Optical Time Projection Chambers: A New Look at Dark Matter & Neutrino Physics

Jocelyn Monroe, Royal Holloway University of London

> Department of Physics Seminar, Kyoto University Dec. 9, 2016

Outline

Physics Motivation

Detector Development for Dark Matter -Experimental Considerations -Direction Measurement Progress in DMTPC

Outlook for Large Detectors -Geo-Neutrino Sensitivity -HPTPC for Neutrino Physics

Dark Matter is ~25% of the energy density of the universe.

What do we know about Dark Matter?

density ~ 0.3 GeV/cm³

dark matter particle mass: ~unknown

interactions: very weak, ~collision-less

Direct Detection

Signal: $\chi N \rightarrow \chi N$

WIMP Scattering

kinematics: $v/c \sim 8E-4!$

recoil angle strongly correlated with incoming WIMP direction

Spin Independent: *χ* scatters coherently off of the entire nucleus A: *σ*~A² *D. Z. Freedman, PRD 9, 1389 (1974)*

<u>Spin Dependent:</u> mainly unpaired nucleons contribute to scattering amplitude: $\sigma \sim J(J+1)$

detector requirements: measure recoil energy, time, +angle

detector requirements: ~1-10s of keV energy threshold, background rates << 1/kg-yr

55

The Dark Matter Wind apparently "blows" from Cygnus

> directional detection: search for a dark matter source

Daily direction modulation: asymmetry ~ 20-100% in forward-backward event rate.

Spergel, Phys. Rev. D36:1353 (1988)

12:00h 42. WIMP Wind 0:00h

Unambiguous proof: Correlation of WIMP-induced nuclear recoil signal with galactic motion

RHUL Jocelyn Monroe

Directional Detection Goal

if you can reconstruct the energy and <u>angle</u> of the recoil nucleus,

simulated reconstructed dark matter sky map: search for anisotropy

Signal characteristics:

(i) forward-backward asymmetry in galactic frame, (ii) sidereal modulation in lab

RHUL Jocelyn Monroe

Dec. 9, 2016

A. M. Green, B. Morgan,

you have a dark matter telescope

+90

Outline

Physics Motivation

Detector Development

-Experimental Considerations for Dark Matter Searches -Direction Measurement Progress in DMTPC

Outlook for Large Exposure -Geo-Neutrino Sensitivity -HPTPC for Neutrino Physics

Optimization

how many events to detect the dark matter wind?

Detector Properties: energy threshold background reconstruction (2D vs. 3D) vector reconstruction

No background, 3-d vector read-out, $E_T = 20 \text{ keV}$	5				
$E_{\rm T} = 50~{\rm keV}$	5				
$E_{\rm T} = 100 \text{keV}$ *Perfect Case	3				
S/N = 10 (no detector effects)	8				
S/N = 1	17				
S/N = 0.1	99				
3-d axial read-out	81				
2-d vector read-out in optimal plane, reduced angles	12				
2-d axial read-out in optimal plane, reduced angles					

A. M. Green, B. Morgan, Astropart.Phys.27:142-149,2007

J. Billard, F. Mayet, D. Santos, EAS Publ.Ser.53 (2012) 67-75

do not need "zero background" for directional detectors

F. Mayet, JM, et al. arXiv:1602.03781

TPC Directional Detectors

Directional R&D Around the World

DRIFT: MWPC readout, operating 0.8m³ detector in Boulby since 2001. Negative ion drift of CS₂+CF₄. *S. Burgos et al., Astropart. Phys. 28, 409 (2007)*

NEWAGE: mu-PIX readout of CF₄ target, in Kamioka. First directional limit. *K. Miuchi, et al., Phys.Lett.B654:58-64 (2007)*

MIMAC: micromegas readout of CF₄ target, in Modane. Focus on low energy. *D. Santos, et al., J. Phys. Conf. 65, 021012 (2007)*

DMTPC: optical (CCD) and charge readout of CF₄ targe, commissioning 1m³ module. 2D + 1D, focus on vector direction. *D. Dujmic, JM, et al., NIM A 584:337 (2008)*

CYGNUS: coordination of directional R&D

plus R&D on fine-grained emulsions, pixel chips, high P gas, biological detectors, C nanotubes, ++

Dark Matter-Induced Recoil Signal Direction

distribution of signal events determined by:

angular resolution of elastic scattering
 dark matter velocity dispersion

for 100 GeV WIMPs, need ~50 keV energy threshold for direction anisotropy at 3σ Dec. 9, 2016

Impact of Detector Physics on Signal Directionality

recoil kinematics:

Backgrounds in Directional Detectors

Three strategies:

- 1. range vs. energy
- 2. tracking (10⁶ electron rejection)
- 3. angular distribution (important for v-N coherent scattering!) JM, P. Fisher, Phys. Rev. D 76:033007 (2007)

RHUL Jocelyn Monroe

Readout Requirements: Segmentation and Low Noise

At 50 keV, F recoil track length is 1 mm (@ 60 Torr CF4), 2.5 mm (@ 30 Torr CF4).

As the F travels, it loses energy to the medium, which has significant fluctuations (straggling)

To determine the track angle requires > 2 measurements along the track, and in the presence of straggling, readout noise, etc. require more.

need >500 um resolution, for direction measurement at 50 keV recoil energy.

given quenching and W for CF₄, primary signal size of $O(10^2 - 10^3)$ e- / track

RHUL Jocelyn Monroe

Timeline of Optical TPCs (using CCDs)

1988 Masek et al., da **1988: CCD cost (my estimate) 0.05\$/channel** CD in P-10/CH₄ + TEA, MW C + 4.5 KC D neur PKL/5 0 (1994) 100/

1988 Charpak, Breskin et al., UV RICH, multi-stage MWPC + intensifier + CCD *Nucl. Instrum. Methods A 273 (1988) 798, IEEE Trans.Nucl.Sci. 35 (1988) 483-486*

2002 Fraga et al., thermal neutron imaging with CCD readout of GEMs *Nucl. Instrum. Methods A 478 (2002) 357*

2006 Weissman et al., (O-TPC) nuclear astrophysics cross sections with multi-stage MWPC + image intensifier + CCD in CO2 (80%) + N2 (20%) mixtures *J. Instrum. 1 (2006) P05002*

2007 Dujmic et al., (DMTPC) dark matter directional detection, with mesh-based amplification region + optical lens + CCD, in CF₄ mixtures *Nucl.Instrum.Meth. A584 (2008) 327-333*

2014 Phan et al., dark matter directional detection, GEMs + CCD in SF₆ *Physics Reports 662 (2016) 1-46*

2016 CERN GDD (Reindl, Resnati et al.), MPGDs + CCD studies with RD51 *https://indico.cern.ch/event/568177/*

RHUL Jocelyn Monroe

2016: CCD cost (my estimate) 0.005\$/channel)

Dark Matter Time Projection Chamber (DMTPC) Principle

1. primary ionization encodes track direction via dE/dx profile

2. drifting electrons preserve dE/dx profile if diffusion is small

3. multiplication in amplification region produces e- + scintillation

D. Dujmic, JM et al., NIM A 528 (2008) 327

RHUL Jocelyn Monroe

7/17/(1)[45]

CF₄ Scintillation

ratio of scintillation to ionization in avalanche determines optical 'gain'

measurement 140-180 Torr, result: $\gamma/e^{-} = 0.34 + /-0.04$ A. Kaboth, JM, et al., NIM A 592:63-72 (2008)

CF₄ spectrum well-matched to CCD QE

RHUL Jocelyn Monroe

CCD Readout

Total optical system gain:

Increasing gain + track length with lower pressure, but decreasing mass!

Key to identifying low energy tracks is S:N per pixel, @50 keVr want S:N >10

RHUL Jocelyn Monroe

Directionality I

CCD readout of 100 torr TPC with MWPC

2D angle + head-tail from light asymmetry (measure skewness)

1st DMTPC Prototype

Signed cosine (E>200 keV), 5 cm drift

challenge to scaling up: diffusion! $\sigma^2 = (D/\mu) 2 z_{DRIFT} / E$

2nd Prototype

pixel X

time (s)

goal: charge and light = reject backgrounds + 3D R&D Dec. 9, 2016

RHUL Jocelyn Monroe

CCD Length and Energy Calibration

 α sources for energy calibration (4.4 MeV)

measure gain (ADU/keVee) by comparing **α** energy measured in external solid state detector with energy in CCD, at track end: typical gain ~ 20-40 ADU/keV

illuminate with Co-57 (122,137 keV) and Cs-137 (662 keV) for length calibration

measure optical plate scale by comparing features in gamma data with photo typically ~140-170 um/pixel (then bin 2x2 to 4x4 before readout)

"WIMP" Calibration

Neutron elastic scattering mimics dark matter recoils, and most neutrons below ~4 MeV (n,alpha) production threshold

Cf-252 (~mCi), AmBe, and d-t n at surface, AmBe (8.9 uCi) source underground

Backgrounds, CCD Readout

Alphas: edge crossing

10⁴ rejection of backgrounds from range vs. energy S. Ahlen, et al., Phys. Lett. B 695 (2011)

>1.1E-5 (90% CL) γ rejection from rise time vs. E:

~10² rejection from E_{charge} vs. E_{CCD} :

3D R&D

- tracking in z (drift direction):
- angled alpha calibration source produces tracks of known Δz

charge:

measure mesh signal rise time
find similar tracking resolution in Δz (from charge) as in x-y (from CCD)

light:

12C or 19F

~0.1 atm

CF4 Gas

- measure PMT signal pulse width
- pulse width varies with Δz , shape varies with +/- Δz

R&D on identifying cathode events using PMT readout

Direction Calibration

Need a source of known energy and angle

But, neutron scattering kinematics produce wide range of angles, and neutrons are hard to collimate.

Angled alpha calibration:

- only track ends in active region, can tune energy ~100 keVee
- tune angle by rotating collimator

RHUL Jocelyn Monroe

Track Reconstruction

Measure energy from track intensity integral

Make use of the known profile of nuclear recoils from the Bragg curve to (1) fit for the track parameters (range, angle)

- (2) fit for the head-tail (H-T)
- (3) assign confidence in H-T determination with likelihood ratio of two possible senses, cut on confidence

C, Deaconu, PhD thesis (2015)

Directionality II

diffusion has a big impact!measure with 20, 25 cm drift

 find direction reconstruction depends most on track length, range/width>3 for head-tail ID,

C. Deaconu, PhD (2015), Phys. Procedia 261 (2015) 39

Energy range equivalent ~50-200 keV

Diffusion Measurement

Measure track width from alpha source at known heights in detector,

- fit for two terms: $\sigma_T^2(z_{DRIFT}) = \sigma_{T,0}^2 + 2\left(\frac{D_T}{\mu}\right)\left(\frac{z_{DRIFT}}{E}\right)$
- find z-dependent term consistent with literature recommended value

L. G. Christophorou, et al, Journal of Physical and Chemical Reference Data 25 (1996) 1341

• constant term (straggling?) dominates until z~20cm, and z=25 cm for $\sigma^2_T < 1$ mm J. Battat, JM, et al., NIMA 755 (2014)

• sets a maximum drift length per TPC to be ~25 cm to preserve track direction

2

RHUL Jocelyn Monroe

E, (ke'v

DMTPCino: 1 m³ Active Volume Module

prototype for large detector: build many 1m³ modules, because of diffusion limit.

goal: achieve similar or better S:N per pixel, for 35° resolution at 50 keVr in 1m³ module, and R&D: 1 camera+lens/side (~0.005\$/channel now)

Charge readout for E measurement,

Signal:Noise

Lower pressure (P) gives longer range (good!), higher gain (good!), but lower dE/dx (bad!!)

Signal size:

$$S = \frac{\left(\frac{E \times q}{w}\right) \times G \times (\gamma/e^{-}) \times \rho \times QE \times \eta}{N_{pixels/track}}$$
(11)

Where:

- E = 50 keV the target nuclear recoil energy threshold at which DMTPC wants to be able to reconstruct the direction of tracks well
- q = 0.6 is the gas quenching and is defined as the fraction of energy released by a recoil in a medium through ionization compared with its total kinetic energy [14]
- w = 34 eV represents the mean energy required to produce an ion/e⁻ pair in CF₄, work function of the gas [7]
- $G = 10^5$ is the gas gain
- $\gamma/e^- = 0.3$, is the number of photo-electron pairs created as a result of the scintillation light produced
- ρ is the geometric acceptance of the lens $=\frac{1}{16(1+m)^2(f/\#)^2}$
- $\eta = 0.64$ is the combined anode (0.8), cathode (0.9) and detector window (0.9) transparency

Noise size:

$$N_{total} = \sqrt{N_{Shot}^2 + N_{readout}^2 + N_{Dark}^2}$$

To increase S:N: 1) increase geometric acceptance , 2) reduce *N*, 3) increase gas gain *G* RHUL Jocelyn Monroe Dec. 9, 2016

Optical System for Large Area Optical Readout

<u>comparison of 20L prototype vs. DMTPCino optical systems S:N</u> 20L prototype: 4x Alta CCD + Canon f/1.2lens DMTPCino: 4-CCD side: Proline9000 CCD (0.01 e/pix/s dark rate) + Nikon f/0.95 lens 1-CCD side: Fairchild 486 CCD (0.0001 e/pix/s dark rate) with quad readout + large angle-of-view Canon f/0.95 lens

calculation inputs:

- 30 Torr pressure: 2.5 mm long track, 1 mm wide @ 50 keVr to estimate S/pixel
- gas gain = assume 100,000k for DMTPCino, vs. 65,000 gain for 20L prototype
- dark current rate and read noise from camera specs (confirmed in in-situ measurement)
- measured scintillation spectrum, Y/e-, lens transmittance vs. wavelength, lens vignetting

Lens/Camera	F(cm) / f#	pixel (um)	sensor diag. (cm)	FoV (cm)	m	acceptance (rho)	read noise (e-)	vixel size (um) (map to I pixel)	S/N (e-/e-)
DMTPCino I-CCD side	5/0.95	15	6.14	(113)2	18.4	2E-04	7	276	189/16 = 12
DMTPCino 4-CCD side	5/1.2	12	3.66	(57) ²	15.6	2E-04	10	243	95/14 = 6.8
20L prototype	8.5/1.2	24	2.45	(16) ²	6.65	5E-04	10	160	87/13 = 6.3

empirically: S:N>15 results in ~20 keVr track-finding threshold -> bin 2x2 before readout

anode voltage (V)

800

750

gap size

m3 goal

DMTPCino: Gas Gain Calibration

higher gain = lower energy threshold.

Fe-55 source (5.9 keV) deployed to measure absolute gas gain vs. anode voltage, at 30 Torr operating pressure.

> 2nd gain campaign

> > 16

800

750

DMTPCino: Integration of Readout Channels

Optical: CCD + PMT

readout

RHUL Jo

100

54

10000 15000 20000 25000 30000

PMT $d\Omega$

DMTPCino: Direction Calibration with AmBe Neutron Source

Stable operation at 150k gain for 4 weeks. Coincident signals in all readout channels!
Clear excess in n source direction in high energy events (q_{recoil} = recoil-source angle)

RHUL Jocelyn Monroe

(C. Deaconu CYGNUS'15)

Generated Ionization:

(C. Deaconu CYGNUS'15)

Generated Ionization:

016

(C. Deaconu CYGNUS'15)

Generated Ionization:

(C. Deaconu CYGNUS'15)

Generated Ionization:

(C. Deaconu CYGNUS'15)

Generated Ionization:

TRIM simulation
+ HEED cluster generation
+ MagBoltz
+ GARFIELD
+ readout model
+ cluster finding
+ 2D likelihood

+ track reconstruction

(C. Deaconu CYGNUS'15)

C. Deaconu, PhD thesis (2015)

Bottom lines:

• we are reconstructing direction (including head-tail) at ~physics limit from straggling of primary F ion. Need to reduce ion straggling! Lower Z gas, i.e. He?

- axial resolution is ~40 degrees (FWHM) at 50 keVr
- TRIM predicts ~50% larger angular spread than observed (measure straggling!)

RHUL Jocelyn Monroe

DMTPCino Sensitivity Projection

Acceptance Probabilities ($p_r = 0.1\%$)

C. Deaconu et al., sub. Phys.Rev.D (2016)

RHUL Jocelyn Monroe

Number of events required to observe the dark matter wind?

<u>Analysis assumptions</u> • Use physics model tuned on data, assume 100k gain

• simulate *n* experiments, compute forward fraction and axial spread per bin

 calculate p of obtaining these values from isotropic distribution, and combine bins using Fisher's method

• Result: need 450 events to measure anisotropy at 3σ in >50% of experiments.

DMTPCino Sensitivity Projection

Acceptance Probabilities ($p_r = 0.1\%$)

C. Deaconu et al., sub. Phys.Rev.D (2016)

• Result: need 450 events to measure anisotropy at 3σ in >50% of experiments.

= 500 [300] m3-years for 100 (1000) GeV/c² DM at 1 fb SD xsec on F (=25 kg-years exposure)

e.g. DEAP veto: 200 m³

RHUL Jocelyn Monroe

Outline

Physics Motivation

Detector Development -Experimental Considerations for Dark Matter Searches -Direction Measurement Progress in DMTPC

Outlook for Large Exposure -Geo-Neutrino Sensitivity -HPTPC for Neutrino Physics

Low Background Frontier

tonne scale, keV threshold, low background detectors with directionality have potential for first observations of...

neutrino-nucleus coherent elastic scattering of solar neutrinos JM, P. Fisher, PRD76:033007

RHUL Jocelyn Monroe

Supernova neutrinos in NC, flux and spectrum

with direction measurement:

Leyton, Dye, JM, sub. Nature (2016)

⁴⁰K geoneutrinos

Geo-Neutrinos

U, Th geo-nus first observed by KamLAND, then Borexino using inverse beta decay rate ~4 events/100 ton-year 2.5x rate from BSE-based model (KamLAND), 1.6x (Borexino) *Mantovani et al., PRD69:013001 (2004)*

⁴⁰K geo-nus could contribute significantly to the 44 TW radiogenic heat of the earth, but have never been measured, since endpoint <1.8 MeV threshold for IBD

elastic scattering has no threshold, + direction of the out-going e⁻ is correlated with the incident nu, can discriminate backgrounds from sun, reactors

Large, direction-sensitive detectors have potential to make the first observation of the ⁴⁰K flux, and perhaps to separate crust vs. mantle composition.

RHUL Jocelyn Monroe

Geo-Neutrinos and Direction

Measure the recoil e- direction to infer the nu direction.

Example) MUNU measured e- from reactor nu-e scattering, with 50% efficiency, 12°-15° resolution above 200 keV, in CF₄ gas at 1 bar pressure, using MWPC + PMTs Daraktchieva et al., PLB 615, 153 (2005)

for DMTPC study, assume similar performance and threshold with detailed geo-nu flux model

cathode

(-45 kV)

Pb

Incident Neutrino Flux

RH

2016

Scattering Rates

experiments use IBD because solar nu-e⁻ elastic scattering backgrounds are large!

direction-sensitive low-energy TPCs can exploit angle, time, and energy spectrum differences

(CNO signal today = geo-nu bgnd tomorrow) *Bonvicini et al, NIM A 491 (2002*)

Geo-Neutrino Sensitivity

simulate 1000 toy experiments, use profile likelihood statistic to test

case (i): **no** ⁴⁰K signal in "data," find 90, 95% CL upper limit on ⁴⁰K flux case (ii): **yes** ⁴⁰K signal in "data," find ⁴⁰K flux at which null hypothesis can be excluded at 90, 95% CL

studied signal = 40 K, mantle, core, reactor

	40K	Mantle (no radioactivity in core)	Core	Reactor monitoring
Energy threshold	200 keV	250 keV	800 keV	1.5 MeV
Solar-v flux uncertainty	+11.2, -5.3 %	+12.3, -5.8 %	+20.0, -11.5 %	+2.2, -1.4 %
Geo-v flux uncertainty	±18-20%	±11%	±5%	±18-20%
$\cos heta_{sun}$	< -0.09	< 0.02	< 0.54	< 0.53
90% (tonne-yrs)	73-87	435-560	47000-53000	111-200
90% <cl> (tonne-yrs)</cl>	89-106	1051-1557	134000-138000	98-301

Connection with R&D for Accelerator Neutrino Oscillations

Low Threshold Gas TPC R&D for Neutrino Physics:

goal: reduce neutrino cross section systematics from 8-10% to 1-2% for CP violation search in long-baseline neutrino oscillation experiments, with 10 MeV threshold

• address nuclear model uncertainties with precision measurements of FS p, e, mu

Proton Range in HPTPC

1 cm track reconstruction threshold gives ~50 MeV/c proton threshold in 5 bar Ar, sufficient to conclusively measure the problematic region in final state particle kinematics in neutrino interactions for long baseline oscillations.

1 cm range threshold -> ~1 mm readout pitch (and $10^2 \times S:N$ for DMTPC)

HPTPC Prototype

Pressure vessel capable of 5 bar operation with mixtures of CF₄, Ar, Ne, CO₂, CH₄. Optical readout based on DMTPC (0.5 mm optical plate scale), plan micromegas amplification structures with T2K TPC electronics (charge readout with ~cm pitch)

RHUL Jocelyn Monroe

Beam Test: Proton-Nucleus Cross Section

no data in most of the relevant region for neutrino interactions in long baseline oscillation experiments

beam test goal: measure p absorption cross section, and final state multiplicity, in p-Ar, p-F interactions < 1 GeV/c

Figure 0.2.1: Left: Total reaction cross sections for protons on four nuclei: argon, helium-4, neon, and fluorine. [Data compiled by A. Kaboth and W. Ma (Imperial PhD student).] Right: GENIE proton distributions for 600 MeV ν_{μ} -CC interactions on Ar before (blue) and after (red) final state interactions.

Conclusions

• Optical TPC readout is a promising technology to get to sub-mm resolution at reasonable cost per channel in very large detectors.

• DMTPC has demonstrated <40° angular resolution with 25 cm diffusion, recovering the intrinsic directionality of the recoil to the straggling limit

• In the process of moving from small prototypes to 'physics-scale' detector module. Commissioning of DMTPCino underway...

• demonstrated 4x increase in gas gain

• coincident readout of charge (fast, slow), light (fast, slow) signals powerful for background rejection.

•main challenge: achieve resolution + head-tail, at lower energy

•Exploring applications to neutrino scattering physics, looks promising for geo- and accelerator- neutrinos, new collaborators very welcome to get involved!