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1. Probing the antimaterial world with neutrino interactions

material world

Wiki: NGC 4414

antimaterial world

 (to be found)violation of CP-symmetry

leptonic CP violation

⇑

https://en.wikipedia.org/wiki/NGC_4414
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1. Probing the antimaterial world with neutrino interactions

material world

Wiki: NGC 4414

antimaterial world

violation of CP-symmetry

detector

accelerator

=, ≠, ≠

 (to be found)

https://en.wikipedia.org/wiki/NGC_4414
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1. Probing the antimaterial world with neutrino interactions

Charged-current cross section per nucleon

Quasi-elastic scattering (QE):      

Resonance production (RES): 

detector

≠
Rev.Mod.Phys. 84 (2012) 1307 

Rev.Mod.Phys. 84 (2012) 1307 
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1. Probing the antimaterial world with neutrino interactions

detector

T2K, PRL 112, 061802 (2014)

Neutrino energy reconstruction

Convert to flux via cross section
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1. Neutrino interactions on static nucleon
➢ Static nucleon target ν
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1. Neutrino interactions on static nucleon
➢ Static nucleon target, charged current (CC) ν → l', quasi-elastic (QE) N → N'

✔ Detection via charged lepton
✔ Neutrino energy ← charged lepton kinematics
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1. Neutrino interactions on static nucleon
➢ Static nucleon target, charged current (CC) ν → l', quasi-elastic (QE) N → N'

✔ Detection via charged lepton
✔ Neutrino energy ← charged lepton kinematics
✔ Lepton and hadron transversely balanced
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1. Neutrino interactions on bound nucleon
➢ Nucleus (bound nucleon) target  ν 

✗ Fermi motion (FM) biases neutrino energy reconstruction
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1. Neutrino interactions on bound nucleon

Science 320 (2008) 1476-1478 

initial nucleon in correlation with 
another in large relative motion

Properties largely unknown, for simplicity no further 
discussion here. See more detail in arXiv:1512.05748.

➢ Nucleus (bound nucleon) target  ν 
✗ Fermi motion (FM) biases neutrino energy reconstruction
✗ Multinucleon correlations: cross section unknown, strong bias to all final state kinematics
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1. Neutrino interactions on bound nucleon
➢ Nucleus (bound nucleon) target, CC ν → l', QE N → N'

✗ Fermi motion (FM) biases neutrino energy reconstruction
✗ Multinucleon correlations: cross section unknown, strong bias to all final state kinematics
✗ QE-like: QE faked by resonance production (RES) ∆ → N'π 

π absorbed in nucleus ← final state interaction (FSI)

PRL 111, 221802 (2013)
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1. Neutrino interactions on bound nucleon
➢ Nucleus (bound nucleon) target, CC ν → l', QE N → N'

✗ Fermi motion (FM) biases neutrino energy reconstruction
✗ Multinucleon correlations: cross section unknown, strong bias to all final state kinematics
✗ QE-like: QE faked by resonance production (RES) ∆ → N'π

π absorbed in nucleus ← final state interaction (FSI)
✗ FSI → energy-momentum transferred in nucleus, possible nuclear emission

nuclear emission
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1. Neutrino interactions on bound nucleon
➢ Nucleus (bound nucleon) target  ν 

✗ Nuclear effects: FM, multinucleon correlations, FSI, etc.
✗ Transverse momenta NOT balanced
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1. Nuclear effects in neutrino interactions

interaction dynamics

nuclear effects

nuclear targets

– quasielastic

– resonant

– DIS
– binding energy

– Fermi motion

– Final state interactions

– C

– O

– Fe

– Pb

– Ar

– multinucleon correlations

gas dynamics 
+ shell structure

Effects associated with nuclear 
targets in neutrino interactions

– highly convoluted

Neutrino 
energy 

Previous discussion
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1. Nuclear effects in neutrino interactions

interaction dynamics

nuclear effects

nuclear targets

– quasielastic
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– binding energy

– Fermi motion

– Final state interactions

– C

– O

– Fe

– Pb

– Ar

– multinucleon correlations

gas dynamics 
+ shell structure

T2K, PHYSICAL REVIEW D 91, 072010 (2015)
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2. Minimal energy dependent measurement of nuclear effects

interaction dynamics

nuclear effects

nuclear targets

– quasielastic

– resonant

– DIS
– binding energy

– Fermi motion

– Final state interactions

– C

– O

– Fe

– Pb

– Ar

– multinucleon correlations

gas dynamics 
+ shell structure

Neutrino 
energy X
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2. Energy dependence of final state kinematics

4-momentum transfer: Q2

Invariant mass of N': W
Ignoring binding energy, 

(                           effect of Fermi motion)

Quasi-elastic scattering (QE): 

Resonance production (RES): 

For QE and RES, Q2<<m
N

2 (interaction length)

W is nucleon or resonance mass. 
ω “saturates” when E

ν
 > Ο (m

N
/2)

● Lepton retains most of the increase of neutrino 
energy

● Hadronic kinematics much less E
ν
-dependent 

than leptonic ones
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2. Energy dependence of nuclear medium response

N' mom. saturation

= ×

N' mom. saturates with large neutrino energy.

FSI all determined by N' momentum:
1. In-medium interaction probability τ

f
 saturates 

τ
f
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2. Energy dependence of nuclear medium response

N' mom. saturation

= ×

N' mom. saturates with large neutrino energy.

FSI all determined by N' momentum:
1. In-medium interaction probability τ

f
 saturates 

2. Energy-momentum transfer                   from N' 
to the nucleus also saturate  

τ
f
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2. Energy dependence of nuclear medium response

N' mom. saturation

= ×

N' mom. saturates with large neutrino energy.

FSI all determined by N' momentum:
1. In-medium interaction probability τ

f
 saturates 

2. Energy-momentum transfer                   from N' 
to the nucleus also saturate  

Medium response:
Nuclear emission: nucleus being excited or 
broken-up, emitting particles. 
Probability: P(∆E)

P(∆E)

τ
f
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2. Energy dependence of nuclear medium response

N' mom. saturation

●                  fully determine nuclear response – ideal variables to characterize FSI.

= ×

N' mom. saturates with large neutrino energy.

FSI all determined by N' momentum:
1. In-medium interaction probability τ

f
 saturates 

2. Energy-momentum transfer                   from N' 
to the nucleus also saturate.  

Medium response:
Nuclear emission: nucleus being excited or 
broken-up, emitting particles. 
Probability: P(∆E)

τ
f
 

P(∆E)
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2. State-of-the-art probes of nuclear effects

✔ Neutrinos produced by accelerators have well 
understood directions. 

✔ Momentum conservation applies in all directions of 
the neutrino-nucleus interaction system.

→ neutrino-nucleon kinematic imbalance 
= 

nuclear effects

Neutrino energy unknown, use transverse projection
→

To first order, nuclear effects can be determined 
independently on neutrino energy.
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2. State-of-the-art probes of nuclear effects

✔ Neutrinos produced by accelerators have well 
understood directions. 

✔ Momentum conservation applies in all directions of 
the neutrino-nucleus interaction system.

→ neutrino-nucleon kinematic imbalance 
= 

nuclear effects

✔ Neutrino energy unknown, use transverse projection

→

To first order, nuclear effects can be determined 
independently on neutrino energy.
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2. State-of-the-art probes of nuclear effects

No nuclear effects
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2. State-of-the-art probes of nuclear effects

Limited energy evolution with FSI strength

FM FSI

invariant w/ neutrino energy
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2. State-of-the-art probes of nuclear effects

Strong – inverted – energy evolution contains lepton kinematics δφ
T
 ~ δp

T
/q

T

Neutrino energy dependence can counteracts nuclear effects.

Counterexample
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2. State-of-the-art probes of nuclear effects

FM FSI

invariant w/ nucleon-level physics

Extension

Proton momentum
Counterexample
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2. State-of-the-art probes of nuclear effects

● Directly showing initial state, useful to study new 
target material

Application
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2. State-of-the-art probes of nuclear effects

● In RES, N' = proton + pion, sensitive to pion FSI
● Useful to study FSI in anti-neutrino interaction (anti-nu CCQE N'=neutron)

Application
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2. State-of-the-art probes of nuclear effects

No FSI (i.e. FM only)

Isotropic FM
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2. State-of-the-art probes of nuclear effects

Decelerating FSI
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2. State-of-the-art probes of nuclear effects

Accelerating FSI
(real example in Section 4)
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Outline

1. Introduction
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3. Measuring neutrino energy independent of nuclear effects

4. Theory predictions

5. Measurement in MINERvA

6. Measurement in T2K

7. Summary



29 July 2016 X.-G. Lu, Oxford 39

3. Nuclear effect-independent reconstruction of neutrino energy

interaction dynamics

nuclear effects

nuclear targets

– quasielastic

– resonant

– DIS
– binding energy

– Fermi motion

– Final state interactions

– C

– O

– Fe

– Pb

– Ar

– multinucleon correlations

gas dynamics 
+ shell structure

Neutrino 
energy 

X

X
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3. Hydrogen as neutrino interaction target

interaction dynamics

nuclear effects

nuclear targets

– quasielastic

– resonant

– DIS
– binding energy

– Fermi motion

– Final state interactions

– C

– O

– Fe

– Pb

– Ar

– multinucleon correlations

gas dynamics 
+ shell structure

Neutrino 
energy 

X

With                  target,

E
ν
             ∑ final-state energy.

A problem of                                .

=
≠

H
nuclear

H

detector resolution
nuclear phy. + d.r.
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3. Hydrogen as neutrino interaction target

● Pure hydrogen

– Technical requirement: 

● bubble chamber (historical: 73, 79, 78, 82, 86)

– Safety issue: explosive

● “Since the use of a liquid H2 bubble chamber is excluded in the ND 
hall due to safety concerns, ...”

● In the last ~30 years there has been no new measurement of neutrino interactions on 
pure hydrogen.

Chin. Phys. C 38, 090001 (2014)

LBNE design report, FERMILAB-PUB-14-022

H
2
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3. Double-transverse kinematic imbalance

Lepton-proton interaction → 3 charged particles: l p → l' X Y
– Leading order realization in standard model: 
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3. Double-transverse kinematic imbalance

Lepton-proton interaction → 3 charged particles: l p → l' X Y
– Leading order realization in standard model: 
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3. Double-transverse kinematic imbalance

Lepton-proton interaction → 3 charged particles: l p → l' X Y
– Leading order realization in standard model: 
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                                   Double-transverse momentum imbalance

● Hydrogen: 0 
● Heavier nuclei: irreducible symmetric broadening

● by Fermi motion O(200 MeV)
● further by FSI

3. Hydrogen doping
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                                   Double-transverse momentum imbalance

● Hydrogen: 0 
● Heavier nuclei: irreducible symmetric broadening

● by Fermi motion O(200 MeV)
● further by FSI

● Hydrogen doping: adding hydrogen atoms in target material.
● Hydrogen shape is only detector smearing. 

● With good detector resolution, hydrogen yield can be extracted. 
● With very good res., event-by-ev. selection of nu-H interaction is possible.

● In situ nuclear-free flux measurement with current technology is possible via 
“bin-and-fit” method (arXiv:1512.09042, see new demonstration in Section 6).

3. Hydrogen doping
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4. Theory predictions for transverse kinematic imbalance

collinear enhancement

* suggested by GENIE Collaboration to examine 
removing elastic component of hA FSI.
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4. Theory predictions for transverse kinematic imbalance

acceleration peak

collinear enhancement
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4. Theory predictions for transverse kinematic imbalance

inverted evolution



29 July 2016 X.-G. Lu, Oxford 51

4. Theory predictions for transverse kinematic imbalance

Conclusion: large room to improve theories

collinear enhancement
similar in pπ- and pπ0 systems

arXiv:1606.04403
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5. Measurement in MINERvA

● NuMI on-axis neutrino beam, 3 GeV peak energy
● Fine grained scintillator tracker as target
● Event selection: 1 µ, ≥ 1 p, 0 π (CCQE-like)

➢ µ reconstruction: tracker, matched to MINOS ND, momentum by range and 
curvature

➢ p reconstruction: ID and momentum by tracker dE/dx profile, momentum threshold 
450 MeV

➢ π veto: cut on untracked energy and Michel electrons

Nucl.Instrum.Meth. A743 (2014) 130-159

Phys.Rev. D91 (2015) no.7, 071301

ν
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5. Measurement in MINERvA – selecting ESC protons

After cuts

Chin. Phys. C, 38, 010009 (2014)

Elastically scattering contained = ESC 

ESC

non-ESC

E0E5

Nominal end point:
ESC protons true end point (p → 0)

or exiting or inelastic interaction 
(p ≠ 0 w/ different dE/dx profile)

Non-ESC true end point (p → 0) 

non-ESC protons 
have missing ranges 

→ works also for
p by range

Cut on dE/dx near end point 
to select ESC protons.

Neutrino2016 P2.043



29 July 2016 X.-G. Lu, Oxford 55

5. Measurement in MINERvA – selecting ESC protons

After cuts

AFTER C
UTS

Spread Statistics

default 100% 100%

dE/dx 60% 40%

χ2 70% 60%

dE/dx + χ2 50% 30%

Neutrino2016 P2.043
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5. Measurement in MINERvA – p
T
 scale corrections

BEFORE CORRECTIONS

Non-unity p
T
 scales:

instrumental apparent acceleration or 
deceleration of the final-state particles.

Correction recipe: find a p
T
-scale related 

distribution that can be described 
analytically.

Neutrino2016 P2.043
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5. Measurement in MINERvA – p
T
 scale corrections

AFTER CORRECTIONS

Non-unity p
T
 scales:

instrumental apparent acceleration or 
deceleration of the final-state particles.

Correction recipe: find a p
T
-scale related 

distribution that can be described 
analytically.

Neutrino2016 P2.043
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5. Measurement in MINERvA – final-state momentum spectra

● In given acceptance, overall spectral shapes not sensitive to FSIs.
● Nuclear effects are difficult to observe on top of kinematics originating from neutrino-

nucleon interaction level. Direct observables are therefore needed.

Neutrino2016 P2.043
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5. Measurement in MINERvA – single-T kinematic imbalance

● GENIE predictions in MINERvA 
acceptance show collinear enhancement 
discussed previously (Section 4).

● Sensitivity achieved by momentum 
improvement cuts and corrections.

Neutrino2016 P2.043
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6. Measurement in T2K

● J-PARC off-axis neutrino beam, 600 MeV peak energy
● Fine Grained Detector (FGD1) as CH target
● Event selection: 1 µ, ≥1 p, 1 π+

● PID and tracking: TPC1

Nucl.Instrum.Meth. A659 (2011) 106-135

FGD1 TPC1

arXiv:1605.00154

TPC2TPC FGD2 

ν
(not signal 
event display)
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arXiv:1605.00154

6. Measurement in T2K – double-T kinematic imbalance

Current objective: 
Develop signal extraction techniques;
Measure ν-H cross section – first one since 30 years.
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Simple performance projection of T2K-like detector using NuWro+T2K flux on CH (ideal acceptance)

6. Prospects for Current Experiments

arXiv:1512.09042
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6. Prospects for Current Experiments

Simple performance projection of T2K-like detector using NuWro+T2K flux on CH (ideal acceptance)

The hydrogen event selection can be improved by 
● Veto nuclear emission
● Veto π0, γ background
● Improve tracking resolution → most critical

Requirement on nuclear physics decreases as resolution improves! 
✔ Now only need to look at |δp

TT
|<O(10 MeV) region. 

✔ In future even a less burden; can be measured w/ pure nuclear target, e.g. graphite. 
arXiv:1512.09042
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6. In situ nuclear-free flux measurement via “bin-and-fit”

Previous setting (ideal accpt.) but w/ ideal tracking+PID

3-particle final state: µ, p, π+

E
ν
 reconstructed as sum of final-state energy

H excl. pπ+ signal 
➢ Fraction: ~ 20% (blue-shifted peak) – 10% (tail)
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ν
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➢ No (nuclear) bias in reconstructed E
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6. In situ nuclear-free flux measurement via “bin-and-fit”

Previous setting (ideal accpt.) but w/ ideal tracking+PID

3-particle final state: µ, p, π+

E
ν
 reconstructed as sum of final-state energy

H excl. pπ+ signal 
➢ Fraction: ~ 20% (blue-shifted peak) – 10% (tail)
➢ No (nuclear) bias in reconstructed E

ν
➢ Can be extracted (statistically in realistic case)
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6. In situ nuclear-free flux measurement via “bin-and-fit”

Previous setting (ideal accpt.) but w/ ideal tracking+PID

3-particle final state: µ, p, π+

E
ν
 reconstructed as sum of final-state energy

H excl. pπ+ signal 
➢ Fraction: ~ 20% (blue-shifted peak) – 10% (tail)
➢ No (nuclear) bias in reconstructed E

ν
➢ Can be extracted (statistically in realistic case)
➢ σ only nucleon cross section, Φ=N/(σ ∆Ε

ν
)

➔ both Φ and E
ν
 nuclear-free

➔ require tracking, PID (only needed for Ε
ν
 

calculation), νH excl. pπ+ x-sec
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6. Potentials in Near-Future Experiments

● T2K-II ND for in situ nuclear-free flux measurement

– Has free hydrogens (CH and H
2
O)

– Capable of momentum and PID measurement of muons, protons, pions

– Need to optimize configuration for momentum resolution, and for acceptance 
for high statistics. A higher B-field is a more expensive but very effective way 
to improve the resolution. 

– Calorimetry capability to veto nuclear emission and electromagnetic 
background.

– Nuclear physics in  |δp
TT
|<O(10 MeV) can be measured in situ with embedded 

graphite target. 
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7. Summary

● Understanding nuclear effects is crucial for neutrino physics at GeV regime, deeply 
related to solving matter-antimatter asymmetry of our current universe.

● For neutrinos provided by accelerators, one can use transverse kinematic imbalance 
to maximally disentangle nuclear effects and neutrino energy uncertainty.

● Experimental efforts are under way. By exploring this new technique, we aim to 
provide critical physics input in neutrino interactions, and demonstrate/apply novel 
flux constraining techniques for future experiments.

● Outlook

– Current measurements: 

● T2K-ND, MINERvA

– Potential measurements in current experiments: 

● TK2-INGRID, T60, NOvA, µBooNE

– Potential measurements in future experiments: 

● T2K-II-ND, DUNE-ND
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BACKUP
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PHYSICAL REVIEW C 73, 065502 (2006)

Neutrino energy 1 GeV
QE

RES
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6. Measurement in T2K

ν

ν beam: off-axis, peak ~ 600 MeV 

FGD target: 
polystyrene (CH)

TPC: momentum, 
dE/dx

Nucl.Instrum.Meth. A659 (2011) 106-135
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END

4785; 4948
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