IceTopSTA3_11	2460	6.40	
SDST_LowUp_11	600	31.36	
SDST_VEF_11	160	7.96	
GCLEStarting_11	2070	6.62	
SDST_GCMinBias_11	7900	270.16	
SDST_GCHE_11	3040	104.38	
SDST_GCNWStarting_11	4700	190.94	
FilterMinBias_11	860	2.69 Ava Ishihara	
PhysicsMinBiasTrigger_11	290	1.28	

Data samples

Effective livetime of 670.1days

2010-2011 - 79 strings config. **May/31/2010-May/12/2011** Effective livetime 319.9days 2011-2012 – 86 strings config May/13/2011-May14/2012 Effective livetime 350.1 days 9 strings (2006) 22 strings (2007) 40 strings (2008) 59 strings (2009) 79 strings (2010) 86 strings (2011)

IceCube has been in a stable operation for more than 5 years

2012/11/30

Aya Ishihara

Background

Atmospheric muons and Atmospheric neutrinos

Major background is cosmic-ray muons (muon bundles) in rates

J.Oehlschlaeger, R.Engel, FZKarlsruhe

Signal and Background events

Burn sample NPE~ 1×10^5 μ bundle with ~ 3PeV

Atmospheric muon distribution

Relatively easy to cut them away

Basic strategies for search for GZK neutrinos

Background energy smaller than signal

Background is vertical downwardgoing while signal comes near horizon

Atmospheric neutrinos in PeV

- Conventional atmospheric neutrinos from decays of pion and kaons
- Prompt atmospheric neutrinos form decays of heavy flavor short lived mesons (charm, bottom)
- Prompt harder than conventional still steeper than astronomical spectra
- Transition around $3 \ge 10^5$ GeV depending on the models

No clear evidence of prompt atmospheric v observed so far

Atmospheric neutrinos in a wide energy range

Absolute Calibration of DOMs

QE × CE Absolute calibration

Reflectivity : $14.5\% \pm 0.73$ Transmission : $50.7\% \pm 2.54$

Nuclear Instruments and Methods A, 618 (2010)

In-situ Absolute Calibration

Calibrated light source: Standard Candle (w. UC Berkeley)

- in-situ calibrated N₂ pulsed laser
- Ight wavelength 337 nm
- at 100% intensity generates 4x10¹² photons per pulse emitted at 41°
- output adjustable between 0.5% ~ 100%

The analysis flow in 2011-2012

Coincident μ track cleaning

The "burn-sample" data

After

After

Analysis Level NPE Distributions

Analysis Level ZA Distributions

Analysis Level NPE vs ZA

Background event rates

Signal Event Rates

Systematic Errors on Signal and BG

Sources	Errors on signal rate (%)			
Statistical error	± 0.6			
NPE(ice model, absolute sensit	ivity) $+3.1, -7.4$			
Neutrino cross section	± 9.0			
Photo-nuclear interaction	+10.0			
LPM effect	± 1.0			
Total	$\pm 0.6(\text{stat}) + 13.8 - 11.7(\text{sys})$			

Sources	Errors on conv. bg rate $(\%)$		
Statistical error	± 6.0		
NPE(ice model, absolute sensit	ivity) $+60.8, -56.1$		
CR composition	-50.0		
Hadronic interaction model	+11.1		
CR flux variation	+21.8, -33.2		
ν yield from CR nucleon	± 5.5		
Total	$\pm 6.0(\text{stat}) + 65.8 - 82.3(\text{sys})$		

Effective Area

- A factor of 2 increase from IC40
- NPE threshold difference changes the response below PeV
- Larger for cascades than for track below 10PeV

After unblind - Observation of 2 events Run118545-Event6373366 Run119316-Event36556705 NPE 9.628x10⁴ NPE 6.9928x10⁴ GMT time: 2012/8/8 12:23:18 GMT time: 2012/1/3 9:34:01

2 events / 615.9 days background (atm. μ + conventional atm. ν) expectation 0.060 events

Preliminary

p-value 1.8x10⁻³ (2.9σ excess beyond conventional atmospheric neutrinos)
 (2.2σ excess beyond bg with default prompt atmospheric neutrinos)

2012/11/30

The highest Charged String Positions

Well contained events

Two events observed in log NPE ~ 4.8-5.0

Reconstruction of the two cascade events

Direction and Energy

Consistent with cascade events in detector

CC/NC interactions in the detector v_{e} (cascade) simulation

- No indication
 - that they are instrumental artifacts that they are cosmic-ray muon induced

we can use **dedicated cascade hypothesis** to the reconstructions of these special events

Aya Ishihara

Event from Aug-2011

Calibrated ATWD waveform above and below the highest charged DOM (S53-23)

Distance to source (vertical) [m]

PDF of the deposited energy

The "top-down" approach : Inject MC electrons with the event-relevant phase space and reconstruct them by the same method

2012/11/30

Deposited Energy $\rightarrow \nu$ Energy (At the IceCube depth = in-ice energy)

 $v_e \rightarrow e + X$ (CC reaction) energy deposit = neutrino energy

 $v_x \rightarrow v_x + X$ (NC reaction) energy deposit = a partial neutrino energy

Jan 2012 event Aug 2011 event Both events: ~1 PeV < Ev < ~4 PeV</td>

In-ice v **Energy** $\rightarrow v$ Energy at the Earth surface

The in-earth \boldsymbol{v} propagation effects

What is $E_V^{surface}$ that could induce the PeV event?

when the primary v spectrum $\phi(Ev) \sim E_v^{-2}$ $\int_{10^{-2}}^{10^{-1}} \int_{0^{-1}}^{10^{-2}} \int_{0^{-1}}^{10^{-2}}$

Note: Systematic errors NOT included

when the primary v spectrum $\phi(Ev) \sim a \ la \ GZK$: harder spectrum

Log10(v energy at the Earth surface [GeV])

Sharp fall-off of ν_{e} and ν_{μ} at 107 GeV

higher energy population should have converted to the charge leptons (e or μ) before reaching to the IceCube instrumentation volume

EeV (=10⁹ GeV) tail of v_{τ} The regeneration: $v \rightarrow \tau \rightarrow v$

Two model tests

1. KS tests + full range event counting

2. Counting events above 100 PeV

- Most of the EHE v models predicts v with energies >100PeV
- Probability of two events being >100PeV is small

$$N_{10(1-\alpha)\%} = \sum_{n=0}^{2} P_n N_{n,(100-\alpha)\%}$$

$$P_n \text{ probability of n events above 100 PeV}$$

$$\frac{N_{10(1-\alpha)\%}}{\mu_{\nu} + \mu_{BG}} = 1$$
Ava Ishihara

Results from KS tests + full range event counting

Combined with IC40

Neutrino Model	KS Test P _E	Expected Event Rate	Poisson Significance	Final p-values	
GZK Yoshida/Teshima m=4, Zmax=4	6.0x10 ⁻²	2.8	5.5x10 ⁻¹	1.5x10⁻¹ Marginally excluded	
GZK Ahlers Fermi Best	6.0x10 ⁻²	2.1	7.3x10 ⁻¹	1.8x10⁻¹ Marginally excluded	
GZK Kotera FR-II	3.4x10 ⁻²	5.9 โลการ์ 11	3.8x10 ⁻²	1.0x10⁻² Excluded by 95% C.L.	
GZK Kotera GRB	4.4x10 ⁻²	1.1	4.2x10 ⁻¹	9.2x10 ⁻² Excluded by 90% C.L.	

Event rates(>100 PeV) and p-values

v Model	GZK Y&T m=4,zmax=4	GZK Sigl m=5, zmax=3	GZK Ahler Fermi Best	GZK Ahler Fermi Max	GZK Kotera _{FR-II}	GZK Kotera SFR/GRB	Topdown GUT
Rate >100PeV	2.6	4.0	2.0	4.1	3.8	0.6	5.0
Model Rejection Factor	0.98	0.65	1.27	0.64	0.69	3.6	0.53
p-value	9.6x10 ⁻²	2.4x10 ⁻²	1.6x10 ⁻¹	2 3x10-2		6.7×10 ⁻¹	<10-2

Differential Upper limits (Systematics included)

90% C.L. upperlimit F-C Upper fluctuation

- A factor of ~4 improved from the previous IceCube results
- The world's best sensitivity!
- Will constrain the neutrino fluxes down to mid-strong cosmological evolution models

Still at least a factor of 2 improvement to come in 2 years

62

A short summary on the present constraints

 None of the GZK cosmogenic v scenarios appears consistent with the present observation. Energies of the two events are too low

• A model predicting v spectrum extending beyond ~100 PeV would not account the observation. IceCube have a greater exposure at EeV

Additional note: no sensitivity if UHECRs are heavy nuclei dominated

Then what are they? Reducing the energy threshold

Improvements in 100TeV region from the starting event analysis

Starting event analysis

Nathan Whitehorn and Claudio Kopper (UW)

- was > 63000pe, this reduces energy threshold an order
- Outer veto cut to reject background
 - Events started in detector

Bright (>6000pe)

Summary

- Searched for neutrinos with PeV and greater energies in nearly full 2 years of the IceCube data
- IceCube is the largest neutrino detector and rejection of the atmospheric neutrinos was achieved by setting energy threshold
- Two candidate events observed
 - PeV to 10PeV energy cascade-channel neutrino events (CC/NC interactions within the detector)
 - The highest energy neutrino events observed ever!
- Very likely beyond the conventional atmospheric neutrinos
- Hints for the PeV events origin from different energy-region coming!? ۲
 - 26 additional starting events found
 - p-values to be calculated initial expectation ~3sigma beyond prompt taking zenith angle information into account
 - No events near PeV energies... The PeV 2 events population is a bit away from E-2 flux expected from lower energy region
- New information coming next years from IceCube would be very interesting 2012/11/30 Aya Ishihara

2/28/2013

Zenith angle resolutions

- resolution (RMS) for background is ~1.2 deg
- resolution (RMS) for signal is ~10 deg due to its stochastic nature
 - $_{\circ}$ $\,$ resolution improves with increasing Nch $\,$
 - $_{\circ}$ $\,$ No strong dependence with NPE $\,$

resolution for signal mu, tau tracks

71