Daya Bay 原子炉ニュートリノ実験における 反電子ニュートリノ消失の精密測定

中島 康博 ローレンス・バークレー国立研究所

2013年10月8日 京都大学

Outline

- Introduction
- Daya Bay experiment
- Current data sets
- Spectrum analysis
 - Challenges and improvements
 - Oscillation parameter
 extraction
- Summary

Neutrino Mixing

• Neutrino flavor (weak) eigenstates and mass eigenstates are mixed

Weak eigenstate
$$- |\nu_{\alpha}\rangle = \sum_{i} U_{\alpha i} |\nu_{i}\rangle - Mass eigenstate$$

($\alpha = e, \mu, \tau$) (i = 1, 2, 3)
MNS mixing matrix

- Neutrinos change their flavor as they travel (neutrino oscillation)
- Natural interferometer to explore fundamental nature of neutrinos

Neutrino Mixing

All the three angles are finally observed! $c_{ij} \equiv \cos \theta_{ij}$ and $s_{ij} \equiv \sin \theta_{ij}$ $U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \times \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \times \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $\theta_{23} \approx 45^{\circ}$ $\theta_{13} \sim 9^{\circ}$ Atmospheric v
Accelerator vFirst >50 observation
at Daya Bay (2012)

- Open questions:
 - Is there CP-violation in neutrino sector?
 - What is mass hierarchy?
 - Are there any other type of neutrinos?

Precise measurement of mixing angle is a key to answer those questions.

Reactor Antineutrinos

- Most powerful man-made source of antineutrinos, and it's <u>free</u>
- Nuclear fission release:
 - 6 antineutrinos/fission
 - Typically ~ 10²⁰ fissions/second
- Detected through inverse beta decay
- Broad spectrum with mean energy of ~4 MeV

First established by Daya Bay (2012) Now moving towards precision measurement!

ncertaifingmplementarity

sin²2θ₁₃ results from reactor experiments M.Wilking @EPS-HEP2013 (Dominated by Daya Bay)

Precise measurement of $sin^2 2\theta_{13}$ is an essential ingredient for resolving CP violation and mass hierarchy

Daya Bay Experiment

Daya Bay: A Powerful Neutrino Source at an Ideal Location

Mountains shield detectors from cosmic ray backgrounds

Daya Bay NPP

 $2 \times 2.9 \text{ GW}_{\text{th}}$

Ling Ao I NPP 2 \times 2.9 GW_{th}

Ling Ao II NPP $2 \times 2.9 \text{ GW}_{\text{th}}$

Entrance to Daya Bay experiment tunnels

Among the top 5 most powerful reactor complexes in the world, 6 cores produce 17.4 GWth power, 35×10^{20} neutrinos per second

Daya Bay Collaboration

Asia (21)

Beijing Normal Univ., CGNPG, CIAE, Dongguan Polytechnic, ECUST, IHEP, Nanjing Univ., Nankai Univ., NCEPU, Shandong Univ., Shanghai Jiao Tong Univ., Shenzhen Univ., Tsinghua Univ., USTC, Xian Jiaotong Univ., Zhongshan Univ.,

Chinese Univ. of Hong Kong, Univ. of Hong Kong, National Chiao Tung Univ., National Taiwan Univ., National United Univ.

Europe (2)

Charles University, JINR Dubna

North America (17)

Brookhaven Natl Lab, CalTech, Illinois Institute of Technology, Iowa State, Lawrence Berkeley Natl Lab, Princeton, Rensselaer Polytechnic, Siena College, UC Berkeley, UCLA, Univ. of Cincinnati, Univ. of Houston, UIUC, Univ. of Wisconsin, Virginia Tech, William & Mary, Yale

~230 collaborators from 40 institutions

Strategy for Precise Measurement

Relative measurement with functionally identical detectors

Most of uncertainty from detector response and absolute flux cancel

Far/Near v_e RatioDistances from
reactorOscillation deficit $\frac{N_f}{N_n} = \left(\frac{N_{p,f}}{N_{p,n}}\right) \left(\frac{L_n}{L_f}\right)^2 \left(\frac{\epsilon_f}{\epsilon_n}\right) \left[\frac{P_{sur}(E, L_f)}{P_{sur}(E, L_n)}\right]$ Detector Target MassDetector efficiency

Experiment Layout

Far hall measures oscillation

10 10	Overburden	R_{μ}	E_{μ}	D1,2	L1,2	L3,4
EH1	250	1.27	57	364	857	1307
EH2	265	0.95	58	1348	480	528
EH3	860	0.056	137	1912	1540	1548

TABLE I. Overburden (m.w.e), muon rate R_{μ} (Hz/m²), and average muon energy E_{μ} (GeV) of the three EHs, and the distances (m) to the reactor pairs.

Daya Bay Advantages

Ideal baseline

- Detector locations optimized to known parameter space of Δm^2_{ee}
- Better sensitivity to both θ_{13} and Δm^2_{ee}

Stronger, bigger, and deeper

	Reactor [GW _{th}]	Target [tons]	Depth [m.w.e]	
Double Chooz	8.6	16 (2 × 8)	300, 120 (far, near)	
RENO	16.5	32 (2 × 16)	450, 120	
Daya Bay	17.4	160 (8 × 20)	860, 250	
	Large Si	Low Background		

Daya Bay Detector

Detection Method

Antineutrino Detector

- 8 functionally identical detectors
- Three-zone cylindrical modules:

 Reflectors at top/bottom of cylinder are used to increase light yield. Stainless

Steel

Vessel (SSV)

Calibration

system

5m

Calibration System

- Three Automated Calibration Units (ACUs) per detector.
- Deploy sources along the z-axis
- Three sources + LED in each ACU, on a turn table.
 - 68 Ge (γ , 2 × 0.511 MeV)
 - ⁶⁰Co (γ, 2.506 MeV)
 - ²⁴¹Am-¹³C (n, 8MeV)
 - LED for timing and gain calibration
- Temporary special calibration sources:
 - γ: ¹³⁷Cs(0.622 MeV), ⁵⁴Mn(0.835 MeV), ⁴⁰K (1.461 MeV)
 - n: ²⁴¹Am-⁹Be, ²³⁹Pu-¹³C

Muon Tagging System

- 2.5 meter thick twosection water shield
 - Cherenkov detector to tag cosmic ray muons.
 - Shield for neutrons and gammas from surrounding materials.
- RPC
 - Covers water pool to provide further muon tagging.

Data Set

Data sets

Two detector comparison [1202.6181]

- 90 days of data, Daya Bay near only
- NIM A **685** (2012), 78-97

First oscillation analysis

[1203:1669]

- 55 days of data, 6 ADs near+far
- PRL **108** (2012), 171803

Improved oscillation analysis [1210.6327]

- 139 days of data, 6 ADs near+far
- CP C 37 (2013), 011001

Spectral Analysis

- 217 days, complete 6 AD period
- 55% more statistics than CPC result

Antineutrino Selection

- Reject spontaneous PMT light emission ("flashers")
- 2 Prompt positron:
 - 0.7 MeV < Ep < 12 MeV
- ③ Delayed neutron:6.0 MeV < Ed < 12 MeV
- ④ Neutron capture time:
 1 μs < t < 200 μs
- 5 Muon veto:
 - Water pool muon (>12 hit PMTs): Reject [-2µs; 600µs]
 - AD muon (>3000 photoelectrons): Reject [-2 μs; 1400μs]
 - AD shower muon (>3×10⁵ p.e.): Reject [-2 μs; 0.4s]

6 Multiplicity:

- No additional prompt-like signal 400µs before delayed neutron
- No additional delayed-like signal 200µs after delayed neutron

Antineutrino Rate vs. Time

Detected rate strongly correlated with reactor flux expectations

- Absolute normalization determined by fit to data
- Normalization within a few percent of expectations

Signal and Background Summary

	Near Halls			Far Hall			
	ADI	AD2	AD3	AD4	AD5	AD6	
IBD candidates	101290	102519	92912	13964	13894	373	
DAQ live time (day)	191.001		189.645		189.779		
Efficiency	0.7957	0.7927	0.8282	0.9577	0.9568	0.9566	
Accidentals (/day/AD)*	9.54±0.03	9.36±0.03	7.44±0.02	2.96±0.01	2.92±0.01	2.87±0.01	
Fast neutron (/day/AD)*	0.92:	±0.46	0.62±0.31		0.04±0.02		
⁸ He/ ⁹ Li (/day/AD)*	2.40:	±0.86	I.20±0.63		0.22±0.06		
Am-C corr. (/day/AD)*			0.26±0.12				
¹³ C(α, n) ¹⁶ O (/day/AD)*	0.08±0.04	0.07±0.04	0.05±0.03	0.04±0.02	0.04±0.02	0.04±0.02	
IBD rate (/day/AD)*	653.30 ± 2.31	664.15 ± 2.33	581.97 ± 2.07	73.3 I ± 0.66	73.03 ± 0.66	72.20 ± 0.66	

* Corrected for the efficiency of the muon veto and multiplicity cuts

Collected more than 300k antineutrino interactions

- Consistent rates for side-by-side detectors
- Uncertainties still dominated by statistics

Oscillation Analysis

Initial results

Based on 55 days of data with 6 ADs, discovered disappearance of reactor \overline{v}_{e} at short baseline in March 2012. [PRL 108, 171803]

Obtained the most precise value of θ_{13} in Jun. 2012:

 $\sin^2 2\theta_{13} = 0.089 \pm 0.010 \pm 0.005$ [CPC **37**, 011001]

Rate Only Analysis

Rate + Shape Analysis

Challenges for the spectrum shape analysis

- Understanding of background rate and shape
- Understanding of the detector response
 - Energy resolution
 - Energy scale
 - Effect of inactive volume (acrylic vessel)

Challenges for the spectrum shape analysis

Understanding Background rate and shape

- Understanding of the detector response
 - Energy resolution
 - Energy scale
 - Effect of inactive volume (acrylic vessel)

Understanding Background Rate and Shape

1	Near Halls			Far Hall			
	ADI	AD2	AD3	AD4	AD5	AD6	
IBD candidates	101290	102519	92912	13964	13894	13731	
DAQ live time (day)	191.001		189.645		189.779		
Efficiency	0.7957	0.7927	0.8282	0.9577	0.9568	0.9566	
Accidentals (/day/AD)*	9.54±0.03	9.36±0.03	7.44±0.02	2.96±0.01	2.92±0.01	2.87±0.01	
Fast neutron (/day/AD)*	0.92±0.46		0.62±0.31		0.04±0.02		
⁸ He/ ⁹ Li (/day/AD)*	2.40±0.86		I.20±0.63	in the first of the second	0.22 <u>±0.06</u>	unanta menyakan dari kata kana	
Am-C corr. (/day/AD)*			0.26±0.12				
¹³ C(α, n) ¹⁶ O (/dayXAD)*	0.08±0.04	0.07±0.04	0.05±0.03	0.04±0.02	0.04±0.02	0.04±0.02	
IBD rate (/day/AD)*	653.30 ± 2.31	664.15 ± 2.33	581.97 ± 2.07	73.31 ± 0.66	73.03 ± 0.66	72.20 ± 0.66	
	Two worst contributors to						

⁸He/⁹Li Backgrounds

Directory measured by fitting the distribution of IBD candidates vs. time since muon

β-n decay:

- Prompt: β-decay
- Delayed: neutron capture

⁹Li: $\tau_{\frac{1}{2}} = 178$ ms, Q = 13.6 MeV ⁸He: $\tau_{\frac{1}{2}} = 119$ ms, Q = 10.6 MeV

- Generated by cosmic rays
- Long-lived
- Mimic antineutrino signal

⁹Li / ⁸He Decay

Analysis muon veto cuts control B/S to ~0.3±0.1%

⁸He/⁹Li Backgrounds

- Simulated ⁸He/⁹Li spectra including neutron and alpha contributions
- Benchmarked with external data
- Uncertainty in shape is conservatively estimated by varying ⁹Li/(⁹Li+⁸He) ratio and detector response model

²⁴¹Am-¹³C Background

Subtle background from our calibration source

- ²⁴¹Am-¹³C source produces ~0.75 Hz neutron via ¹³C(α,n)¹⁶O
- Neutron interact with steel to produce fake prompt-delayed pair

• Background rate expected to be small: 0.2-0.3/day/module (MC)

• Yet, one of the largest source of systematic uncertainty from backgrounds

²⁴¹Am-¹³C Background

A special x80 stronger ²⁴¹Am-¹³C source placed on the AD

Used special strong source data to benchmark and correct MC simulation

Estimation for physics data: Rate: 0.26/day/module (45% uncertainty) Spectrum: exponential (15% uncertainty) Factor 2 reduced from the previous analysis Removed 2 of 3 sources in far detectors to reduce future backgrounds.

Challenges for the spectrum shape analysis

- Understanding Background rate and shape
- Understanding of the detector response
 - Energy resolution
 - Energy scale
 - Effect of inactive volume (acrylic vessel)
Understanding of Detector Response

Acrylic Vessel / Energy Resolution

Energy loss in the acrylic vessel distorts spectrum

Modeled using MC simulation

Energy resolution

 $rac{\sigma_E}{E} = \sqrt{a^2 + rac{b^2}{E} + rac{c^2}{E^2}}$

- a : Spacial/temp. resolution (E)
- b : Photon statistics (E)
- c : Dark noise (const:)

Calibrated primarily using monoenergetic gamma sources

Constraining Non-Linearity Parameters

Full detector calibration data

- 1. Monoenergetic gamma lines from various sources
 - Radioactive calibration sources, employed regularly: ⁶⁸Ge, ⁶⁰Co, ²⁴¹Am-¹³C and during special calibration periods: ¹³⁷Cs, ⁵⁴Mn, ⁴⁰K, ²⁴¹Am-⁹Be, Pu-¹³C
 - Singles and correlated spectra in regular physics runs (⁴⁰K, ²⁰⁸Tl, n capture on H)
- 2. Continuous spectrum from ¹²B produced by muon spallation inside the scintillator

Standalone measurements

- Scintillator quenching measurements using neutron beams and Compton e⁻
- Calibration of readout electronics with flash ADC

Final Positron Energy Non-Linearity response

Several validated models

- Constructed based on different parameterizations/weighting of data constraints
- All models in good agreement with detector calibration data
- Resulting positron non-linearity curves consistent within $\sim 1.5\%$ uncertainty

Used combination of 5 models to conservatively estimate uncertainty

Relative Energy Scale Crucial ingredient: Consistent energy response for all ADs Careful calibration with in-situ data and calibration sources:

- Energy response stable to 0.1% in all detectors
- Total relative uncertainty of 0.35% between detectors

Yet, the largest source of systematic uncertainty for Δm^2_{ee}

Results

Rate only analysis

$\sin^2 2\theta_{13} = 0.089 \pm 0.009 \quad \chi^2/N_{\text{DOF}} = 0.48/4$

- Uncertainty reduced by statistics of complete 6 AD data period
- $|\Delta m^2_{ee}|$ constrained by MINOS result: $|\Delta m^2_{\mu\mu}| = 2.41^{+0.09}_{-0.10} \times 10^{-3} \text{ eV}^2_{PRL. 110, 251801}$ (2013)
- Far vs. near relative measurement: absolute rate not constrained
- Consistent results from independent analysis, different reactor models

IBD Prompt Energy Spectra

Spectral distortion consistent with oscillation

- Both background and predicted no oscillation spectra determined by the best fit
- Errors are statistical only

Rate and Shape Analysis Results

$$\Delta m_{ee}^{2} \text{ and } \Delta m_{\mu\mu}^{2}?$$

$$P(\overline{\nu}_{e} \rightarrow \overline{\nu}_{e}) = 1 - \frac{\sin^{2} 2\theta_{13} \sin^{2} \left(\Delta m_{ee}^{2} \frac{L}{4E}\right)}{\sin^{2} \left(\Delta m_{ee}^{2} \frac{L}{4E}\right)} - \frac{\cos^{4} \theta_{13} \sin^{2} 2\theta_{12} \sin^{2} \left(\Delta m_{21}^{2} \frac{L}{4E}\right)}{\sin^{2} \left(\Delta m_{ee}^{2} \frac{L}{4E}\right)} = \cos^{2} \theta_{12} \sin^{2} \left(\Delta m_{31}^{2} \frac{L}{4E}\right) + \sin^{2} \theta_{12} \sin^{2} \left(\Delta m_{32}^{2} \frac{L}{4E}\right)$$

- Oscillation at ~2 km governed by two mass splittings: Δm^2_{31} and Δm^2_{32}
- Insensitive to distinguish the two. \rightarrow Effective mass splitting: Δm^2_{ee}

$$\begin{split} \text{Can relate to actual splittings:} \\ |\Delta m_{ee}^2| \simeq |\Delta m_{32}^2| \pm 5 \times 10^{-5} \text{ eV}^2 & \stackrel{\text{+: Normal Hierarchy}}{\text{-: Inverted Hierarchy}} \end{split}$$

 Δm_{ee}^2 should be within 2-3% from the effective mass splitting for muon (anti-)neutrino disappearance $\Delta m_{\mu\mu}^2$

$$P(
u_{\mu}
ightarrow
u_{\mu}) \simeq 1 - \sin^2 2 heta_{23} \sin^2 \left(\Delta m_{\mu\mu}^2 rac{L}{4E}
ight)$$

Important test of three-flavor oscillation model

Rate and Shape Analysis Results

 $\begin{aligned} \sin^2 2\theta_{13} &= 0.090^{+0.008}_{-0.009} \\ |\Delta m^2_{ee}| &= 2.59^{+0.19}_{-0.20} \times 10^{-3} \text{ eV}^2 \\ \chi^2/N_{\text{DOF}} &= 162.7/153 \end{aligned}$

Strong confirmation of the oscillation model

	Normal MH Δm^2_{32} [10 ⁻³ eV ²]	Inverted MH Δm^2_{32} [10 ⁻³ eV ²]
From Daya Bay Δm^2_{ee}	$2.54\substack{+0.19 \\ -0.20}$	$-2.64\substack{+0.19\\-0.20}$
From MINOS $\Delta m^2_{\mu\mu}$	$2.37\substack{+0.09 \\ -0.09}$	$-2.41\substack{+0.12\\-0.09}$

Near vs. Far Spectrum study

Independent crosscheck with minimal reactor assumption

Predict far spectra directly from measured near site spectra

→ Minimizes impact of absolute flux and spectra prediction.

Use covariance matrices to account for systematic errors

 \rightarrow Alternate method finds consistent uncertainties for neutrino parameters.

<u>Systematic uncertainties controlled</u> <u>to well below statistical error</u>

Near vs. Far Spectrum Study Fit Result

Consistent results with the default method

Neutrino Oscillates

Global Comparison of θ_{13} Measurements

Daya Bay Onsite Progress

Final two detectors installed, operating since Oct. 2012.

Full 4π detector calibration in Sep. 2012.

Future Sensitivity

Sensitivity still dominated by statistics

- Statistics contribute 73% (65%) to total uncertainty in $\sin^2 2\theta_{13}$ ($|\Delta m_{ee}^2|$)
- Major systematics:
 - θ_{13} : Reactor model, relative + absolute energy, and relative efficiencies
 - |Δm²_{ee}|: Relative energy model, relative efficiencies, and backgrounds
- Precision of mass splitting measurement closing in on results from μ flavor sector

How the data will look like in 2015

Summary

• The Daya Bay Experiment has made the first direct measurement of the short-distance electron antineutrino oscillation frequency:

$|\Delta m_{\rm ee}^2| = 2.59^{+0.19}_{-0.20} \times 10^{-3} \ eV^2$

• We also produced the most precise estimate of the mixing angle: $\sin^2 2\theta_{13} = 0.090^{+0.008}_{-0.009}$

- Still, a lot of results coming in the near future:
 - Measurement of absolute reactor flux
 - Testing non-standard neutrino models
 - Significantly increased precision with much more statistics

Backup slides

Scintillator Response Model

Electron response

2 parameterizations to model quenching effects and Cherenkov radiation:

1) 3-parameter purely empirical model:

$$\frac{E_{\text{vis}}}{E_{\text{true}}} = \frac{1 + p_3 \cdot E_{true}}{1 + p_1 \cdot e^{-p_2 \cdot E_{\text{true}}}}$$

2) Semi-emp. model based on Birks' law:

$$\frac{E_{\text{vis}}}{E_{\text{true}}} = f_{q}(E_{\text{true}}; k_{B}) + k_{C} \cdot f_{c}(E_{\text{true}})$$

$$k_{B}: \text{ Birks' constant}$$

$$k_{C}: \text{ Cherenkov contribution}$$

Gammas + positrons

 Gammas connected to electron model through MC:

$$E_{\rm vis}^{\gamma} = \int E_{\rm vis}^{e^-} \left(E_{\rm true}^{e^-} \right) \cdot \frac{dN}{dE} \left(E_{\rm true}^{e^-} \right) dE_{\rm true}^{e^-}$$

 Positrons connected to electron model through MC:

 $E_{\mathrm{vis}}^{e^+} = E_{\mathrm{vis}}^{e^-} + 2 \cdot E_{\mathrm{vis}}^{\gamma}(0.511\,\mathrm{MeV})$

Electronics Non-Linearity Model

PMT readout electronics introduces additional biases

Electronics does not fully capture late secondary hits

- Slow scintillation component missed at high energies
- Charge collection efficiency decreases with visible light

Observed non-linearity is a product of scintillator and electronics non-linearity

$$f = \frac{E_{\text{rec}}}{E_{\text{true}}} = \frac{E_{\text{vis}}}{E_{\text{true}}} \times \frac{E_{\text{rec}}}{E_{\text{vis}}} = f_{\text{scint}}(E_{\text{true}}) \times f_{\text{elec}}(E_{\text{vis}})$$
1 Scintillator non-linearity 1
2 Electronics non-linearity $-$

Constrained the model with full use of current existing data...

Trigger Performance

Trigger Thresholds:

- AD: >45 PMTs (digital trigger) >0.4 MeV (analog trigger)
- Inner Water Veto: > 6 PMTs
- Outer Water Veto: >7 PMTs

₽

P

ю

ю

0

0.5

EH3

AD1

 \square AD2

1.5

1

- RPC: ¾ layers in module

Trigger Efficiency:

- No measureable inefficiency >0.7 MeV
- Minimum energy expected for prompt antineutrino signal is ~0.9 MeV.

0.8

0.6

0.4

0.2

0

Trigger efficiency

Calibration: PMT+Electronics Gain

Measure charge from single photons in-situ with data

Calibration: Energy Scale

Measure energy scale in-situ with data

Calibrate charge (photoelectrons) collected per MeV in-situ using spallation nGd capture events. Also use weekly deployments of ⁶⁰Co source.

Small degradation of energy scale is seen with nGd, ⁶⁰Co, and other event types. Its origin is still unknown, but do not anticipate any problems in experiment's lifetime.

Calibration: Detector Uniformity

Measure uniformity with sources placed along three axes and spallation nGd events

Delayed Energy Cut

Entries/30keV 10⁴ Largest uncertainty between detectors 10³ Some *n*Gd gammas escape scintillator region, visible as tail of *n*Gd energy peak. 10² Use variations in energy peaks to *n*Gd constrain relative efficiency. 10 0.01 • Po215 alpha 800.0 Spall-n capture IBD n-Gd Po212 alpha 0.006 AD1 Spa n-Gd 8 Po214 alpha 0.004 Asymmtry w.r.t. 0.002 **Efficiency variations** estimated at 0.12% -0.002 -0.004 $Asym = (E_{AD1} - E_{ADn})/\langle E \rangle$ **Motivation** -0.006 for 'Intrinsic' energy peak variation: ~0.3% -0.008 3-zone design -0.01 2 3 5 6 **AD** number

EH1 AD1 EH1 AD2

EH2 AD1 EH3 AD1 EH3 AD2

EH3 AD3

10

Energy (MeV)

12

Capture Time

Consistent IBD neutron capture time measured in all detectors

Capture time cut: 1µs to 200µs

Efficiency uncertainty within 0.01% between detectors.

Accidental backgrounds

Two uncorrelated signals can accidentally mimic an antineutrino signal.

→ Negligible uncertainty in background rate or spectra.

Fast-neutron backgrounds

Fast Neutrons:

Energetic neutrons produced by cosmic rays (inside and outside of muon veto system)

Mimics antineutrino (IBD) signal:

- Prompt: Neutron collides/stops in target
- Delayed: Neutron captures on Gd

Analysis muon veto cuts control B/S to 0.06% (0.1%) of far (near) signal.

Reactor Flux Models

Antineutrino flux S(E) from each reactor used to predict IBDs at each detector

	²³⁵ U	²³⁸ U	²³⁹ Pu	²⁴¹ Pu
AD 1	63.3	12.2	19.5	4.8
AD 2	63.3	12.2	19.5	4.8
AD 3	61.0	12.5	21.5	4.9
AD 4	61.5	12.4	21.1	4.9
AD 5	61.5	12.4	21.1	4.9
AD 6	61.5	12.4	21.1	4.9

Approximate percentage of IBDs from each fission isotope at each detector

New model:

P. Huber, Phys. Rev. C84, 024617 (2011), T. Mueller et al., Phys. Rev. C83, 054615 (2011)

Old model:

- K. Schreckenbach et al., Phys. Lett. B160, 325 (1985)
- A. A. Hahn et al., Phys. Lett. B218, 365 (1989)
- P. Vogel et al. Phys. Rev. C24, 1543 (1981)

New/Old flux model difference in unoscillated IBD prediction by hall

Flux model has negligible impact on far vs. near oscillation measurement

Rate Uncertainty Summary

Detector			With near/far	
	Efficiency	Correlated	Uncorrelated	measurement. correlated
Target Protons		0.47%	0.03%	uncertainties cancel
Flasher cut	99.98%	0.01%	0.01%	Orakuma annues carreet.
Delayed energy cut	90.9%	0.6%	0.12%	Only uncorrelated
Prompt energy cut	99.88%	0.10%	0.01%	uncertainties are used.
Multiplicity cut		0.02%	< 0.01%	
Capture time cut	98.6%	0.12%	0.01%	
Gd capture ratio	83.8%	0.8%	<0.1%	 Largest systematics
Spill-in	105.0%	1.5%	0.02%	are smaller than far
Livetime	100.0%	0.002%	< 0.01%	site statistics $(\sim 1\%)$
Combined	78.8%	1.9%	0.2%	
	Rea	ctor		
Correlated Un		correlated		
Energy/fission	0.2%	Power	0.5%	Uncorrelated reactor
$\overline{\nu}_e$ /fission	3%	Fission frac	tion 0.6%	 systematics reduced by
-		Spent fuel	0.3%	far ve poar moacuremen
Combined	3%	Combined	0.8%	iai vs. neai measuremen

Daya Bay Future

Improved precision on oscillation parameters

- Constrains non-standard oscillation models
- Improves reach of future neutrino experiments

Measure absolute reactor neutrino flux

- Explore the 'reactor antineutrino anomaly'
- Precise spectrum probes reactor models

Cosmogenic Backgrounds

- Measurement of cosmogenic production vs. depth

Supernova Neutrinos

 χ^2 definition

- Binned maximum likelihood method
- Constrain with the uncertainty from reactor flux model, background and relative detection efficiency.
 - Using covariance matrix to reduce number of the nuisance parameters for the reactor flux model.

Far vs. near relative measurement [No constraint on the absolute rate]

Pure Spectral Analysis

 $\theta_{13} = 0$ can be excluded at > 3σ from spectral information alone

sin²20₁₃ sensitivity projection

- Current errors are dominated by the statistical uncertainties (73%)
- Major systematics:
 - Reactor Model, relative+absolute energy and detector efficiency
- Daya Bay $\sin^2 2\theta_{13}$ final precision ~4%, it can be further improved by adding nH capture analysis
Δm^2 sensitivity projection

- Current errors are dominated by the statistical uncertainties (73%)
- Major systematics:
 - Relative energy and background
- Daya Bay $|\Delta m^2_{ee}|$ final precision ~0.1x10⁻³ eV², comparable to the results from μ flavor sector

Making a Far Site prediction from the Near Site data

From the

- relative reactor core power info
- experimental layout geometry

it is possible to determine what fraction of events in each near detector at each true energy bin originate from each core.

Each of these components is then individually extrapolated to the far site

All reactor and detector correlated systematics, including the absolute flux and shape uncertainties, **cancel to first order.**

Δm^2_{ee} , $\Delta m^2_{\mu\mu}$ and MH

• Value of Δm^2_{ee} constrained by the effective mass splitting measured by muon (anti-)neutrino disappearance, $\Delta m^2_{\mu\mu}$.

$$P(
u_{\mu}
ightarrow
u_{\mu}) \simeq 1 - \sin^2 2 heta_{23} \sin^2 \left(\Delta m_{\mu\mu}^2 rac{L}{4E}
ight)$$

- Reactor neutrinos can make independent measurement of Δm^2_{ee}
 - Important test of the three-flavor oscillation model
 - Need <1% precision for both Δm^2_{ee} and $\Delta m^2_{\mu\mu}$ to resolve mass hierarchy.
 - Extensively discussed in
 - PRD 72, 013009(2005) and
 - PRD 74,053008 (2006)

