格子QCD講義

橋本省二 (KEK, 総研大) 2016 年 9 月 14-16 日

理解したいこと

核子はこんな感じ?

3つのクォークの束縛状態..., 量子色力学 (QCD)。 実態はもっとややこしい。

もくじ

目標:素粒子現象におけるハドロン不定性と格子ゲージ理論に よる計算手法、その誤差について理解する。

0. 歴史

1. 量子色力学(QCD)の性質

○ 摂動法、繰り込み群、クォーク閉じ込め、自発的対称性の破れ

- 2. 格子ゲージ理論の基礎
 - 。 定式化、数値計算法、誤差の要因
- 3. 素粒子現象論への応用
 - ο ハドロン不定性とは、π, Κ 中間子の物理、核子の性質

0. A bit of history

ep scattering = proton seems to have internal structure

A proton extends as exp(- r/r_0); $r_0 \sim 1$ fm

Form factor

$$\tau = \frac{Q^2}{4M^2} \quad \epsilon = [1 + 2(1 + \tau) \tan^2 \frac{\theta_e}{2}]^{-1}$$
$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_M \times \left[G_E^2 + \frac{\tau}{\epsilon}G_M^2\right] \frac{1}{(1 + \tau)}$$
tering (point particle) Form factors

Mott scattering (point particle)

Form factors (representing the internal structure)

$$\sigma(\theta_e) = \sigma_M \left| \int \rho(\vec{r}) e^{i\vec{q}\cdot\vec{r}} d^3\vec{r} \right|^2 = \sigma_M |F(\mathbf{q})|^2$$

dipole:
$$F(q^2) = \frac{1}{(1 - q^2/q_0^2)^2} \iff \rho(r) \sim \exp(-r/r_0)$$

Hofstadter (1955)

Generates resonances at higher energies: $ep \rightarrow eX$

Again, suggests some internal structures

At higher energies, electron looks like hitting a free "parton" inside proton.

At higher energies, electron looks like hitting a free "parton" inside proton.

$$F_2 = x \sum_q e_q^2 q(x)$$

parton distribution function
(PDF) =
probability to find a quark q in
nucleon with momentum fraction x.

Each parton carries *roughly* 1/3 of proton's momentum.

Quark model Gell-Mann, Zweig (1964)

Okay. There are three quarks inside. up or down

Can explain the baryon spectrum.

Quark model

Need to have three internal degrees of freedom = color

Otherwise, forbidden by Pauli's exclusion principle.

Quarks

Requirements:

- 1. have fractional charge +2/3 e, -1/3 e
- 2. have internal degrees of freedom (=3)
- 3. may not appear as an isolated particle
- 4. (at high energy) behave as a free particle inside a proton

Model (or dynamics) to fulfill all of these \rightarrow QCD

Properties of Quantum Chromodynamics (QCD)

Perturbation theory, Renormalization group, Quark confinement, Spontaneous symmetry breaking

Dirac equation

QED (for electron)

$$\left(\gamma^{\mu}\left(i\hbar\partial_{\mu}-\frac{e}{c}A_{\mu}\right)-mc\right)\psi=0$$

QCD (for quark)

$$\left(\gamma^{\mu}\left(i\partial_{\mu}-gA_{\mu}\right)-mc\right)\psi=0$$

3x3 matrix

three degrees of freedom

Maxwell's equation

QED
$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$

(for photon) $\partial_{\mu}F^{\mu\nu} = j^{\nu}, \quad \varepsilon^{\mu\nu\rho\sigma}\partial_{\mu}F_{\nu\rho} = 0$

QCD (for gluon)

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} + ig[A_{\mu}, A_{\nu}]$$

$$(\partial_{\mu} + igA_{\mu})F^{\mu\nu} = j^{\nu}, \quad \varepsilon^{\mu\nu\rho\sigma}(\partial_{\mu} + igA_{\mu})F_{\nu\rho} = 0$$

gauge field itself plays the role of a source = non-linear equation

Perturbation theory

- Non-linear system cannot be solved analytically (in general).
- Use the perturbation theory. What is it?
 - In the language of canonical quantization (= second quantization), only the free field can be solved easily. Equivalent to the harmonic oscillator:

$$H = \frac{\hat{p}^2}{2m} + \frac{m\omega^2}{2}\hat{x}^2 = \hbar\omega\left(\hat{a}^{\dagger}\hat{a} + \frac{1}{2}\right)$$

• Other operators are treated as a perturbation. The eigenvalues and wave functions are expanded in powers of λ .

$$\delta H = \lambda \hat{x}^4$$

Perturbation theory

- Non-linear system cannot be solved analytically (in general).
- Use the perturbation theory. What is it?
 - In the language of path-integral quantization, only the Gaussian integral can be calculated analytically. Others are estimated by an expansion.

$$\int_{-\infty}^{\infty} dx \, e^{-\frac{1}{2}x^2 - \lambda x^4} = \int_{-\infty}^{\infty} dx \, e^{-\frac{1}{2}x^2} \left(1 - \lambda x^4 + \cdots \right)$$

• Can be reduced to the Gaussian integral.

Quantum "fields"

1, 2, 3 for Quantum Field Theory

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} \phi)^2 - \frac{m^2}{2} \phi^2$$

- 1. Reinterpret " ϕ " as "x" in Quantum Mechanics
 - Commutation relation
- 2. Fourier transform
 - The system becomes a set of independent harmonic oscillator for each momentum mode.
- 3. Solve the harmonic oscillator
 - Eigenstates |0>, |1>, |2>, ... for each momentum mode = the number of "particles"

Perturbation theory

• Based on the states identified in the free theory, calculate

$$\langle p_1', p_2', \dots | \mathcal{L}_{int} | p_1, p_2, \dots \rangle$$

 $\lambda \phi^4$ 1 "particle" in the momentum mode p_1

• Feynman rules: easy book-keeping device

QCD perturbation theory

- A lot more complicated, due to...
 - Extra gauge degrees of freedom. Gauge fixing is necessary.
 - Fadeev-Popov ghosts for non-Abelian gauge fields.
- Divergences appear. Need "renormalization". Before doing that, need "regularization".
- (perturbative) "renormalizability"
- We don't want to go through these. Forget about everything, and jump to the consequences.

Anti-screening

Try to measure the coupling constant...

Vacuum polarization weakens the EM charge at long distances

Self-interaction enhances the color charge

Renormalization group

- Scattering amplitude
 - A function of external momenta, coupling constants and a cutoff.

$$A(s,t,u;g_0^2,\Lambda)$$

 \circ Require that the scattering amplitude does not depend on Λ . Tune the coupling constants.

$$A(s,t,u;g_0^2,\Lambda) = A(s,t,u;g_0'^2,\Lambda')$$

• Coupling constant is determined as a function of Λ . Input the experimental number at one point of Λ .

 $g_0^2(\Lambda)$: "running coupling constant"

Renormalization group

- Two interpretations
 - \circ g²(Λ): bare coupling is determined as a function of the cutoff.
 - \circ g²(μ): renormalized coupling is determined depending on the scale of the physical process.

$$A(s,t,u;g_0^2,\Lambda)|_{s=t=u=\mu^2} = A_0$$

(tree level amplitude on the RHS) and remove Λ in favor of g_0^2 .

$$g^{2}\left(1+cg^{2}\ln\frac{\Lambda^{2}}{q^{2}}\right)\Big|_{q^{2}=\mu^{2}} = g^{2}(\mu)$$

Must be independent of μ
$$g^{2}\left(1+cg^{2}\ln\frac{\Lambda^{2}}{q^{2}}\right) = g^{2}\left(1+cg^{2}\ln\frac{\Lambda^{2}}{\mu^{2}}\right)\left(1+cg^{2}\ln\frac{\mu^{2}}{q^{2}}\right) = g^{2}(\mu)\left(1+cg^{2}\ln\frac{\mu^{2}}{q^{2}}\right)$$

$$g^{2}\left(1+cg^{2}\ln\frac{\Lambda^{2}}{q^{2}}\right)\Big|_{q^{2}=\mu^{2}} = g^{2}(\mu)$$

Must be independent of μ
$$g^{2}\left(1+cg^{2}\ln\frac{\Lambda^{2}}{q^{2}}\right) = g^{2}\left(1+cg^{2}\ln\frac{\Lambda^{2}}{\mu^{2}}\right)\left(1+cg^{2}\ln\frac{\mu^{2}}{q^{2}}\right) = g^{2}(\mu)\left(1+cg^{2}\ln\frac{\mu^{2}}{q^{2}}\right)$$

But, the whole thing depends on q. = running coupling

The term like $\ln(q^2/\mu^2)$ vanishes when $q^2=\mu^2$, and (one may hope that) the perturbative expansion converges better. Better to choose μ close to the external momenta rather than taking arbitrarily.

Renormalization group

• µ-dependence of the coupling constant

$$\alpha_{s}(\mu) = \frac{4\pi}{\beta_{0} \ln(\mu^{2} / \Lambda_{\text{QCD}}^{2})} \left[1 - \frac{2\beta_{1}}{\beta_{0}^{2}} \frac{\ln[\ln(\mu^{2} / \Lambda^{2})]}{\ln(\mu^{2} / \Lambda^{2})} + \dots \right]$$

- \circ Λ_{QCD} is called the QCD scale. It depends on the renormalization scheme (the way to remove Λ).
- obtained from the Renormalization Group Equation

$$\left(\mu \frac{\partial}{\partial \mu} + \mu \frac{d\alpha_s}{d\mu} \frac{\partial}{\partial \alpha_s}\right) R(\mu, \alpha_s) = 0$$

$$\beta(\alpha_s) \equiv -\mu \frac{d\alpha_s}{d\mu} = \beta_0 \alpha_s^2 + \beta_1 \alpha_s^3 + \cdots$$

Running coupling

• Confirmed in the physical processes.

$$R_3 = \frac{\sigma(e^+e^- \rightarrow 3 \text{-jets})}{\sigma(e^+e^- \rightarrow \text{hadrons})} = C_1 \alpha_s(\mu^2) + \dots$$

Running coupling

More tests of QCD

- Including 4 jets
 - Sensitivity to the 3-gluon vertex
 - Can test the group structure: SU(3) or not

S. Hashimoto (KEK)

Going to low energies

Coupling constant grows. Is that the only problem?

• Perturbative expansion fails to converge. No such thing as the quark pole mass.

• Higher order terms are increasingly more important.

Going to low energies

Coupling constant grows. Is that the only problem?

 Non-perturbative configurations, such as instantons = topological excitation

- Cannot be written by a superposition of plane-waves.
- Associate fermion zero-modes are essential for chiral symmetry breaking.

Quark confinement

Isolated quarks can never be observed.

Quark confinement

More details after the introduction of lattice.

Chiral symmetry breaking

• Chiral symmetry

• Symmetry under $\delta \overline{\psi} = i \alpha \overline{\psi} \gamma_5, \delta \psi = i \alpha \gamma_5 \psi$

Massless Lagrangian is invariant

$$S = \int d^4x \Big[\overline{\psi}(x) \gamma_{\mu} \partial_{\mu} \psi(x) + m \overline{\psi}(x) \psi(x) \Big]$$

o Fermion field can be decomposed into R and L

$$\psi_R = \frac{1+\gamma_5}{2}\psi, \psi_L = \frac{1-\gamma_5}{2}\psi$$

• chiral rotation is $\delta \psi_R = i \alpha \psi_R, \ \delta \psi_L = -i \alpha \psi_L$

Chiral symmetry breaking

• Gauge interaction preserves chiral symmetry.

$$\overline{\overline{\psi}_R \gamma_\mu D_\mu \psi_R + \overline{\psi}_L \gamma_\mu D_\mu \psi_L}$$

No right-handed quarks can change to left-handed by emitting a gluon.

• Mass term breaks chiral symmetry.

 $m(\overline{\psi}_L\psi_R+\overline{\psi}_R\psi_L)$

• Chiral symmetry breaking = mass generation.

Chiral symmetry breaking

- Then, how can the mass be generated?
 - triggered by a small mass term?

• Or, spontaneous... vacuum expectation value

$$\left\langle \bar{\psi}\psi\right\rangle \neq 0$$

due to non-perturbative effect. There is a class of background gauge field (instantons) that connects L and R.

Some details after the introduction of lattice.

2. Lattice gauge theory

2.1 The basics

lattice, gauge symmetry, inputs

Goal

• QCD becomes non-perturbative at low energies. Perturbation theory cannot reveal the important part of the hadronic phenomena.

• hadron masses, interactions, ...

- Try to construct a framework that enables fully nonperturbative calculation.
 - One may introduce numerical methods.
 - No obvious way to introduce the momentum cutoff that fully respects gauge invariance.
 - Go back to the coordinate space = Lattice gauge theory.

Wilson (1974)

QCD Lagrangian

- SU(3) gauge theory
- plus, quarks (up, down, strange, ...)

$$S = \int d^4 x \left\{ \frac{1}{4} \operatorname{Tr} F_{\mu\nu}^2 + \sum_f \overline{\psi}_f (D + m_f) \psi_f \right\},\$$
$$Z = \int [dA_\mu] \prod_f [d\psi] [d\overline{\psi}] \exp[-S]$$

• Field strength $F^{a}_{\mu\nu} = \partial_{\mu}A^{a}_{\nu} - \partial_{\nu}A^{a}_{\mu} + g f^{abc}A^{b}_{\mu}A^{c}_{\nu}$ $D_{\mu} = \partial_{\mu} - igT^{a}A^{a}_{\mu}$

Non-Abelian nature

• Redefine on a 4D lattice

S. Hashimoto (KEK)

The lattice

4D Lattice

- of size (L/a)³x(T/a), typically 32³x64 or 64³x128.
- lattice spacing determined later.

Gauge invariance

Gauge symmetry

- invariance under local SU(3) transformation
- guaranteed by introducing "link variables" (gauge field)

Gauge field

- Built in the gauge link $U_{\mu}(x) = \exp[igaA_{\mu}(x)] = 1 + igaA_{\mu}(x) + ...$ \circ SU(3) matrices
 - Gauge invariance guaranteed by connecting them.

$$x + \hat{v} \qquad x + \hat{\mu} + \hat{v} \qquad Tr \left[U_{\mu}(x)U_{\nu}(x + \hat{\mu})U_{\mu}^{\dagger}(x + \hat{v})U_{\nu}^{\dagger}(x) \right] \\\approx Tr \left[e^{igaA_{\mu}}e^{iga(A_{\nu} + a\partial_{\mu}A_{\nu})}e^{-iga(A_{\mu} + a\partial_{\nu}A_{\mu})}e^{-igaA_{\nu}} \right] \\\approx Tr \left[e^{iga^{2}(\partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}) - g^{2}a^{2}[A_{\mu},A_{\nu}]} \right] = Tr \left[e^{iga^{2}F_{\mu\nu}} \right] \\= Tr \left[1 \right] - \frac{1}{2}g^{2}a^{4}Tr \left[F_{\mu\nu}^{2} \right] + \dots$$

Gauge action

Should go back to the continuum, by taking $a \rightarrow 0$

$$S = \frac{6}{g^2} \sum_{x} \sum_{\mu < \nu} \left[1 - \frac{1}{3} \operatorname{Re} \operatorname{Tr} \left[U_{\mu}(x) U_{\nu}(x + \hat{\mu}) U_{\mu}^{\dagger}(x + \hat{\nu}) U_{\nu}^{\dagger}(x) \right] \right]$$

$$\Rightarrow a^4 \sum_{x} \sum_{\mu < \nu} \operatorname{Re} \operatorname{Tr} \left[F_{\mu\nu}^2 \right]$$

$$= \int d^4 x \, \frac{1}{4} \left(F_{\mu\nu}^a \right)^2$$

Coupling constant β = 6/g²
 Corresponds to 1/kT in the statistical model.

Partition function

• Integrate over SU(3) variables U, rather than A

$$Z = \int [dU_{\mu}] \prod_{f} [d\psi] [d\overline{\psi}] \exp\left[-S_{g} - \int d^{4}x \sum_{f} \overline{\psi}_{f} (D[U] + m_{f})\psi_{f}\right]$$
$$= \int [dU_{\mu}] \prod_{f} \det(D[U] + m_{f}) \exp[-S_{g}]$$

• Fermion fields are anti-commuting, giving the determinant when integrated out

Heavy quark potential

- Gedanken-experiment
 - Energy for the system that heavy quark and anti-quark are put with a separation R ?
 - o Amplitude

$$\left\langle Q\bar{Q}\right|e^{-HT}\left|Q\bar{Q}\right\rangle = \frac{1}{Z}\int [dA_{\mu}]e^{-S+ig\oint_{C}dx_{\mu}A_{\mu}}$$

o Potential

$$V(R) = -\lim_{T \to \infty} \frac{1}{T} \ln \left\langle \frac{1}{3} \operatorname{Tr} \operatorname{P} e^{ig \oint_C dx_{\mu} A_{\mu}} \right\rangle$$

• P stands for the "path ordering"

Heavy quark potential

- In the lattice theory,
 - Given by a product of gauge links.

$$Z(C) = \left\langle \prod_{C} U \right\rangle$$
$$= \frac{\int [dU_{\mu}] \left(\prod_{C} U \right) e^{-S}}{\int [dU_{\mu}] e^{-S}}$$

= "Wilson loop"

Integral over SU(N) for each gauge links
 = Integral over "gauge configurations"

Strong coupling expansion

- An expansion around $\beta = 6/g^2 = 0$
 - Boltzman factor

$$e^{-S} = \prod_{P} e^{-\beta \operatorname{Tr}[UUUU]} \approx \prod_{P} \left[1 - \beta \operatorname{Tr}[UUUU] \right]$$

= No weight in the β =0 limit, completely random.

o Formulae

$$\int [dU] = 1, \quad \int [dU] f(U) = \int [dU] f(U_0 U),$$
$$\int [dU] U_{ij} = 0, \quad \int [dU] U_{ij} U_{kl}^{\dagger} = \frac{1}{N} \delta_{il} \delta_{jk}$$

vanishes when only one *U* appears; non-zero when a pair of *U* and *U*⁺ appears.

Wilson loop

• Pull down P's from the action so that U and U⁺ makes a pair.

$$\left\langle \prod_{C} U \right\rangle \approx \left(\frac{1}{g^2 N} \right)^n$$

- Area law of the Wilson loop
- Potential

$$V(R) = \sigma R, \quad \sigma \sim \ln(g^2 N)$$

- proportional to the distance = confinement
- consequence of the random gauge configurations.

= Understanding of confinement

What is g²?

- This is not the end of the story of confinement.
 - The coupling constant g² is the bare value. It goes to zero in the continuum limit (see below). Strong coupling expansion is not applicable.
 - Numerical study of the Wilson loop at weak couplings.
 - Linear-rising potential is certainly obtained.

What is g²?

- Pick a value of $\beta = 6/g^2$, then ...?
 - = again, the question of renormalization group

 $g^2(a)$

- Determined with some input, such as the string tension $\sigma \sim (440 \text{ MeV})^2$.
 - could be any other (dimensionful) quantities

What is g²?

- 1. Pick a value of $\beta = 6/g^2$
- 2. Input a physical quantity

 $g^2(a)$

3. Should depend on a according to RG

$$\beta(\alpha_s) \equiv -\mu \frac{d\alpha_s}{d\mu} = \beta_0 \alpha_s^2 + \beta_1 \alpha_s^3 + \cdots$$

4. Take the continuum limit

Sep 2016 52

2. Lattice gauge theory

2.2 Fermions

Doubling, chiral symmetry

Naïve discretization

Continuum fermion action

$$S = \int d^4x \left[\bar{\psi}(x) \gamma_{\mu} \partial_{\mu} \psi(x) + m \bar{\psi}(x) \psi(x) \right]$$

• Replace the derivative by a discrete difference

$$S^{\text{naive}} = a^4 \sum_{x,\mu} \bar{\psi}(x) \gamma_\mu \Delta_\mu \psi(x) + a^4 \sum_x m \bar{\psi}(x) \psi(x),$$
$$\Delta_\mu \psi(x) = \frac{1}{2a} \left(\psi(x + \hat{\mu}) - \psi(x - \hat{\mu}) \right)$$

• Easy to make it gauge invariant

$$\Delta_{\mu}\psi(x) = \frac{1}{2a} \Big(U_{\mu}(x)\psi(x+\hat{\mu}) - U^{\dagger}_{\mu}(x-\hat{\mu})\psi(x-\hat{\mu}) \Big)$$

Propagator

• Free field propagator

$$S(k) = \frac{1}{\frac{i}{a} \sum_{\mu} \gamma_{\mu} \sin(ak_{\mu}) + m} = \frac{-\frac{i}{a} \sum_{\mu} \gamma_{\mu} \sin(ak_{\mu}) + m}{\frac{1}{a^{2}} \sum_{\mu} \sin^{2}(ak_{\mu}) + m^{2}}; \quad k_{\mu} \in \left[-\frac{\pi}{a}, +\frac{\pi}{a}\right]$$

- Physical mode is at $k \sim (0,0,0,0)$, but other modes at $k \sim (\pi/a,0,0,0)$, $(0, \pi/a, 0,0)$, $(\pi/a, \pi/a, 0,0)$ all contribute to the propagation. There are $2^d = 16$ modes.
- Each pole corresponds to a continuum fermion propagator

$$S(k) \rightarrow \frac{m - i\gamma_{\mu}^{(A)} p_{\mu}}{m^{2} + p^{2}}, \quad k = \frac{\pi^{(A)}}{a} + p, \quad \gamma_{\mu}^{(A)} = \gamma_{\mu} \cos \pi_{\mu}^{(A)}$$

• π_A stands for each pole:

$$\pi^{(0)} = (0, 0, 0, 0), \pi^{(1)} = (\pi, 0, 0, 0), \dots$$

$$\pi^{(12)} = (\pi, \pi, 0, 0), \dots, \pi^{(123)} = (\pi, \pi, \pi, 0), \dots, \pi^{(1234)} = (\pi, \pi, \pi, \pi)$$

__1

Doubler

- All are equivalent
 - Unitary transformation (redefine the fermion field)

gives

$$S^{\dagger}_{\rho}\gamma_{\mu}S_{\rho} = \begin{cases} -\gamma_{\mu} & (\mu = \rho) \\ +\gamma_{\rho} & (\mu \neq \rho) \end{cases}$$

• Naïve lattice fermion leads to 16 equivalent continuum fermions.

What we are going to observe

- Naïve fermion has doublers. What to do?
 - Remove doublers, while breaking chiral symmetry = Wilson fermion
 - Live with doublers = staggered fermion
 - Remove doublers, while having a modified chiral symmetry = Ginsparg-Wilson fermions
 - Situation is summarized by the Nielsen-Ninomiya theorem.
 - Cannot win the both (no doubler and chiral symmetry) to have the correct axial anomaly.

Wilson fermion

• Add a mass term of O(1/a) to the doublers

$$m\sum_{x} \overline{\psi}(x)\psi(x) \rightarrow m\sum_{x} \overline{\psi}(x)\psi(x) + \frac{ar}{2}\sum_{x,\mu} \partial_{\mu}\overline{\psi}(x)\partial_{\mu}\psi(x)$$

$$= m\sum_{x} \overline{\psi}(x)\psi(x) + \frac{ar}{2}\sum_{x,\mu} \frac{1}{a^{2}} (\overline{\psi}(x+\hat{\mu}) - \overline{\psi}(x)) (\psi(x+\hat{\mu}) - \psi(x))$$

$$= \left(m + \frac{4r}{a}\right)\sum_{x} \overline{\psi}(x)\psi(x) - \frac{r}{2a}\sum_{x,\mu} (\overline{\psi}(x+\hat{\mu})\psi(x) + \overline{\psi}(x)\psi(x+\hat{\mu}))$$
"mass" term $m + \frac{r}{a}\sum_{\mu} \left(1 - \cos k_{\mu}a\right)$

• doubler masses $m^{(A)} = m + 2n_A \frac{r}{a}$

- n_A is the number of " π "
- decouple in the continuum limit.

S. Hashimoto (KEK)

Ο

Wilson fermion

• The entire action

$$S = -\sum_{x,\mu} \left[\overline{\psi}(x) \frac{r - \gamma_{\mu}}{2} \psi(x + \hat{\mu}) + \overline{\psi}(x + \hat{\mu}) \frac{r + \gamma_{\mu}}{2} \psi(x) \right] + M \sum_{x} \overline{\psi}(x) \psi(x)$$

$$\circ M = ma + 4r$$

• Then re-normalize

$$S = \sum_{x} \overline{\psi}(x)\psi(x) - \kappa \sum_{x,\mu} \left[\overline{\psi}(x) \left(r - \gamma_{\mu}\right)\psi(x + \hat{\mu}) + \overline{\psi}(x + \hat{\mu})\left(r + \gamma_{\mu}\right)\psi(x) \right]$$

- $\circ \kappa = 1/2M$
- massless limit: $\kappa \rightarrow \kappa_c = 1/8r$
- Chiral symmetry is lost. $\psi \rightarrow \exp(i\alpha\gamma_5)\psi, \overline{\psi} \rightarrow \overline{\psi}\exp(i\alpha\gamma_5)$
 - Wilson term remains even at m=0.

Problem of the Wilson fermion

- Chiral symmetry is recovered in the continuum limit. What is the problem, then?
 - Non-exact symmetry may be badly violated by quantum effect.
 - Ex.) Fermion self-energy

• Continuum
$$\int d^4k \frac{1}{k^2} \frac{\gamma_{\alpha}(-i\gamma_{\mu}k_{\mu})\gamma_{\alpha}}{k^2} = 0$$

• Naïve
$$\int d^4k \frac{1}{\hat{k}^2} \frac{\gamma_{\alpha}(-i\gamma_{\mu}\bar{k}_{\mu})\gamma_{\alpha}}{\bar{k}^2} = 0, \quad \bar{k}_{\mu} = \frac{1}{a}\sin(ak_{\mu})$$

• Wilson
$$\int d^4k \frac{1}{\hat{k}^2} \frac{\gamma_{\alpha}\left[m + \frac{r}{2}\hat{k}^2 - i\gamma_{\mu}\bar{k}_{\mu}\right]\gamma_{\alpha}}{\left[m + \frac{r}{2}\hat{k}^2\right]^2 + \bar{k}^2} \xrightarrow{m \to 0} \int d^4k \frac{1}{\hat{k}^2} \frac{2r\hat{k}^2}{\bar{k}^2 + \frac{r^2}{4}(\hat{k}^2)^2}$$

-AA-

Problem of the Wilson fermion

- There is an additive mass renormalization $\delta m \approx \alpha_s \frac{1}{a}$
 - Divergent in the continuum limit. Also in the higher order terms.
- How to define the quark mass?
 - One should decide some definition and measure it.
 - GMOR relation
 - Ward-Takahashi identity
 - Not unique.

Problem of the Wilson fermion

• Ward-Takahashi identity

 $\partial_{\mu}A^{a}_{\mu}(x) = 2m_{q}P^{a}(x)$

- $\circ~$ Not satisfied for the Wilson fermion.
- Require it to be satisfied and determine the quark mass.

$$m_{q} = \frac{\left\langle 0 \left| \partial_{\mu} A^{a}_{\mu}(x) \right| P^{a} \right\rangle}{\left\langle 0 \left| 2P^{a}(x) \right| P^{a} \right\rangle}$$

 May and does depend on |P> and x, but decide to use one. Should converge in the continuum limit.

Chiral limit

• Achieved by a parameter tuning

Looks like vanishing at the same point. This corresponds to the "chiral" limit. Could become a problem for precise calculations

Staggered fermion

- = Essentially the same as the naïve fermion.
- There are doublers.
 - The number is reduced to 4 by eliminating redundant copies. The remaining 4 are intertwined.
 - Let's interpret them as up, down, strange and charm... Possible but too complicated. (Need non-degenerate masses. Intrinsic flavor-changing currents cause a lot of troubles.
 - Reduce by "hand"... = rooting.

Or, introduce a fourth-root of the fermion determinant. Uncontrolled error may be induced.

(Rooted) staggered okay?

- Staggered fermion: 4 tastes per flavor, take a 4th-root.
 - Tastes are mixed at finite *a*. Rooting is non-trivial.
 - Triggered (painful) debates for years... not completely settled.
- My position:
 - No proof available, but probably okay in the continuum limit.
 - Practical issue = Are we close enough to continuum?
 - May depend on the quantity of interest (again). (Worst) Ex:
 - Typical size of violation: $a^2 \Lambda^3 \sim 10$ MeV (when 1/a=2 GeV)
 - Lowest-lying Dirac eigenvalue: $3/\Sigma V \sim 3 \text{ MeV}$ (for V=(3 fm)⁴).

Low-modes are largely distorted. Effects on (many) physical quantities are non-trivial. Probably largest for pions.

Taste violation

• Seen in the data

For HISQ, ~ 1/3 of the above.

Modified chiral symmetry

- Nielsen-Ninomiya no-go theorem
 - No way to realize lattice chiral symmetry and non-doubling.
 - Indeed, this is necessary to realize the axial anomaly..., a deeper theoretical question.
- Modify the "chiral symmetry" on the lattice

$$\delta\overline{\psi} = i\alpha\overline{\psi}\left(1 - \frac{a}{2\rho}D\right)\gamma_5, \,\delta\psi = i\alpha\gamma_5\left(1 - \frac{a}{2\rho}D\right)\psi$$

- Go back to the ordinary definition at a = 0.
- Related to the domain-wall and overlap fermions.

Domain-wall fermion

- Defined on 5D space
 - \circ gauge field in the 5th direction is trivial.
 - o design a mass term such that

mf

DW/OV fermions

- Exact (but modified) chiral symmetry at finite *a* (in the limit of L_s = ∞)
 - Property of the Ginsparg-Wilson fermions that satisfy

$$D\gamma_5 + \gamma_5 D = \frac{a}{\rho} D\gamma_5 D$$

- Ward-Takahashi identities are the same as in the continuum.
- Axial-anomaly is reproduced.
- Drawback = numerical cost
 - 5D implementation.
 - Or, numerical approximation of sign function.

2. Lattice gauge theory

2.3 Computations

Path integral, Observables

Path integral formulation

• Actual calculation needs the path integral quantization

Path integral formulation

• In quantum "field" theory, it is a sum over all possible fields:

$$Z = \int [d\phi] e^{iS}; \ S = \int d^4 x \mathcal{L}$$

- There is an "amplitude" e^{iS} for each field "configuration"
- Sum the amplitudes over all possible configurations.

Okay, let's carry out!

- Sounds easy?
 - Super-multiple integral..., actually infinitely many!

$$Z = \int [d\phi] e^{iS}; \ S = \int d^4 x \mathcal{L}$$

- Possible when the integral is known = Gaussian \circ Free field theory: $S \sim \phi^2$
 - Expansion around this simplest case = perturbation theory
 - Good approximation if the reality is sufficiently "free".

What is perturbation theory?

- Reduces to harmonic oscillator:
 - When the potential is complicated, try to expand around its bottom.

- Good approximation if the field actually fluctuates around there.
- If the fluctuation is bigger..., no way.

What is the vacuum?

• In QED,

- \circ F_{µv}=0 is the vacuum.
- Photon is an excitation from there.

• In QCD,

- More fluctuations. The vacuum is determined as the minimum of the "effective action", which is the free energy in the language of statistical mechanics.
- But, not completely random either.
- Particles represent the excitations on this "vacuum".

Correspondence

Statistical mechanics

• partition function; Hamiltonian

$$Z = \int [d\phi] e^{-H/T}; \ H \sim \int d^3 x \mathcal{H}$$

Quantum field theory

• partition function; action

$$Z = \int [d\phi] e^{iS}; \ S = \int d^4 x \mathcal{L}$$

• After the Wick rotation, it is made Euclidean

$$Z = \int [d\phi] e^{-S_E}; \ S_E = \int d^4 x \mathcal{L}$$

Monte Carlo: a simple example

Ising model

$$Z = \sum_{\{s_i\}} \exp[-H\{s_i\}/T], \quad H\{s_i\} = -J \sum_{\{i,j\}\in n.n.} s_i s_j$$

How does the spontaneous magnetization emerge?

Monte Carlo method

Basic idea:

$$Z = \sum_{\{s_i\}} \exp\left[-H\{s_i\}/T\right], \quad H\{s_i\} = -J \sum_{\{i,j\}\in n.n.} s_i s_j$$

- The number of terms = $2^{(2L^2)}$. For L=100, it is $2^{20000} \sim 10^{2000}$. Impossible.
- Only some limited terms contribute to the sum:

 T = 0: only those giving the minimum H{s_i}.
 T = ∞: completely random.
- Pickup the relevant configurations only = MC

Procedure

Without proof...

- 1. Starting from some initial config $\{s_i\}$, generate the next config $\{s_i'\}$ with rand.
- 2. Calculate the initial and final Hamiltonians H, H'
- 3. Metropolis accept/reject
 - 1. If H'<H, accept the new config $\{s_i'\}$
 - 2. If H'>H, accept with a probability exp(-(H'-H)/T)
- 4. Goto 1 and Repeat until stabilized.
 - Expectation value <M> is obtained as an average over the configs thus generated.

Demo

xtoys: written by Mike Creutz

Can you tell

- Magnetization?
- Correlation length?
- Their temperature dependence?

Let's go back to QCD

- Too hard to evaluate
 - $\circ~$ Determinant of a large matrix. Needs to obtain all the eigenvalues ~ N^3

$$\det(D[U] + m) = \prod_{k} (m + i\lambda_{k}[U])$$

• Rewrite in favor of bosons

non-local action

$$Z = \int [dU] \det(D[U] + m)^2 e^{-S_g}$$

$$= \int [dU] [d\phi] e^{-S_g - \phi^{\dagger} (D[U] + m)^{-2} \phi} = \int [dU] [d\phi] e^{-S_g - |(D[U] + m)^{-1} \phi|^2}$$

• Reduces to the problem of matrix inversion. Hard, but more tractable.

Matrix inversion

- Most time-consuming part in the LQCD calculations (D[U] + m)x = b
 - *D*[*U*]: a 4D diffusion-like operator (typically nearest-neighbor)
 In some cases, use 5D implementation for theoretical virtue
- 4D lattices:
 - Typical size: $64^3x128 x3(color)x4(spinor) = 400 M$
 - \circ 1 vector = 7 GB
- Iterative solver:
 - Conjugate Gradient (CG): typically 1,000-10,000 iterations per solve

Big computing

- Parallel computing
 - Conceptually straightforward. Each node is responsible for a small sub-lattice.
 - Not "easy" in practice.
- Code development
 - CPS, Chroma, MILC, ...
 - QMP, QDP, QUDA, ...
 - o Bagel, BFM
 - o openQCD
 - Bridge++, Iroiro++

Supercomputer

- K computer (RIKEN Kobe)
 - Peak 11.3 Pflops (2011~)
 - o Fujitsu SPARC64 VIIIfx

- General purpose (life, environment, material, etc). Running QCD, too
- Next generation project (Flagship 2020) has been launched.
 Aims at building a general purpose exascale machine by 2020.

Supercomputer

• IBM Blue Gene /Q

at LLNL, ANL, RIKEN/BNL,
 Julich, CINECA, Edinburgh, KEK,
 ... are intensively used by LQCD.

Blue Gene /Q

QCD vacuum?

Accumulation of near-zero eigenmodes of quarks leads to

- Chiral condensate $\langle \overline{q}q \rangle \neq 0$
- Order parameter of the spontaneous chiral symmetry breaking.

Dirac eigenmodes

• Eigen equation $Du_{\lambda} = \lambda u_{\lambda}$

• Fermion propagator
$$S(x, y) = -\sum_{\lambda} \frac{u_{\lambda}(x)u_{\lambda}^{\dagger}(y)}{m + \lambda}$$

• Chiral condensate

$$-\left\langle \overline{q}q\right\rangle = \int d^4x \operatorname{Tr}\left[S(x,x)\right] = \sum_{\lambda} \frac{1}{\lambda+m} = \sum_{\operatorname{Im}\lambda>0} \frac{2m}{\left|\lambda\right|^2 + m^2}$$

 Vanishes if m→0 is taken first. To obtain correctly, the limits must be in the order of V→0 and m→0 (thermodynamical limit)

$$-\langle \overline{q}q \rangle = \int_{0}^{\infty} d\lambda \,\rho(\lambda) \frac{2m}{\lambda^{2} + m^{2}} = \pi \rho(0) \qquad \rho(\lambda): \text{ eigenvalue density}$$

Banks-Casher relation : accumulation of low-lying modes

Dirac spectrum

Eigenvalue distribution of D

 $\Sigma = (270.0 \pm 4.9 \text{ MeV})^3$

Physical quantities

• Two-point correlation function

$$\langle O_{\Gamma}(x)O_{\Gamma'}(y)\rangle = \frac{1}{Z}\int [dU]O_{\Gamma}(x)O_{\Gamma'}(y)e^{-S}$$

o Ex. Fermion bilinear

$$P^{a}(x) = \overline{q}(x)\gamma_{5}\frac{\tau^{a}}{2}q(x), A^{a}_{\mu}(x) = \overline{q}(x)\gamma_{\mu}\gamma_{5}\frac{\tau^{a}}{2}q(x),$$

• Two point function contains the info of all the intermediate states

$$\langle 0 | P^{a}(x) P^{a^{\dagger}}(y) | 0 \rangle = \int \frac{d^{4}p}{(2\pi)^{4}} \sum_{n} \left| \langle 0 | P^{a}(0) | P^{(n)}(p) \rangle \right|^{2} \frac{e^{ip(x-y)}}{(m^{(n)})^{2} + p^{2}}$$

• No pole associated with the particle propagator exists on the Euclidean lattice, but obtain it assuming analyticity.

Ground state

- Rely on the analyticity
 - Look at the time correlation after specifying the spatial momentum.

$$C^{(2)}(t) \sim \int_{-\pi/a}^{+\pi/a} \frac{dp_0}{2\pi} \frac{e^{ip_0 t}}{m^2 + p_0^2 + \mathbf{p}^2} = \frac{1}{2E(\mathbf{p})} e^{-E(\mathbf{p})t}$$

• The lowest energy states dominate at long separations.

$$\int d^{3}x \langle 0 | P^{a}(x) P^{a\dagger}(0) | 0 \rangle = \sum_{n} \frac{\left| \langle 0 | P^{a}(0) | P^{(n)}(p) \rangle \right|^{2}}{2E^{(n)}(\mathbf{0})} e^{-E^{(n)}(\mathbf{0})t}$$
$$\xrightarrow{t \to \infty} \frac{\left| \langle 0 | P^{a}(0) | P^{(0)}(p) \rangle \right|^{2}}{2E^{(0)}(\mathbf{0})} e^{-E^{(0)}(\mathbf{0})t}$$

• Ground state energy (mass) and matrix element is obtained.

Calculation of the correlator

- Can be rewritten using the quark propagators: $\langle O_{\Gamma}(x)O_{\Gamma'}^{\dagger}(y) \rangle = \langle \operatorname{Tr}[\Gamma S(x,y)\Gamma'S(y,x)] \rangle$
 - Quark propagator is obtained by solving $[D + m]S(x, y) = \delta_{x, y}$

• One may also use the relation $S(y,x) = \gamma_5 S^{\dagger}(x,y)\gamma_5$

- Connected two-point function (meson and baryon)
 - Fermion matrix inversion for each component (3x4=12)
 - Starts from a given point of space-time, and ends at any point.

Operators

• Arbitrary as far as it has the same quantum number with that of the particle of interest.

_							
	$n^{2s+1}\ell_J$	J^{PC}	I = 1	$I = \frac{1}{2}$	1 = 0	I = 0	
			$u\overline{d}, ud, \frac{1}{\sqrt{2}}(d\overline{d} - uu)$	us, ds; ds, -us	f'	f	
	$1 \ ^1S_0$	0^{-+}	π	K	η	$\eta'(958)$	γ ₅
	$1 \ ^3S_1$	1	$\rho(770)$	$K^{*}(892)$	$\phi(1020)$	$\omega(782)$	γ_i
	$1 \ ^{1}P_{1}$	1+	$b_1(1235)$	κ_{1B}^{\dagger}	$h_1(1380)$	$h_1(1170)$	
	$1 \ {}^{3}P_{0}$	0++	$a_0(1450)$	$K_0^*(1430)$	$f_0(1710)$	$f_0(1370)$	Ι
	$1 {}^{3}P_{1}$	1++	$a_1(1260)$	K_{1A}^{\dagger}	$f_1(1420)$	$f_1(1285)$	$\gamma_5 \gamma_i$

- In many cases, only the S wave states are considered. The P wave states are very noisy.
- Spatially extended operators (smearing) is used to enhance the ground state signal.

Example

Data look like this.

Ο

INPUT to LQCD

Parameters in QCD

- Strong coupling constant $\alpha_{s}(\mu)$
 - Fix the correspondence between the scale and coupling.
 - \circ β is the relevant parameter to control the lattice spacing *a*.
- Light quark masses m_u, m_d, m_s
 - up and down are often assumed to be degenerate.
 - $\circ~$ Tuned to reproduce π and K meson masses.
- Heavy quark masses m_c, m_b
 - Usually not in the sea, but changing.
 - $\circ~$ Tuned to reproduce J/ ψ and Υ masses.

All the other quantities are OUTPUT.

Hadron spectrum

Budapest-Marseille-Wuppertal collaboration, Science (2008, 2015)

X. Low-energy QCD

Chiral symmetry breaking

- In the QCD vacuum, chiral symmetry is broken.
 - Flavor SU(3)_LxSU(3)_R → SU(3)_V
 - \circ Non-zero chiral condensate $\langle \overline{q}q \rangle$
 - Nambu-Goldstone bosons (pion, kaon, η) nearly massless; in practice massive due to non-zero m_q .
 - Flavor-singlet axial U(1) is special, due to anomaly. η^\prime is substantially heavier.
 - $\circ~$ Other hadrons have a mass of O($\Lambda_{QCD})$
 - Low energy effective theory for pions (and K, η) can be constructed = chiral perturbation theory (ChPT, χ PT).

PCAC relation

- Partially Conserved Axial Current (PCAC)
 - From the QCD Lagrangian,

$$A_{\mu} = \overline{u} \gamma_{\mu} \gamma_5 d,$$

$$\partial_{\mu} A^{\mu} = (m_u + m_d) \overline{u} \gamma_5 d$$

• The axial current may annihilate pion to the vacuum; Lorentz invariance restricts its form. $\langle 0 | A_{\mu}(0) | \pi(p) \rangle = i f_{\pi} p_{\mu},$ $\langle 0 | \partial_{\mu} A^{\mu}(0) | \pi(p) \rangle = f_{\pi} m_{\pi}^{2};$ $\partial_{\mu} A^{\mu}(x) = f_{\pi} m_{\pi}^{2} \phi_{\pi}(x) \qquad \phi_{\pi}(x):$

- $\circ f_{\pi}$ is called the pion decay constant.
- Can be measured from the leptonic decay $\pi \rightarrow \mu \nu$. $f_{\pi} = 131 \text{ MeV}$

• Its analog for kaon is
$$f_K$$
.
 $f_K = 160 \text{ MeV}$

 $\phi_{\pi}(x)$: operator to create a pion.

Sep 2011 100

• Gell-Mann-Oakes-Renner (GMOR) relation (1968)

$$(m_u + m_d) \left\langle \overline{u}u + \overline{d}d \right\rangle = -f_\pi^2 m_\pi^2 \left\{ 1 + O(m_\pi^2) \right\}$$

Chiral symmetry is broken = Non-zero chiral condensate \$\langle \overline q q \rangle\$
Pion mass squared is proportional to quark mass

$$m_{\pi}^{2} = B_{0}(m_{u} + m_{d}) + O(m_{q}^{2})$$
$$= \frac{-2\langle \overline{q}q \rangle}{f_{\pi}^{2}}(m_{u} + m_{d}) + O(m_{q}^{2})$$

• Also for kaons,

$$m_{K^+}^2 = B_0(m_u + m_s) + O(m_q^2), m_{K^0}^2 = B_0(m_d + m_s) + O(m_q^2),$$

$$m_{\eta}^2 = \frac{1}{3}B_0(m_u + m_d + 4m_s) + O(m_q^2),$$

 \circ Quark mass ratios can be predicted up to O(m_q²).

Chiral Lagrangian

- Low energy effective lagrangian is developed assuming
 - Spontaneous breaking of chiral symmetry
 - Pion (and kaon, eta) to be the Nambu-Goldston boson
- In the low energy regime, pions are the only relevant dynamical degrees of freedom.

- Given by a non-linear sigma model.
- Provides a systematic expansion in terms of m_{π}^2 , p^2 ; the leading order is given above.

• Expansion in the pion field gives

$$L_{2} = \frac{1}{2} \partial_{\mu} \pi^{a} \partial^{\mu} \pi^{a} - \frac{m_{\pi}^{2}}{2} \pi^{a} \pi^{a} + \frac{m_{\pi}^{2}}{24 f^{2}} (\pi^{a} \pi^{a})^{2} + \frac{1}{6 f^{2}} [(\pi^{a} \partial_{\mu} \pi^{a})(\pi^{b} \partial^{\mu} \pi^{b}) - (\pi^{a} \pi^{a})(\partial_{\mu} \pi^{b} \partial^{\mu} \pi^{b})] + \dots$$

- Pion mass is obtained as $m_{\pi}^2 = 2B_0 m$
- A chain of interaction terms: 4π , 6π , etc.
- Loop corrections are calculable.
 - Pick up a factor of $(m_{\pi}/4\pi f)^2$ or $(p/4\pi f)^2$
 - Counter terms must also be added at order $(m_{\pi}/4\pi f)^2$ or $(p/4\pi f)^2$
 - introduce the low energy constants (LECs): L₁~L₁₀ at the one-loop level

One-loop example

- Pion self-energy $\int \frac{d^4k}{(2\pi)^4} \frac{i}{k^2 - m^2} = \frac{1}{(4\pi)^2} \left[\Lambda^2 + m^2 \ln \frac{m^2}{\Lambda^2 + m^2} \right] \qquad \text{Cutoff regularization}$ $= \frac{m^2}{(4\pi)^2} \left(\frac{2}{\varepsilon} + \gamma - \ln 4\pi + \ln \frac{m^2}{\mu^2} - 1 \right) \qquad \text{Dimensional reg}$
 - Log dependence $m^2 \ln(m^2)$: called the chiral logarithm.
 - Comes from the infrared end of the integral = long distance effect of (nearly massless) pion loop.
 - Counter terms are necessary in order to renormalize the UV divergence.
 - After subtracting the UV divergences

$$m_{\pi}^{2} = 2B_{0}m_{q}\left[1 + \frac{1}{2}\frac{m_{\pi}^{2}}{(4\pi f)^{2}}\ln\frac{m_{\pi}^{2}}{\mu^{2}} + (\text{const}) \times \frac{m_{\pi}^{2}}{(4\pi f)^{2}} + O(m_{\pi}^{4})\right]$$

Counter terms

- At the order $(m_{\pi}/4\pi f)^2$ or $(p/4\pi f)^2$, there are 10 possible counter terms
 - 10 new parameters, $L_1 \sim L_{10}$ = low energy constant at NLO c.f. 2 parameters at LO: Σ and *f*.
 - \circ Depends on how one renormalizes the UV divergence, just as in the small coupling perturbation. L₁~L₁₀ depends on the renormalization scale μ .
 - Once these parameters are determined (e.g. from pion scattering data), one can predict other quantities.
 - Lattice QCD may be used to *calculate* these parameters.

$\pi\pi$ scattering

- I=0 and 2 scattering length
 - corresponding to the cross section.
 - Derivative coupling gives the leading terms of order m_{π²}
 Known to NNLO in χ PT; needs the LECs

$$a_0^0 = \frac{7M_\pi^2}{32\pi F_\pi^2} \left\{ 1 + \frac{9M_\pi^2}{32\pi^2 F_\pi^2} \ln \frac{\lambda_{a_0^0}^2}{M_\pi^2} \right\},$$
$$a_0^2 = -\frac{M_\pi^2}{16\pi F_\pi^2} \left\{ 1 - \frac{M_\pi^2}{32\pi^2 F_\pi^2} \ln \frac{\lambda_{a_0^0}^2}{M_\pi^2} \right\}$$

Quark mass ratio

• At NLO, the quark mass ratio is given as

$$\frac{m_K^2}{m_\pi^2} = \frac{m_s + m_{ud}}{2m_{ud}} \left[1 + \frac{1}{2} \frac{m_\pi^2}{(4\pi f)^2} \ln \frac{m_\pi^2}{\mu^2} - \frac{1}{2} \frac{m_\eta^2}{(4\pi f)^2} \ln \frac{m_\eta^2}{\mu^2} - \frac{8(m_K^2 - m_\pi^2)}{f^2} (2L_8 - L_5) \right]$$

- Assumes that the isospin breaking $m_u \neq m_d$ is negligible.
- \circ Requires the knowledge of the NLO LEC 2L₈-L₅.
- Results in m_s/m_{ud} =22~30 (PDG 2010); large uncertainty due to the unknown LEC.
- Comparison with the exp number gives LECs. But the predictive power is lost.
- Instead, lattice calculation can be used to fix LECs.

Chiral extrapolation

• Lattice simulation is harder for lighter sea quarks.

• Computational cost grows as m_q^{-n} (n~2).

- Finite volume effect becomes more important $\sim exp(-m_{\pi}L)$
- Practical calculation often involves the *chiral extrapolation*. At the leading order, it is very simple:
 - 1. Fit the pseudo-scalar mass with $m_{\pi}^2 = B_0(m_u + m_d) + O(m_q^2)$
 - 2. Input the physical pion mass $m_{\pi 0}$ =135 MeV to obtain $m_{ud}=(m_u+m_d)/2$. (Forget about the isospin breaking for the moment.)
 - 3. Renormalize it to the continuum scheme to obtain the value in MSbar

NLO example

Chiral expansion

$$m_{\pi}^{2} = 2B_{0}m_{q}\left[1 + \frac{1}{2}\frac{m_{\pi}^{2}}{(4\pi f_{\pi})^{2}}\ln\frac{m_{\pi}^{2}}{\mu^{2}} + c_{3}\frac{m_{\pi}^{2}}{(4\pi f_{\pi})^{2}} + \text{NNLO}\right]$$

- LO (linearity) looks very good, but if you look more carefully NLO is visible.
- $\circ m_{\pi}^2/m_q$ not constant.
- Chiral log term has a definite coefficient = curvature fixed.
- Analytic term has an unknown constant, to be fitted with lattice data = linear slope

Chiral symmetry is important!

- So, the realization of chiral symmetry is of crucial importance for lattice calculations.
- Wilson:
 - \circ chiral symmetry is lost: Need modified χ PT
- Staggered:
 - $\circ~$ extra tastes are involved: Need modified χPT
- Domain-wall, Overlap:
 - No need, but costly.

2 Lattice gauge theory

2.4 Controlling the systematic effects

Discretization

Need fine grids to approximate the continuum. What is the necessary resolution?

Multi-scale problem

- Players of QCD span between 3 MeV and 5 GeV
 - Not feasible (for now) to treat at once.(Nuclear physics is not considered here.)

- Plus, arbitrary momentum scale appear in QFT.
 - Physically irrelevant scale can be integrated out; its effects are encoded in the coupling constant = Renormalization Group.

Multi-scale problem

- Players of QCD span between 3 MeV and 5 GeV
 - Not feasible (for now) to treat at once.(Nuclear physics is not considered here.)

- Two directions (or both)
 - ← Going to the physical up/down quark masses
 - \rightarrow Fine lattices to directly treat charm (or even bottom)

Simulation parameters

• Approaching the continuum/physical limit

Discretization effect

• Understood using an effective field theory (Symanzik).

$$\mathcal{L}_{\text{Sym}} = \mathcal{L}^{(4)} + a\mathcal{L}^{(5)} + a^2\mathcal{L}^{(6)} + \cdots$$

- \circ L⁽⁴⁾ is the same as the continuum QCD.
- L⁽⁵⁾, L⁽⁶⁾, ... represent the discretization effects. All possible operators of that mass dimension may appear.
- All "possible" operators allowed by the lattice symmetry.

$$\mathcal{L}^{(5)} \ni \bar{\psi} D^2_{\mu} \psi, \ \bar{\psi} \sigma_{\mu\nu} F_{\mu\nu} \psi$$

violates chiral symmetry; allowed for Wilson, not for DW/OV

 $\not \ni \bar{\psi} \gamma_5 D^2_\mu \psi$

violates parity; not allowed for lattice actions respecting parity

Discretization effect

• Understood using an effective field theory (Symanzik).

$$\mathcal{L}_{\text{Sym}} = \mathcal{L}^{(4)} + a\mathcal{L}^{(5)} + a^2\mathcal{L}^{(6)} + \cdots$$

- \circ L⁽⁴⁾ is the same as the continuum QCD.
- L⁽⁵⁾, L⁽⁶⁾, ... represent the discretization effects. All possible operators of that mass dimension may appear.
- All "possible" operators allowed by the lattice symmetry.
- Typically, the O(*a*) error is eliminated; the leading error is O(a^2).

Continuum limit

Continuum limit

Light quark masses

- Computational cost grows for lighter light quarks
 - \circ 1/m_q for inversion
 - \circ 1/m_q for integration
 - \circ 1/m_q for autocorrelation
- Improved over years
 - new algorithms
 - new machines

Now feasible to simulate at physical up/down quark masses

Light quark masses

- Important because the quark mass dependence could be non-trivial.
 - o nearly massless pions may introduce non-analytic behavior.

$$\int \frac{d^4k}{(2\pi)^4} \frac{i}{k^2 - m^2} = \frac{1}{(4\pi)^2} \left[\Lambda^2 + m^2 \ln \frac{m^2}{\Lambda^2 + m^2} \right]$$
Cutoff regularization
$$= \frac{m^2}{(4\pi)^2} \left(\frac{2}{\varepsilon} + \gamma - \ln 4\pi + \ln \frac{m^2}{\mu^2} - 1 \right)$$
Dimensional reg

- \circ m² ln m² is called the chiral log.
- After subtracting the UV divergence

$$m_{\pi}^{2} = 2B_{0}m_{q}\left[1 + \frac{1}{2}\frac{m_{\pi}^{2}}{(4\pi f)^{2}}\ln\frac{m_{\pi}^{2}}{\mu^{2}} + (\text{const}) \times \frac{m_{\pi}^{2}}{(4\pi f)^{2}} + O(m_{\pi}^{4})\right]$$

Quark mass dependence

S. Hashimoto (KEK)

Sep 2016 123

Quark mass dependence

Extrapolation to the physical point is non-trivial.

Finite volume

- Lattice needs to be larger than the size of nucleon
 c.f. proton charge radius ~
 - c.f. proton charge radius ~
 0.9 fm.
- How large? Associated error should be carefully studied.
 - Biggest effect would be from pions.

Finite volume effect

- Obvious constraint is from the QCD scale $1/\Lambda_{\text{QCD}}$. But it is smaller than the length scale of pion $1/m_{\pi}$.
- Can be understood again using chiral effective theory.

$$\int \frac{d^4k}{(2\pi)^4} \frac{1}{k^2 + m^2} \rightarrow \sum_k \frac{1}{k^2 + m^2}$$

- \circ The effect is like exp(-mL).
- Suppressed to sub-% level at mL~4.

Infinite volume limit

Finite volume: BMW (2011)

Heavy quark

- m_c ~ 1.5 GeV, m_b ~ 4.5 GeV: not small compared to the (currently available) lattice cutoff 1/*a*.
 - Compton wavelength is smaller than the lattice spacing.
 - Significant discretization effects.
- Still, the relevant scale should be lower for low-energy dynamics. Some effective theory may be introduced.
 - \circ m_Q >> $\Lambda_{QCD'}$: Heavy quark effective theory (for heavy-light)
 - \circ m_Q >> m_Q α_s : Non-relativistic QCD (for heavy-heavy)
 - No wonderful trick for energetic processes.

Charm and bottom

- Heavy-light (D, B) $m_H = m_Q + E_{Q\bar{q}}$
 - E_{Qq} denotes a binding energy.
 - Simply calculate the meson mass; tune m_Q until m_H reproduces the experimental value.
 - Calculate E_{Qq}, whose m_Q dependence is subleading. Then, m_H-E_{Qq} gives m_Q. (Heavy Quark Symmetry)

- Heavy-heavy $(J/\psi, Y)$ $m_H = m_Q + m_{\overline{Q}} + E_{Q\overline{Q}}$
 - \circ E₀₀ denotes a binding energy.
 - Binding energy crucially depends on m_Q.

Heavy Quark Effective Theory (HQET)

- Write the momentum of heavy quark as $p=m_Qv+k$
 - \circ *v* : four-velocity of the heavy quark.
 - *k*: residual momentum
- Heavy quark mass limit:
 - o propagator

$$i\frac{p+m_Q}{p^2-m_Q^2+i\varepsilon} = i\frac{m_Q\psi+m_Q+k}{2m_Q\nu\cdot k+k^2+i\varepsilon} \rightarrow i\frac{1+\psi}{2}\frac{1}{\nu\cdot k+i\varepsilon}$$

o Lagrangian

$$L_{Q} = \overline{Q}_{v}(iv \cdot D)Q_{v}; \quad Q(x) = e^{-im_{Q}v \cdot x}Q_{v}(x) \quad \text{Georgi (1990),}$$

Heavy quark mass drops out from the dynamics
 Heavy Quark Symmetry
 Isgur-Wise (1989)

Eichten-Hill (1990)

HQET on the lattice

- Discretize the HQET lagrangian
 - Assuming $v^{\mu}=(1,0)$: rest frame of the heavy quark

$$S_{Q} = \sum_{x} Q^{+}(x) [Q(x) - U_{4}^{+}(x - \hat{4})Q(x - \hat{4})]$$

- Heavy quark propagator becomes a static color source.
- Heavy-light meson mass: $m_H = m_Q + E_{Q\bar{q}}$ Calculate $E_{Qq'}$ then, $m_H - E_{Qq}$ gives m_Q up to Λ_{QCD}/m_Q corrections.

Limitation of effective theory

- Obviously, HQET (at LO) ignores the $1/m_{\rm Q}$ effects.
 - Higher order terms can be included. The leading corrections:
 - The coefficients of terms are constrained by the Lorentz invariance, thus giving 1/2m_o.
 - But, in the quantum theory they are renormalized differently, since the Lorentz invariance is violated by the choice of the reference frame v^μ.
 - The coefficients (Z_m and c_B) must be calculated (non-)perturbatively.
 - The same complication arises at every order of the expansion.

 $H = -\frac{D^2}{2m_0} - \frac{\sigma \cdot B}{2m_0}$

Heavy quark (conventional)

Heavy-light meson decay constant: HPQCD (2011)

Heavy quark (NRQCD)

HPQCD (2013)

All errors taken into account									
FLAG (2016) Collaboration	Ref.	Dublicas.	chial of status	continue detion	fuite the etchedor	ten olumo det	runite district	m_{ud}	m_s
ALPHA 12 Dürr 11 [‡] ETM 10B JLQCD/TWQCD 08A RBC 07 [†] ETM 07 QCDSF/ UKQCD 06 SPQcdR 05 ALPHA 05	[12] [132] [11] [138] [105] [133] [139] [140] [135]	A A A A A A A A		* * * • • • • • • • • • • • • • • • • •	★ ○ ● ★ ○ ●	* - * * * * * *	a, b c a	$\begin{array}{c} 3.52(10)(9) \\ 3.6(1)(2) \\ 4.452(81)(38) \binom{+0}{-227} \\ 4.25(23)(26) \\ 3.85(12)(40) \\ 4.08(23)(19)(23) \\ 4.3(4)\binom{+1.1}{-0.0} \end{array}$	$\begin{array}{r} 102(3)(1)\\ 97.0(2.6)(2.5)\\ 95(2)(6)\\ -\\ 119.5(5.6)(7.4)\\ 105(3)(9)\\ 111(6)(4)(6)\\ 101(8)(\substack{+25\\-0}\\ 97(4)(18)^{\$}\end{array}$
QCDSF/ UKQCD 04 JLQCD 02 CP-PACS 01	[137] [141] [134]	A A A	÷	*	■ ○ ★	*	_ _ _	$\begin{array}{c} 4.7(2)(3) \\ 3.223(^{+46}_{-69}) \\ 3.45(10)(^{+11}_{-18}) \end{array}$	$119(5)(8) \\ 84.5(^{+12.0}_{-1.7}) \\ 89(2)(^{+2}_{-6})^{\star}$

Leptonic decay constants

Leptonic decay constants

Strong coupling constant

3. Application to particle phenomenology

3.1 Use and limitation of perturbation theory

Perturbation theory?

- One can treat only plane wave of quark/gluon field as the initial/final states, and not hadrons. What can we calculate, then?
- For instance, the sum of all possible final states.

$$R = \frac{\sigma(e^+e^- \rightarrow \text{hadrons})}{\sigma(e^+e^- \rightarrow \mu^+\mu^-)} = \frac{\sum_q \sigma(e^+e^- \rightarrow q\overline{q})}{\sigma(e^+e^- \rightarrow \mu^+\mu^-)}$$
$$= 3\sum_q Q_q^2 \left\{ 1 + \frac{\alpha_s}{\pi} + O(\alpha_s^2) \right\}$$

• They must be quarks, initially. They then hadronize, and the cross section must be the same. = Quark-hadron duality (which is an assumption).

Optical theorem

• Unitarity of scattering amplitude

S = I + iT $I = S^{\dagger}S = (I - iT^{\dagger})(I + iT) = I + i(T - T^{\dagger}) + T^{\dagger}T$ $\Rightarrow T^{\dagger}T = 2 \operatorname{Im} T$

cross section (sum of final states)

imaginary part of $e^+e^- \rightarrow e^+e^-$

- No hadrons in the initial/final states. Perturbation theory can be applied.
- Is it true? The internal states are hadrons.

Quark-hadron duality

[assumption] cross section for hadronic final states can be calculated using quarks.

• The key is the sum over final states... a smearing

Poggio, Quinn, Weinberg, PRD13, 1958 (1976)

$$\overline{R}(s,\Delta) = \frac{\Delta}{\pi} \int_0^\infty ds' \frac{R(s')}{(s-s')^2 + \Delta^2}$$
$$= \frac{1}{2\pi i} \int_0^\infty ds' R(s') \left(\frac{1}{s-s'+i\Delta} - \frac{1}{s-s'-i\Delta}\right)$$
$$= \frac{1}{2i} \left[\Pi(s+i\Delta) - \Pi(s-i\Delta)\right]$$

may avoid resonances; perturbative expansion is convergent.

higher orders become important near resonances

$$\operatorname{Im}\Pi(s) \propto R(s) = \frac{\sigma(e^+e^- \to q\overline{q})}{\sigma(e^+e^- \to \mu^+\mu^-)}$$

Quark-hadron duality

[assumption] cross section for hadronic final states can be calculated using quarks.

- The key is the sum over final states... a smearing.
- Need sufficient smearing to avoid the resonance effect.

Charmonium correlator

• Theory vs exp, through moments

$$\frac{1}{n!} \left(\frac{\partial}{\partial q^2}\right)^n \left(\Pi(q^2)\right)_{q^2=0} = \frac{1}{12\pi Q_f^2} \int ds \frac{1}{s^{n+1}} R(s)_{e^+e^- \to \text{ hadron}}$$

$$\int \cdots \int \left(\prod_{i=1}^{n+1} R(s)_{e^+e^- \to \text{ hadron}}\right)^n \left(\prod_{i=1}^{n+1} R(s)_{e^+e^- \to \text{ hadron}}\right)^n$$

Charmonium correlator

• Moments on the Euclidean lattice

$$i\int \mathrm{d}x \frac{1}{n!} \left(\frac{\partial}{\partial q^2}\right)^n \mathrm{e}^{iqt} \longrightarrow a^4 \sum_x t^{2n}$$

• Simply constructed from the correlators

$$G_{V}(t) = a^{6} \sum_{x} \langle 0 | j_{k}(x,t) j_{k}(0,0) | 0 \rangle, \quad G_{V,n} = \sum_{t} (t / a)^{n} G_{V}(t)$$

 $\circ~G_V(t)$ represents a J/ ψ correlator, ~exp(-m_{J/\psi}t), plus its excited states, continuum, etc.

Charm quark mass

• Method developed by HPQCD/Karlsruhe (2008~)

Lattice Pert to
$$\alpha_s^3$$

$$R_n = \frac{a m_{\eta_c}^{(\exp)}}{2 a \overline{m}_c(\mu)} r_n(\mu; m_c(\mu), \alpha_s(\mu))$$

- Determine two parameters with the equation of several n.
- Use the pseudo-scalar channel. Exp data do not exist, but the correspondence between lattice and perturbation theory is valid.

RHS: truncation error of purturbative expansion

Included up to $O(\alpha_s^3)$. Also included the variation with $\mu_m \neq \mu_{\alpha}$.

Errors

3. Application to particle phenomenology

3.2 pion and kaon physics

Chiral symmetry breaking

- u, d, s quark masses < 300 MeV
 - Spontaneous symmetry breaking $SU(3)_L \times SU(3)_R \rightarrow SU(3)_V$
 - $\circ \pi$, K mesons = Nambu-Goldstone bosons
- Effective theory = chiral perturbation theory

• Interactions of pions are restricted by symmetry.

Chiral perturbation theory

• Expansion in terms of pion momentum and mass

$$\begin{split} L_{2} &= \frac{1}{2} \partial_{\mu} \pi^{a} \partial^{\mu} \pi^{a} - \frac{m_{\pi}^{2}}{2} \pi^{a} \pi^{a} + \frac{m_{\pi}^{2}}{24 f^{2}} (\pi^{a} \pi^{a})^{2} \\ &+ \frac{1}{6 f^{2}} \Big[(\pi^{a} \partial_{\mu} \pi^{a}) (\pi^{b} \partial^{\mu} \pi^{b}) - (\pi^{a} \pi^{a}) (\partial_{\mu} \pi^{b} \partial^{\mu} \pi^{b}) \Big] + \dots \end{split}$$

- Derivative couplings: more reliable for small momenta
- Loop integral induces higher dimensional Ops (nonrenormalizable)
- Systematic expansion is possible. More parameters (Low Energy Constants) for higher orders: #LO = 2, #NLO = 10. Need to be determined elsewhere.

Validate LQCD, and determine LEC.

Consistency with χPT

• Quark mass dependence

Consistency with χPT

• Quark mass dependence

NLO and NNLO need to be included to describe the lattice data.

Light quark mass

- Quark mass can be extracted.
 - So far, the bare mass on the lattice.
 - Pole mass doesn't make sense (perturbation theory doesn't converge).
 - Common definition is the MSbar (at 2 GeV); Renormalization factor needs to be calculated.

$$\overline{m}(2 \text{ GeV}) = Z_m(2 \text{ GeV}, 1/a)m^{\text{lat}}$$

Using perturbation theory, or partly non-perturbatively.

Renormalization

Use some intermediate scheme to match to MSbar.
 o Ex. RI/MOM scheme, for quark vertex

$$\frac{Z_V}{Z_q}\frac{1}{48}\operatorname{Tr}[\Pi_{V_{\mu}}\cdot\gamma_{\mu}] = 1. \quad \frac{1}{Z_q}\frac{1}{12}\operatorname{Tr}\left[-i\frac{\partial}{\partial\not p}S^{-1}(p)\right]\Big|_{p^2=\mu^2} = 1.$$

• Can be calculated by both MSbar and lattice.

• EM form factor

$$\langle P(p')|J_{\mu}|P(p)\rangle = (p+p')_{\mu}F_{V}^{P}(t), \quad t = (p-p')^{2},$$
$$J_{\mu} = \frac{2}{3}\bar{u}\gamma_{\mu}u - \frac{1}{3}\bar{d}\gamma_{\mu}d - \frac{1}{3}\bar{s}\gamma_{\mu}s,$$

• Charge radius

$$\langle r^2 \rangle_V^P = \left. 6 \left. \frac{\partial F_V^P(t)}{\partial t} \right|_{t=0},$$

• Vector meson dominance

$$F_V(t) = \frac{1}{1 + t/m_V^2}$$

• Three-point function

$$C_{KV\mu D}(t_x, t_y; \vec{p}) = \sum_{\vec{x}, \vec{y}} \langle O_K(t_x, \vec{x}) V_\mu(0) O_D^{\dagger}(t_y, \vec{y}) \rangle e^{-i\vec{p} \cdot \vec{x}}$$

o inserting complete set of states,

$$C_{KV_{\mu}D}(t_x, t_y; \vec{p}) = \sum_{i,j} \frac{1}{2m_{D_i} 2E_{K_j}(\vec{p})} e^{-m_{D_i} t_x - E_{K_j}(\vec{p})|t_y|} \times$$

 $\times \langle 0|O_K(t_x, \vec{x})|K_i(\vec{p})\rangle \langle K_i(\vec{p})|V_\mu(0)|D_j(\vec{0})\rangle \langle D_j(\vec{0})|O_D^{\dagger}(0)|0\rangle$

• Charge radius

PACS (2016)

- Scattering length *a*₀
 - $a_0 \sim \tan \delta_0(k)/k$

$$\frac{1}{\tan \delta_0(k)} = \frac{4\pi}{k} \cdot \frac{1}{L^3} \sum_{\mathbf{n} \in \mathbb{Z}^3} \frac{1}{p_n^2 - k^2} \quad (\mathbf{p}_n = \mathbf{n} \cdot (2\pi)/L)$$

: SC. phase shift in infinite volume
: Lüscher's formula

• Allowed energy in a finite box is limited. Contains the info of scattering phase shift.

I=2 channel. ETMC (2015)

• Scattering length a_0

0.02NLO-LO ChiPT LO ChiPT -0.05 NLO ChiPT $M_{\pi}a_0 - (M_{\pi}a_0)^{LO}$ 0.00 -0.15 $M_{\pi}a_0$ -0.02-0.25A ensembles A ensembles B ensembles -0.04B ensembles D45 D45 ٠ -0.35extrapolated extrapolated 1.0 1.52.02.53.01.0 1.52.02.53.0 M_{π}/f_{π} M_{π}/f_{π} $M_{\pi}a_{0} = -\frac{M_{\pi}^{2}}{8\pi f_{\pi}^{2}} \left\{ 1 + \frac{M_{\pi}^{2}}{16\pi^{2} f_{\pi}^{2}} \left[3\ln\frac{M_{\pi}^{2}}{f_{\pi}^{2}} - 1 - \ell_{\pi\pi}(\mu_{R} = f_{\pi,\text{phys}}) \right] \right\}$

I=1 channel. Bali et al. (2016)

I=1 channel. HSC (2016)

Chiral condensate

• Strength of symmetry breaking

Chiral condensate

FLAG averages

Flavor Lattice Averaging Group 3, arXiv:1607.00299

Quantity	Sec.	$N_f = 2 + 1 + 1$	Refs.	$N_f = 2 + 1$	Refs.	$N_f = 2$	Refs.
$m_s[{ m MeV}]$	3.1.3	93.9(1.1)	[4, 5]	92.0(2.1)	[6-10]	101(3)	[11, 12]
m_{ud} [MeV]	3.1.3	3.70(17)	[4]	3.373(80)	[7–10, 13]	3.6(2)	[11]
m_s/m_{ud}	3.1.4	27.30(34)	[4, 14]	27.43(31)	[7, 8, 10, 15]	27.3(9)	[11]
$m_u[{ m MeV}]$	3.1.5	2.36(24)	[4]	2.16(9)(7)	‡	2.40(23)	[16]
$m_d[{ m MeV}]$	3.1.5	5.03(26)	[4]	4.68(14)(7)	‡	4.80(23)	[16]
m_u/m_d	3.1.5	0.470(56)	[4]	0.46(2)(2)	‡	0.50(4)	[16]
$\overline{m}_c(3 \text{ GeV})[\text{GeV}]$	3.2.3	0.996(25)	[4, 5]	0.987(6)	[9, 17]	1.03(4)	[11]
m_c/m_s	3.2.4	11.70(6)	[4, 5, 14]	11.82(16)	[17, 18]	11.74(35)	[11]
$\overline{m}_b(\overline{m}_b)[\text{GeV}]$	3.3	4.190(21)	[5, 19]	4.164(23)	[9]	4.256(81)	[20, 21]
$f_{+}(0)$	4.3	0.9704(24)(22)	[22]	0.9677(27)	[23, 24]	0.9560(57)(62)	[25]
$f_{K^{\pm}}/f_{\pi^{\pm}}$	4.3	1.193(3)	[14, 26, 27]	1.192(5)	[28-31]	1.205(6)(17)	[32]
$f_{\pi^{\pm}}[\text{MeV}]$	4.6			130.2(1.4)	[28, 29, 31]		
$f_{K^{\pm}}[\text{MeV}]$	4.6	155.6(4)	[14, 26, 27]	155.9(9)	[28, 29, 31]	157.5(2.4)	[32]
$\Sigma^{1/3}$ [MeV]	5.2.1	280(8)(15)	[33]	274(3)	[10, 13, 34, 35]	266(10)	[33, 36–38]
F_{π}/F	5.2.1	1.076(2)(2)	[39]	1.064(7)	[10, 29, 34, 35, 40]	1.073(15)	[36-38, 41]
$\bar{\ell}_3$	5.2.2	3.70(7)(26)	[39]	2.81(64)	[10, 29, 34, 35, 40]	3.41(82)	[36, 37, 41]
$\bar{\ell}_4$	5.2.2	4.67(3)(10)	[39]	4.10(45)	[10, 29, 34, 35, 40]	4.51(26)	[36, 37, 41]
$\bar{\ell}_6$	5.2.2					15.1(1.2)	[37, 41]
\hat{B}_{K}	6.1	0.717(18)(16)	[42]	0.7625(97)	[10, 43-45]	0.727(22)(12)	[46]

FLAG averages

Flavor Lattice Averaging Group 3, arXiv:1607.00299

Quantity	Sec.	$N_f = 2 + 1 + 1$	Refs.	$N_f = 2 + 1$	Refs.	$N_f = 2$	Refs.
$f_D[{ m MeV}]$	7.1	212.15(1.45)	[14, 27]	209.2(3.3)	[47, 48]	208(7)	[20]
$f_{D_s}[{ m MeV}]$	7.1	248.83(1.27)	[14, 27]	249.8(2.3)	[17, 48, 49]	250(7)	[20]
f_{D_s}/f_D	7.1	1.1716(32)	[14, 27]	1.187(12)	[47, 48]	1.20(2)	[20]
$f_{+}^{D\pi}(0)$	7.2			0.666(29)	[50]		
$f_+^{DK}(0)$	7.2			0.747(19)	[51]		
$f_B[{ m MeV}]$	8.1	186(4)	[52]	192.0(4.3)	[48, 53-56]	188(7)	[20, 57, 58]
$f_{B_s}[{ m MeV}]$	8.1	224(5)	[52]	228.4(3.7)	[48, 53-56]	227(7)	[20, 57, 58]
f_{B_s}/f_B	8.1	1.205(7)	[52]	1.201(16)	[48, 53–56]	1.206(23)	[20, 57, 58]
$f_{B_d}\sqrt{\hat{B}_{B_d}}[\text{MeV}]$	8.2			219(14)	[54, 59]	216(10)	[20]
$f_{B_s}\sqrt{\hat{B}_{B_s}}$ [MeV]	8.2			270(16)	[54, 59]	262(10)	[20]
\hat{B}_{B_d}	8.2			1.26(9)	[54, 59]	1.30(6)	[20]
\hat{B}_{B_s}	8.2			1.32(6)	[54, 59]	1.32(5)	[20]
ξ	8.2			1.239(46)	[54, 60]	1.225(31)	[20]
B_{B_s}/B_{B_d}	8.2			1.039(63)	[54, 60]	1.007(21)	[20]
Quantity	Sec.	$N_f = 2 + 1$ and $N_f = 2 + 1 + 1$			Refs.		
$\alpha_{\overline{\text{MS}}}^{(5)}(M_Z)$	9.9	0.1182(12)			[5, 9, 61-63]		
$\Lambda_{\overline{\mathrm{MS}}}^{(5)}[\mathrm{MeV}]$	9.9	211(14)			[5, 9, 61-63]		

3. Application to particle phenomenology

3.3 nucleon properties

Nucleon form factor

• Matrix elements (vector)

$$\left\langle N(p',s') \Big| j^{\mu} \Big| N(p,s) \right\rangle = \left(\frac{m_N^2}{E_N(\mathbf{p}') E_N(\mathbf{p})} \right)^{1/2} \overline{u}(p',s') \left[\gamma^{\mu} F_1(q^2) + \frac{i\sigma^{\mu\nu} q_{\nu}}{2m_N} F_2(q^2) \right] u(p,s)$$

• Electromagnetic form factors $G_E(q^2) = F_1(q^2) + \frac{q^2}{(2m_N)^2} F_2(q^2)$ $G_M(q^2) = F_1(q^2) + F_2(q^2)$ (\vec{x}_f, t_f)

 (\vec{x}_i, t_i)

 $\leq \vec{q} = \vec{p}' - \vec{p}$
Nucleon form factor

• Matrix elements (axial-vector)

$$\left\langle N(p',s') \Big| A_{\mu}^{3} \Big| N(p,s) \right\rangle = \frac{i}{2} \left(\frac{m_{N}^{2}}{E_{N}(\mathbf{p}')E_{N}(\mathbf{p})} \right)^{1/2} \overline{u}(p',s') \left[\gamma_{\mu}\gamma_{5}G_{A}(q^{2}) + \frac{q_{\mu}\gamma_{5}}{2m_{N}}G_{P}(q^{2}) \right] u(p,s)$$

- axial charge $g_A = G_A(0)$
 - Well determined experimentally through the beta decay.

axial charge g_A

• A benchmark of lattice QCD calculation

Ground state?

Mainz (2016)

Ground state?

Mainz (2016)

Sep 2016 184

Finite volume?

Proton charge radius

Proton charge radius

Proton charge radius

NOT precise enough...

From Alexandrou @ CONF12

Axial form factor

• Similar calculation

$$\left\langle N(p',s') \Big| A_{\mu}^{3} \Big| N(p,s) \right\rangle = \frac{i}{2} \left(\frac{m_{N}^{2}}{E_{N}(\mathbf{p}')E_{N}(\mathbf{p})} \right)^{1/2} \overline{u}(p',s') \left[\gamma_{\mu}\gamma_{5}G_{A}(q^{2}) + \frac{q_{\mu}\gamma_{5}}{2m_{N}}G_{P}(q^{2}) \right] u(p,s)$$

• Traditionally, use the dipole form to fit the exp data

$$G_A(Q^2) = rac{g_A}{(1 + rac{Q^2}{M_A^2})^2} \qquad \langle r_A^2 \rangle = rac{12}{M_A^2}$$

 $\circ~M_{\rm A}$ ~ 1 GeV.

Axial form factor

Mainz (2016)

Sigma term

$$\sigma_q = m_q(\langle N|\bar{q}q|N\rangle - \langle 0|\bar{q}q|0\rangle)$$

- Relevant to the dark matter detection, if DM couples to the scalar current.
- Feynman-Hellmann theorem $m_q \langle N | \bar{q}q | N \rangle = m_q \frac{\partial}{\partial m_q} m_N$

Sigma term

Sigma term

Strange quark content

Structure functions

structure functinos

$$W^{\{\mu\nu\}}(x,Q^2) = \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2}\right)F_1(x,Q^2) + \left(p^{\mu} - \frac{\nu}{q^2}q^{\mu}\right)\left(p^{\nu} - \frac{\nu}{q^2}q^{\nu}\right)\frac{F_2(x,Q^2)}{\nu}$$

Structure functions

Moments:

$$2\int dx \, x^{n-1} F_1(x, Q^2) = \sum_{q=u,d} c_{1,n}^{(q)} (\mu^2/Q^2, g(\mu)) \langle x^n \rangle_q$$
$$\int dx \, x^{n-2} F_2(x, Q^2) = \sum_{q=u,d} c_{2,n}^{(q)} (\mu^2/Q^2, g(\mu)) \langle x^n \rangle_q$$

can be written in terms of matrix elements of

$$\mathscr{O}^{q}_{\mu_{1}\mu_{2}\cdots\mu_{n}} = \left(\frac{i}{2}\right)^{n-1} \bar{q}\gamma_{\mu_{1}} \stackrel{\leftrightarrow}{D}_{\mu_{2}} \cdots \stackrel{\leftrightarrow}{D}_{\mu_{n}} q - trace$$

Structure functions

From Lin (2010)

Summary

History

40 years of LQCD

- **1974** K. Wilson's seminal paper
- **1980s** Early numerical simulations. Sea quarks were ignored in most computations.
- **1990s** A lot of technical improvements, still quenched.
- **2000s** Dynamical quarks are attempted, still too heavy.
- **2010~** Low-lying hadron spectrum (+ some other "easy") quantities are okay.

And, next 10 years

2016~ LQCD as a tool of precise computation of the Standard Model

Challenges, not covered

- QED
 - Needs to be included to go below 1%.
 - Non-trivial due to long-range force. Some attempts already exist. No generally applicable method.
- Multi-body systems (scatterings, decays, exotics)
 - Needs dedicated theoretical framework to connect Euclidean correlation function to the physical quantities. Exists for twobody.
 - A lot of attempts. Works for simplest system (I=2 $\pi\pi$).
- Topological quantities
 - Non-trivial to define the topological charge on the lattice. Easier on sufficiently fine lattices, but then the topology freezes.

Challenges, not covered

- Finite temperature
 - Phase transition is not easy to identify on finite volumes.
 - A lot of studies have been done. Consensus is a "crossover" for 2+1-flavor QCD.
 - Non-trivial when the topology is relevant.
- Finite density
 - Sign problem: MC doesn't work.
 - A lot of attempts without full success.
 - Related to a problem of statistical noise.

Summary

Not a comprehensive lecture. Some feeling about QCD and its numerical simulation.

- QCD is simple, but non-linear.
- Rich structure
 - Asymptotic freedom
 - Confinement
 - Chiral symmetry breaking
- Lattice QCD: Non-perturbative calculation of QCD has become feasible. Now, a precision physics.

事前質問

格子QCD

- 格子QCDの計算がどこまでできているか
- 格子計算のインプットとしてはどんなものが必要か
- ・ AdS/CFT対応で重力理論とゲージ場が繋がるが、その辺 と格子QCDの関係や成果を教えてほしい。
- ・ 格子QCDの素粒子、原子核、宇宙物理それぞれでの位置 付けと成果を知りたい。
- ・ 格子QCD計算の次世代計画(コスモシミュレータ計画?) とそれによって新たにわかる物理

事前質問

実験とQCD

- 格子QCDがLHC物理でのハドロン現象に対して役に 立っているか。また、立っているならその詳細を知りたい。
- ・ g-2測定のハドロンループの計算誤差の入り方
- Onbb の核行列要素(どの原子核が有利かってのはどれ くらい妥当なのか?)
- 物性物理との対応や応用もあれば教えてほしい。

