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Abstract
The universe consists of primarily matter. The origin of matter-antimatter asymmetry in

the universe is unknown. Theories proposing that a lepton matter-antimatter asymmetry can
be converted into a baryon asymmetry assume leptonic CP violation, which has not yet been
observed. Discovering leptonic CP violation would support the theories and would be a key
to understanding the origin of the matter-antimatter asymmetry in the universe. This thesis
searches for leptonic CP violation by performing measurements of neutrino oscillation parameters
and a measurement of neutrino cross sections using a new detector complex.

We need precise measurements of neutrino oscillation parameters to discover CP violation.
The neutrino oscillation parameters are divided into a CP-violating phase (δCP), neutrino mixing
angles (θ12, θ13, θ23), and neutrino mass squared differences (∆m2

21, ∆m2
32). The angle θ23 is re-

lated to the octant problem; whether θ23 equals, less than or larger than π/4. The determination
of ∆m2

32’s sign determines the neutrino mass ordering; normal ordering (mν1 < mν2 < mν3) or
inverted ordering (mν3 < mν1 < mν2). In this thesis, we tackle CP violation. The octant problem
and the neutrino mass ordering are also considered.

The T2K experiment is a long-baseline accelerator neutrino experiment. Muon neutrinos or
anti-muon neutrinos are generated at the proton accelerator (J-PARC), and the neutrino beam
is directed towards a neutrino detector located 295 km away from J-PARC. T2K aims to discover
leptonic CP violation and unravel the neutrino’s properties. We perform an oscillation analysis
using 19.663 × 1020 protons on target (POT) in the neutrino mode and 16.344 × 1020 POT in
the anti-neutrino mode. We measure the νµ (νµ) to νe (νe) oscillations and νµ (νµ) to νµ (νµ)
oscillations to extract δCP, θ23 and ∆m2

32. CP conservation is rejected at the 90% confidence
level. The 2σ confidence interval for δCP is [-π, -0.29] ∪ [3.04, π] in the normal ordering case. The
1σ confidence interval on sin2 θ23 is [0.460, 0.491] ∪ [0.526, 0.578] for the normal ordering. We see
both cases (θ23 < π/4 and θ23 > π/4) within the 1σ intervals. The constraint on ∆m2

32 (|∆m2
31|)

is 2.506+0.047
−0.059 × 10−3 eV2/c4 (2.474+0.050

−0.056 × 10−3 eV2/c4) for the normal (inverted) ordering.
Regarding neutrino mass ordering, the normal ordering is weakly preferred with a Bayes factor
of 2.8. The oscillation analysis is statistically limited, and the systematic uncertainty is not
negligible. The systematic uncertainty from the uncertainty of neutrino interaction models has
a large contribution.

For a further improvement in the precision of the oscillation parameters, we perform a neutrino
cross section measurement using a new detector complex called WAGASCI-BabyMIND. The
signal is defined as charged current muon neutrino interactions where no charged pions exist in
the final state. We present cross section results on CH and H2O targets with a peak neutrino
energy of 0.86 GeV in limited phase space of the muon angle and momentum. Both measured
integral and differential cross section as a function of muon momentum and angle are almost
consistent with the neutrino interaction models used in our oscillation analysis. We compare the
results with the predictions of other neutrino interaction models. No particular model is rejected
or favored due to large statistical errors.

We demonstrate the impact of the conventional T2K near detector and WAGASCI-BabyMIND
joint fit of the neutrino interaction samples on constraints of flux and cross section parameters.
The improvement is around 30% at most to the fit without adding WAGASCI-BabyMIND sam-
ples. The constraints of the flux and cross section parameters are then used to extract δCP. The
improvement is subtle in this analysis. Nevertheless, we pave the way for the application of the
neutrino cross section measurements with the new detector complex to the oscillation analysis.
This will offer a valuable approach to increase T2K’s potential to discover leptonic CP violation.

2



Acknowledgements
I would like to express my sincere gratitude to all the staff, students, secretaries, researchers,

and facility members who supported my research activities, in particular the members of the
high energy physics group and the colleagues in the T2K experiment. Here, I would list what
they provided me, or what I learned from them.

Additude to physics research
I am deeply indebted to Prof. Tsuyoshi Nakaya. He always reminds me of the importance
of questioning myself why the study is important. I was also taught that someone wouldn’t
be a scientist if they did only what they were said to. I make the most of this lesson in my
future career.

Patience
Without Prof. Atsuko Ichikawa, the research endeavor would not have been completed.
Patience is key to keeping doing a thing. She always challenged my patience, from which
I’ve learned that we should be patient to achieve a goal. The lesson would be being patient
is key to success.

Technique
I would like to extend my sincere thanks to Dr. Tatsuya Kikawa. He has provided me
with a lot of technical knowledge in our studies since the beginning both explicitly and
implicitly. On top of that, he is the person to correct this thesis most diligently, without
whom this thesis would never be understood by anyone except me.

Physics in English
I’m extremely grateful to Prof. Roger Alexandre Wendell. He is my "supervisor" in terms
of English, especially physics in English. Although he was not my actual supervisor, it
was, at any time, kind of him to answer my questions on physics or general knowledge in
English, even when he was occupied by his research and teaching activities. A lot of tips
in English that I learned from him are embedded in this thesis.

BabyMIND
Special thanks go to the Geneva team, Dr. Etam Noah Messomo, Dr. Saba Parsa, and
Dr. Alexander Mefodiev, who are the main members to work with for the commissioning
of a new detector installed in J-PARC, called BabyMIND. I learned the management of
the commissioning from Dr. Etam Noah Messomo, reconstruction software from Dr. Saba
Parsa, and detector calibrations and mechanical techniques from Dr. Alexander Mefodiev.
I had the pleasure of working with the BabyMIND collaboration.

WAGASCI
I have worked with Mr. Pintaudi Giorgio to create the whole system for our detectors
since the beginning of the commissioning of the WAGASCI measurement. I could not
have undertaken this journey without him. Big thanks should also go to Prof. Akihiro
Minamino, who is a group leader in this measurement.

MUMON
I owe the MUMON work mostly to Dr. Yosuke Ashida. He shows one of the model cases
as a scientist. It was one of the luckiest things to meet this brilliant researcher. I also
would like to express my gratitude to staff and students from Tokyo University of Science,

3



Ms. Nao Izumi, and Ms. Hina Nakamura led by Prof. Masaki Ishitsuka, and Mr. Takashi
Honjo, Prof. Yoshihiro Seiya from Osaka City University.

NINJA in WAGASCI
We invited the NINJA experiment, which specializes in neutrino interaction measure-
ments with nuclear emulsions, to the same location where the WAGASCI measurements
were performed. Massive thanks go to Prof. Tsutomu Fukuda, Dr. Ayami Hiramoto,
and Dr. Takahiro Odagawa. We have meaningful discussions to mutually benefit from
NINJA/WAGASCI measurements.

Oscillation analysis
I owe the neutrino oscillation analysis mainly to the four group leaders in T2K, Dr. Patrick
Dunne, Dr. Clarence Wret, Dr. Ciro Riccio, and Dr. Benjamin Quilain. They always
motivated us to obtain meaningful results in the analysis.

Brilliant teammates
Without the brilliant co-analyzers, we couldn’t complete the oscillation analysis on a tar-
geted schedule. I wish to thank Dr. Lukas Berns, Dr. Yohei Noguchi, Dr. Lucile Mellet,
and Mr. Thomas Hovey for managing to finish all the analyses in time.

Cross section fitter, SuperxsllhFitter
Dr. Andrew Cudd developed his sophisticated fitting framework to extract cross sections,
called Super-xsLLhFitter. He kindly provided any information we needed to apply his fitter
to our analysis. Without him and the fitter, we wouldn’t reach the final results on this
time scale.

I wish to thank all the members who shared the same research place in the high energy
physics group at Kyoto University. To the staff members at the moment I graduated, Prof.
Osamu Tajima, Dr. Toshi Sumida, Dr. Junya Suzuki, and Dr. Shunsuke Adachi, I’m expressing
my special appreciation. For the office work related to my research activities, I entirely owe it
to the brilliant secretaries, Mana Sasaki and Harumi Sekiguchi.

Dr. Jianrun Hu, Mr. Zhuojun Hu, Mr. Feng Jiahui, who are members of this laboratory,
and Dr. Viet Nguyen, whom I met in a neutrino summer school in Vietnam reminded me that
friendship is a good thing. I hope we keep being good friends.

I’ve now belonged to the SPring-8/SACLA facility. The group leader, Hitoshi Tanaka, kindly
accepted my offer to start the research activities on this site by preparing a temporary posi-
tion. It is thanks to him and the members at SPring-8/SACLA that I am able to complete my
dissertation.

This research was supported by the JSPS Young Scientist Fellowship with the grant ID
19J22258, "The search for CP violation in a neutrino sector by the precise measurement of
two kinds of spectrum."

Finally, I would extend my deepest gratitude to my parents and brothers, Masayuki and
Sachiko, Hideyuki and Shozo, for providing me with this "life" and always wishing me every
success.

4



Contents

I Introduction 11

1 Introduction to the thesis 11
1.1 Neutrino . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Neutrino oscillation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 Unresolved issues in neutrino physics . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.1 CP violation in neutrinos . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.2 Neutrino mass ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.3 Flavor symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 The T2K experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.5 Measurement of oscillation parameters . . . . . . . . . . . . . . . . . . . . . . . . 16
1.6 Difficulties in precise measurements of oscillation parameters for the T2K experiment 17
1.7 Measurement of neutrino interactions . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.8 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Neutrino oscillation 19
2.1 General formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Three flavors case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Oscillation parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.1 ∆m2
21, sin

2 θ12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.2 sin2 θ13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.3 ∆m2

32 (∆m2
31), sin

2 θ23 (sin2 2θ23) . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.4 δCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.5 Summary of the oscillation parameter measurements . . . . . . . . . . . . 25

3 The T2K experiment 27
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Experimental apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.1 Beamline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.2 Muon monitor (MUMON) . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.3 Near Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.4 Far Detector (FD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Data taking status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Neutrino interaction in sub-GeV energy region 41
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Interaction with free nucleon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.1 Charged current quasi-elastic scattering . . . . . . . . . . . . . . . . . . . 43
4.2.2 Charged current meson production . . . . . . . . . . . . . . . . . . . . . . 45
4.2.3 Charged current deep inelastic scattering . . . . . . . . . . . . . . . . . . 47

4.3 Interaction with nucleon bound inside nucleus . . . . . . . . . . . . . . . . . . . . 48
4.3.1 Interaction models for quasi-elastic scattering . . . . . . . . . . . . . . . . 48
4.3.2 Interaction models for meson productions . . . . . . . . . . . . . . . . . . 52

4.4 Importance of interaction models in neutrino oscillation measurements . . . . . . 53

5



II Measurement of neutrino oscillation parameters from the T2K experi-
ment 55

5 Measurement of neutrino beam 55
5.1 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Waveform analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3 Linearity and stability measurements . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.4 Measurement of muon beam profile . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6 Oscillation analysis methods 61
6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.2 Neutrino flux model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.3 Neutrino interaction modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.3.1 Model selections in 1p1h interactions . . . . . . . . . . . . . . . . . . . . . 65
6.3.2 Model selections in 2p2h interactions (two particle two hole) . . . . . . . . 65
6.3.3 Model selections in meson productions . . . . . . . . . . . . . . . . . . . . 66
6.3.4 Model selections in deep inelastic scattering . . . . . . . . . . . . . . . . . 66
6.3.5 Implementations of nuclear medium effects . . . . . . . . . . . . . . . . . . 66
6.3.6 T2K parametrization for neutrino interaction models . . . . . . . . . . . . 67

6.4 Near detector fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.4.1 Analysis samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.4.2 Fitting strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.4.3 Fit results on flux and neutrino interaction parameters . . . . . . . . . . . 72
6.4.4 Fit results on ND prediction . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.4.5 Compatibility of fit results with MC models . . . . . . . . . . . . . . . . . 74

6.5 Event reconstruction of analysis samples at the far detector . . . . . . . . . . . . 76
6.5.1 Sample Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.5.2 Event selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.6 Far detector fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.6.1 Construction of confidence interval . . . . . . . . . . . . . . . . . . . . . . 80
6.6.2 Construction of credible region . . . . . . . . . . . . . . . . . . . . . . . . 82

7 Results of oscillation analysis 83
7.1 Systematic uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.2 Result of observed events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.3 Measurements of oscillation parameters . . . . . . . . . . . . . . . . . . . . . . . 87

7.3.1 Best fit results for oscillation parameters . . . . . . . . . . . . . . . . . . . 87
7.3.2 Measurement of δCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.3.3 Measurement of sin2 θ23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.3.4 Measurement of mass-squared differences (∆m2

32, ∆m2
31) . . . . . . . . . 91

7.3.5 Measurement of sin2 θ13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.3.6 Measurement of Jarlskog invariant . . . . . . . . . . . . . . . . . . . . . . 94

6



8 Discussions on the oscillation analysis results 95
8.1 Intepretations of the results on the oscillation parameters . . . . . . . . . . . . . 95
8.2 Comparison with sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
8.3 Impacts of the systematic parameters on data fit results . . . . . . . . . . . . . . 100
8.4 Impacts of the major updates in the updated results on the contours . . . . . . . 100
8.5 Comparison with other experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 103
8.6 Future measurements by the T2K experiment . . . . . . . . . . . . . . . . . . . . 106

III Measurement of neutrino-nucleus cross section and applications to the
oscillation analysis 107

9 The WAGASCI-BabyMIND detectors 107
9.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

9.1.1 Energy dependency of neutrino interaction . . . . . . . . . . . . . . . . . . 107
9.1.2 Target and acceptance differences between ND and FD . . . . . . . . . . . 108
9.1.3 Target physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

9.2 Detector complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
9.2.1 Water target detectors (WAGASCI) . . . . . . . . . . . . . . . . . . . . . 112
9.2.2 CH target detectors (Proton Module) . . . . . . . . . . . . . . . . . . . . 112
9.2.3 Downstream muon range detector (Baby MIND) . . . . . . . . . . . . . . 112
9.2.4 Muon range detectors aside vertex detectors (WallMRD) . . . . . . . . . . 113

9.3 Detector specification and performance . . . . . . . . . . . . . . . . . . . . . . . 113
9.3.1 Dark noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
9.3.2 Light yield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
9.3.3 Hit detection efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
9.3.4 Two-dimensional tracking efficiency . . . . . . . . . . . . . . . . . . . . . . 119
9.3.5 The summary of detector specification and performances . . . . . . . . . . 120

9.4 Monte Carlo simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

10 Track reconstruction 122
10.1 Track Seeding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
10.2 Track Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
10.3 Vertex Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
10.4 Three-dimensional track reconstruction . . . . . . . . . . . . . . . . . . . . . . . . 126
10.5 Measurement of track properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

10.5.1 Angle reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
10.5.2 Momentum reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
10.5.3 Particle charge identification . . . . . . . . . . . . . . . . . . . . . . . . . 128
10.5.4 Particle type identification . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
10.5.5 Track-per-cluster ratio calculation . . . . . . . . . . . . . . . . . . . . . . 129

11 Event selection and cross section analysis 130
11.1 Signal definition and Sample classification . . . . . . . . . . . . . . . . . . . . . . 130

11.1.1 Signal definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
11.1.2 Sample classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

11.2 Event selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7



11.2.1 Selection criteria for the CC0π± sample . . . . . . . . . . . . . . . . . . . 132
11.2.2 Selection criteria for CC1π± sample . . . . . . . . . . . . . . . . . . . . . 138
11.2.3 Selection criteria for beam-induced background sample . . . . . . . . . . . 139
11.2.4 Summary of event selection . . . . . . . . . . . . . . . . . . . . . . . . . . 139

11.3 Systematic parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
11.3.1 Neutrino flux parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
11.3.2 Neutrino interaction parameters . . . . . . . . . . . . . . . . . . . . . . . . 144
11.3.3 Detector parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

11.4 Cross section analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
11.4.1 Analysis binning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

11.5 Cross section fitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
11.6 Cross section extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

12 Results of neutrino-nucleus cross sections 150
12.1 Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
12.2 Results of the flux-integrated cross section . . . . . . . . . . . . . . . . . . . . . . 150
12.3 Results of the differential cross section . . . . . . . . . . . . . . . . . . . . . . . . 151
12.4 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

12.4.1 Interpretation of the cross section results . . . . . . . . . . . . . . . . . . 155
12.4.2 Importance of the measurements . . . . . . . . . . . . . . . . . . . . . . . 160
12.4.3 Separation of statistical and systematic uncertainties . . . . . . . . . . . . 161
12.4.4 Data and MC model comparisons . . . . . . . . . . . . . . . . . . . . . . . 163
12.4.5 Future prospects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

13 Application of cross section results to the oscillation analysis 166
13.1 A joint fit of ND280 and WAGASCI-BabyMIND measurements to give better

constraints on systematic parameters . . . . . . . . . . . . . . . . . . . . . . . . . 166
13.2 A potential improvement in constraints on the oscillation parameters using the

updated near detector constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

IV Summary 173

14 Conclusion 173

Appendices 175

A PartII: The definition of fitting parameters in the ND fit 175
A.1 Neutrino flux parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
A.2 Neutrino interaction parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

B PartII: Fitting method for Bayesian Markov Chain Monte Carlo 177
B.1 Fitting algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
B.2 Comparison of two methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

C PartII: Bias studies for the neutrino oscillation analysis 179

8



D PartII: Impacts of the binning variables on the oscillation analysis 181
D.1 Best-fit results with Erec–θ binning for the e samples, Erec binning for the µ samples181
D.2 Comparisons of ∆χ2 distributions and fixed ∆χ2 confidence regions with Erec–θ

binning for the e-like samples, Erec binning for the µ-like samples . . . . . . . . . 181

E PartII: Cross fitter validation for the oscillation analysis results 186

F PartII: Impacts of the new FD sample 188

G PartII: P-value calculations at FD 194
G.1 Rate-only p-value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
G.2 Rate+Shape p-value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

H PartIII: Details of the track reconstruction algorithm 197
H.1 Two-dimensional track reconstruction (Track seeding) . . . . . . . . . . . . . . . 197

H.1.1 Celluler automaton tracking (CAT) . . . . . . . . . . . . . . . . . . . . . . 197
H.2 Three dimensional track reconstruction . . . . . . . . . . . . . . . . . . . . . . . . 200

H.2.1 Track matching in two-dimensional space and in three-dimensional space . 200
H.2.2 Vertexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
H.2.3 Track reconstruction in three-dimensional space for other tracks . . . . . . 203
H.2.4 Check hits in YASU trackers . . . . . . . . . . . . . . . . . . . . . . . . . 203

I PartIII: Details of the analysis on the track properties 204
I.1 muon angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
I.2 muon momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

I.2.1 Particle identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
I.3 Charge identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

J PartIII: Supplemental materials for the event selections 214
J.1 Selection criteria for the signal samples . . . . . . . . . . . . . . . . . . . . . . . . 214

J.1.1 Track / Cluster ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
J.1.2 Michel electron tagging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
J.1.3 Contained Volume cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
J.1.4 Performance of the selection criteria . . . . . . . . . . . . . . . . . . . . . 216

J.2 Selection criteria for side-band samples . . . . . . . . . . . . . . . . . . . . . . . . 219
J.2.1 CC1π± sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
J.2.2 Sand muon sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

K PartIII: Studies of neutrino flux and detector systematic uncertainties 221
K.1 neutrino flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
K.2 detector systematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

K.2.1 Magnetic field strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
K.2.2 Pion SI in Monte-Carlo simulation . . . . . . . . . . . . . . . . . . . . . . 227
K.2.3 MPPC noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
K.2.4 scintillator cross talk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
K.2.5 Light yield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
K.2.6 Hit efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
K.2.7 Scintillator distortion in BabyMIND . . . . . . . . . . . . . . . . . . . . . 241

9



K.2.8 Scintillator alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
K.2.9 Signal Lost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
K.2.10 Target Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
K.2.11 Event pileup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
K.2.12 Beam-related background . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
K.2.13 Two-dimensional tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
K.2.14 Track matching between detectors . . . . . . . . . . . . . . . . . . . . . . 253
K.2.15 Vertexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
K.2.16 Three-dimensional tracking . . . . . . . . . . . . . . . . . . . . . . . . . . 262
K.2.17 Fiducial volume cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
K.2.18 Contained volume cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
K.2.19 MUon Confidence Level (MUCL) cut . . . . . . . . . . . . . . . . . . . . . 268
K.2.20 Charge ID cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
K.2.21 Track/Cluster ratio cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
K.2.22 Michel electron cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
K.2.23 beam timing cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
K.2.24 The effect of resolution for angle and momentum measurements . . . . . . 278
K.2.25 Summary of detector systematics . . . . . . . . . . . . . . . . . . . . . . . 281

L PartIII: Error propagation for the cross sections 287

M PartIII: The number of target nucleons and flux integral 288
M.1 The number of target nucleons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

N PartIII: Validations of the cross section fitter 290
N.1 AsimovFit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
N.2 Altered signal events (overall) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
N.3 Altered signal events (individual) . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
N.4 Tweaked MaRES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
N.5 Statistical fluctuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
N.6 Systematic variation (with statistical fluctuation) . . . . . . . . . . . . . . . . . . 316
N.7 Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
N.8 Alternative CCQE model (BeRPA) . . . . . . . . . . . . . . . . . . . . . . . . . . 325
N.9 CCRES low Q2 suppression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

O PartIII: Simulated data studies for the cross section measurements 337
O.1 GENIE signal + NEUT background . . . . . . . . . . . . . . . . . . . . . . . . . 337
O.2 Alternative NEUT model (without Spectral Function, Nieves 1p1h model) . . . . 345
O.3 Reweight events based on Post-BANFF tuned in OA2022 . . . . . . . . . . . . . 350

P PartIII: Constraints on fitting parameters in the data fit 356
P.1 χ2 metric to asses the fit results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
P.2 Results of the parameter constraints . . . . . . . . . . . . . . . . . . . . . . . . . 356

10



Part I

Introduction

1 Introduction to the thesis

1.1 Neutrino

Neutrinos are fundamental particles in the standard model (SM). They are neutral fermions that
can interact with other particles only via weak force or gravity. A weak interaction of neutrinos
occurs with an exchange of a W± boson (referred to as a charged current interaction) or a Z
boson (referred to as a neutral current interaction). A charged current weak interaction can
change a neutrino into its lepton partner (electron, muon, or tau). There are three neutrino
flavors, corresponding to electron-neutrino, muon-neutrino, and tau-neutrino (νe, νµ, ντ ).

Historically, W. Pauli first postulated the existence of an unknown neutral particle [1], which
has later come to be known as the neutrino, to explain the electron’s continuous spectrum in
beta decay. Later, inspired by Pauli, E. Fermi established the theory of beta decay using this
unknown neutral particle. The first observation of these neutrinos was achieved by F. Reines
and C.L.Cowan et al. [2] in 1960. They made use of a nuclear reactor to observe anti-electron
neutrinos. G.Danby et al. conducted an experiment generating a neutrino beam based on pion-
decays (π → µν) from a proton accelerator [3] in 1962. This experiment proved the existence
of a distinct flavor of neutrino, muon neutrino other than the electron neutrino. In addition,
utilizing a high-energy proton accelerator with 800 GeV protons enabled the DONUT experiment
to observe the third flavor of neutrino, tau-neutrino [4] in 2001.

1.2 Neutrino oscillation

The neutrino flavors are not eigenstates of the Hamiltonian but are superpositions of three mass
eigenstates, which are ν1, ν2, ν3. A theory predicted that a neutrino could change its flavor in
flight if there exists mixing between flavor and mass eigenstates of neutrinos and the masses of
three mass eigenstates of neutrinos are different. This is referred to as "neutrino oscillation". The
Super-Kamiokande (SK) experiment proved that the survival probability of neutrinos depends
on their neutrino flavor, energy, and travel distance [5]. The experiment observed atmospheric
neutrinos which were produced by pion decays initiated by the interaction between cosmic rays
and the atmosphere. The experiment confirmed a deficit of muon-neutrinos in data with respect
to the prediction "without oscillation" and the deficit was in line with the prediction taking into
account oscillations. This was the case for muon-neutrino, while the experiment did not see a
deficit of electron-neutrinos. On the other hand, the deficit of the electron neutrinos from the
Sun was suggested by several experiments ( [6–8]). The Sudbury Neutrino Observatory (SNO)
found evidence that the neutrino oscillation caused the measured deficit of electron neutrinos in
data compared to what was predicted from the Sun [9]. The unique feature of this experiment is
that they utilized a heavy water target to discriminate the charged current neutrino interactions
and neutral current interactions. Several experiments reported a deficit of electron neutrinos in
data by measuring charged current interactions, compared to the solar models. They could not
eliminate the possibility of the model prediction overestimating the actual electron neutrino flux.
On the other hand, SNO was able to compare the neutrino flux measured by charged current
interactions with the one measured by neutral current interactions. If the measured deficit by
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other experiments was caused by the neutrino oscillation, the flux measured by charged current
interactions was expected to be smaller. Therefore, the experiment was able to test the deficit
independent of the solar models. In fact, SNO confirmed it was true. These experimental results
also indicate that there exist at least three neutrinos in mass eigenstates at least two of which
have non-zero masses.

As is already explained, we have known at least three flavors of neutrinos. The relationship
between neutrinos in mass eigenstates and in flavor eigenstates is determined by a mixing matrix
(PMNS matrix). The neutrino oscillation can be expressed by three mixing angles (θ12, θ23,
θ13), a CP-violating phase (δCP), and two mass squared differences (∆m2

ij = m2
νi −m2

νj , where
νi(j) is the i(j)th of neutrino mass eigenstates). It is necessary to experimentally determine
these parameters. The parameters θ12 and ∆m2

21 have been precisely measured by solar neutrino
experiments (for instance, Super-Kamikande [10]) and long-baseline reactor experiments (for
instance, KamLAND [11]) so far. The value of θ13 has been constrained well by short-baseline
reactor experiments (for instance, Daya Bay [12], RENO [13], and Double Chooz [14]). The
parameters δCP, θ23, and ∆m2

32 have been measured by atmospheric neutrino experiments and
accelerator neutrino experiments (for instance, Super-Kamiokande [15] and T2K [16,17]).

1.3 Unresolved issues in neutrino physics

The experiments have revealed important properties of neutrinos such as the neutrino oscillation.
On the other hand, there are still unresolved issues. In particular, three important issues are
tackled in this thesis; the CP violation in neutrinos, the neutrino mass ordering, and flavor
symmetry of νµ and ντ .

1.3.1 CP violation in neutrinos

The CP violation in quarks was already discovered [18]. The CP violation can be a key to an
important question in the universe where matters are dominant compared to anti-matters. The
matter’s abundant universe is among cosmological mysteries. The theory of Big-Bang nucle-
onsynthesis [19] and the observation of Cosmic Microwave Background (CMB) by Plank [20]
independently extract the cosmological parameter of the baryon density (Ωbh

2 = 0.0224±0.0001
measured by Plank [20]), both of which are in agreement with each other. The value of Ωbh

2 is
translated to the density of baryons (nb) normalized by the relic blackbody photon density (nγ).
The equivalent value of η10 = nb/nγ × 1010 to Ωbh

2 = 0.0224 ± 0.0001 is 5.8 ≤ η10 ≤ 6.6 [19].
This implies the slight excess (by the order of 10−9) in particles against anti-particles in the early
universe have created the whole matter in the current universe after the annihilation, which is
known as the matter-antimatter asymmetry or the Baryon Asymmetry of the Universe (BAU).
The conditions to generate BAU are well known as the Sakharov conditions [21] that are the
baryon number violation, the C violation, and the CP violation. Although the CP violation has
been confirmed in quarks, it cannot explain the current baryon asymmetry by order of eight.
Therefore, the CP violation in leptons or the mechanism for generating the baryon asymmetry is
necessary to explain BAU. A promising solution was provided by M.Fukugita and T.Yanagida,
who succeeded in explaining the BAU via a lepton asymmetry stemming from the CP violation
in the leptonic sector assuming right-handed heavy neutrino [22]. In this scenario called leptoge-
nesis, assuming the CP violation, the difference in the decay rate of right-handed neutrinos (N1)
between N1 → l,H and N1 → l̄, H̄ results in the lepton number violation. This is converted into
the baryon number violation via the sphaleron process preserving B-L [23].
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Another theory [24] proposed that leptogenesis could be understood by the CP-violation of
the active neutrino oscillation. In the early universe, inflationary universe, high-energy neutrinos
are generated by the decay of inflatons (ϕ) as in

ϕ → νini +X, ϕ̄ → ¯νini + X̄. (1.1)

Until the neutrino scatters, generated neutrinos are subject to the flavor oscillation. Assuming
the CP violation in this process, the flavor-dependent lepton asymmetry can occur, where no
net lepton asymmetry is generated because the tau-neutrino asymmetry can be compensated
by electron-neutrino and muon-neutrino asymmetry. When neutrinos are scattered off Higgs
bosons, the lepton number violating interaction, llHH interaction can occur, which washes out
the lepton number asymmetry. However, this scattering happens in different manners between
tau-neutrino and other flavors of neutrinos. The process can then make the lepton number
violation. The lepton number asymmetry leads to the baryon number asymmetry through the
sphaleron process.

The leptogenesis scenario via active neutrino oscillation assumes the CP-violation in the
neutrino oscillation. The CP violation has not been observed. Long-baseline neutrino oscillation
experiments are good probes for the CP-violation. Discovering or disproving it gives a hint to
comprehending how the current universe was generated in the context of BAU.

1.3.2 Neutrino mass ordering

The observations of the neutrino oscillations indicate three neutrino masses are different. The
mass scale of three mass eigenstates of neutrinos is found to be less than 1 eV/c2. The current
experiments have not reached the precision of measuring such tiny neutrino masses. On the
other hand, the difference in neutrino masses can be measured by neutrino oscillations thanks
to the fact that the probability of neutrino oscillations differs in matters compared to those in
a vacuum, which is referred to as "matter effect". In neutral current interactions, all neutrino
flavors are equally treated assuming matter consists of protons and neutrons, and electrons.
Only electron neutrinos experience interactions with electrons present in the matter via charged
current scattering. This effect is enhanced in the Sun, which affects the oscillation probability of
electron neutrinos. Then solar neutrino experiments measuring the electron neutrino oscillations
were able to determine the sign of ∆m2

21. On the other hand, the sign of ∆m2
32 is still unknown.

Therefore, we have two cases of neutrino mass orderings, which are mν1 < mν2 < mν3 (Normal
Ordering) and mν3 < mν1 < mν2 (Inverted Ordering). The neutrino mass ordering is another
important issue in neutrino physics.

The neutrino mass ordering captures attention not only of fundamental particle physics but
also of other fields such as nuclear physics, cosmology, and astrophysics. From the fundamen-
tal particle physics point of view, one of the approaches is neutrino oscillation experiments. In
atmospheric neutrino experiments and long-baseline accelerator neutrino experiments, neutrinos
travel in the earth interacting with matter where they are subject to the matter effects. The
matter effects affect the neutrino oscillation probability in different ways depending on the neu-
trino mass ordering. Atmospheric neutrino experiments and long-baseline accelerator neutrino
experiments have sensitivities to the mass ordering, both of which slightly prefer presently the
normal ordering.

Another approach comes from nuclear physics in the context of the measurements of the
neutrino absolute mass. The endpoint of the Kurie function for the β decay in the case of
massive neutrinos deviates from the endpoint in the case of massless neutrinos. The precise
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measurement of the shift of the endpoint is sensitive to the neutrino absolute mass. The behaviors
of the deviation around the endpoint are different between the two mass orderings, which allows
the experiment potentially to explore the right mass ordering. The energy resolution, however,
limits the sensitivity.

The sum of all neutrinos’ masses can be different depending on the neutrino mass order-
ing. 1 With the best-fit values for neutrino mass differences from neutrino oscillation experi-
ments, the lower bound of the sum of neutrino masses is given,

∑
mν > 0.06 eV/c2 (NO) and∑

mν > 0.1 eV/c2 (IO) [25]. The upper bound of the sum of neutrino masses is constrained by
cosmological surveys. The total neutrino masses affect the shape and the size of the small-scale 2

matter power spectrum because of the growth rate of cold dark matters or baryons depleted due
to the free-streaming of neutrinos [26]. The effect of the matter power spectrum is not large in
galaxy clustering and gravitational lensing of galaxies, whereas the effect of the mass ordering
on the CMB is inflated. CMB convergence angular power spectra are weighted by the matter
spectrum, and the measurement of the power spectrum becomes sensitive to the sum of neutrino
masses. These angular power spectra can be reconstructed from CMB temperature and polar-
ization maps [27]. The stringent constraint on the sum of neutrino masses comes from the Plank
satellite observation utilizing the gravitational lensing effect on CMB [28]. The constraint on the
total neutrino mass leads to the higher sensitivity to the neutrino mass ordering combined with
the results from oscillation experiments in particle physics. In addition to the gravitational lens-
ing effect, precise measurements of the Hubble constant (H0) play a role in increasing sensitivity
because it has a strong anti-correlation with the total neutrino masses [25].

The preference for the normal ordering is currently around 3σ [25] by combining results from
neutrino oscillation measurements, nuclear physics experiments, CMB observations, and Hubble
constant measurements. It should be noted that the oscillation experiments have the fundamental
role of examining the mass ordering.

1.3.3 Flavor symmetry

Recent experiments show the value of θ23 lies around π/4 (θ23 = π/4 + ϵ), but it is uncertain
that ϵ is exactly 0 (maximal mixing) or less (more) than 0, known as the θ23 octant puzzle.
The value of ϵ being 0 leads to µ − τ flavor symmetry, which is reviewed concisely in [29].
Historically, this flavor symmetry was explored assuming θ23 = π/4 and θ13 = 0 which had been
indicated by the earlier experiments. This assumption led to the permutation symmetry, which
gave important insights into how the flavor structures are constructed in the mixing matrix. The
recent experiments, however, prefer non-maximal mixing of θ23 and confirm the non-zero value of
θ13. An alternative approach, called "µ− τ reflection symmetry" has been proposed [30], where
the assumption of the theory is θ23 = π/4 and δCP = ±π/2, which are still allowed at 1σ to 2σ
significance.

The consequences of the maximal mixing of θ23 leading to the µ − τ flavor symmetry are
also discussed in [29]. As for the connection to the Baryon Asymmetry of the Universe, the

1 ∑
mν = m1 +

√
m2

1 +∆m2
21 +

√
m2

1 +∆m2
31 (Normal Ordering),∑

mν = m3 +
√

m2
3 + |∆m2

31|+
√

m2
3 + |∆m2

31|+∆m2
21 (Inverted Ordering). (1.2)

2Here "small" refers to the neutrino’s wavenumber being much larger than the minimum wavenumber after
the thermal decoupling in the universe.
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lepton and anti-lepton asymmetry is associated with the flavor symmetry. If the permutation
symmetry is assumed, a certain strength of symmetry breaking is necessary for the current simple
leptogenesis hypothesis to work well [31]. The strength of the symmetry breaking estimated from
the currently expected θ13 is sufficient to make the simple leptogenesis hypothesis work.

More precise measurements of θ23 are going to reveal the existence of µ− τ flavor symmetry,
which also leads to giving an insight into the CP violation.

1.4 The T2K experiment

In order to unravel the three problems (the CP-violation, neutrino mass ordering, and the θ23
octant), the precise measurements of δCP, ∆m2

32 including its sign, and θ23 are imperative. For
the δCP measurements, experiments must be sensitive to the difference in the oscillation probabil-
ities of neutrino and anti-neutrino. To break the degeneracy of the two possible mass orderings,
neutrinos should be subject to a sufficient matter effect in the earth. For the measurements
of θ23, a muon neutrino beam is preferable because the expected number of events in the dip
of the survival probability for νµ beam varies depending on sin2 2θ23. Therefore, a long base-
line neutrino experiment, accelerator or atmospheric neutrino experiments using both muon and
anti-muon neutrinos generated is desirable. This thesis tackles these issues through one of the
accelerator experiments, called "T2K experiment".

The T2K experiment has made use of the high-intensity proton beam accelerator (J-PARC)
to produce neutrino beam and Super-Kamiokande (SK) as the far neutrino detector. The 30 GeV
high-intensity proton beam provided by J-PARC accelerators is injected into a graphite target,
producing charged pions. The T2K beamline is equipped with three electromagnetic horns to
focus charged pions. The two-body decay of focused charged pions produces a high-intensity
neutrino beam with a peak energy of 0.6 GeV directed toward SK. The polarity of the horns
determines which charged pions are focused. This in turn provides a way to choose which neutrino
beam (νµ or νµ) is produced. The T2K experiment installed a suite of near neutrino detectors to
characterize the neutrinos by measuring the interactions before oscillations set in. SK is a water
Cherenkov detector, containing 50,000 tons of water viewed by about 11,000 PMTs.

As the initial neutrino flavor is mostly νµ (or νµ) in the neutrino beam, the oscillation of
νµ (νµ) → νe (νe) or νµ (νµ) → ντ (ντ ) is measured. As the mean neutrino energy is around
1 GeV, most tau-neutrinos cannot undergo charged current interactions. Therefore, νe appear-
ance (νµ → νe) and νµ disappearance (νµ → νµ) are the objects measured in this experiment.
While neutrinos travel to SK, they pass through the earth. The matter effect is not negligible.
The size of the matter effect depends on the density of electrons along the propagation path
of the neutrinos (ne), the weak interaction coupling constant (GF ), and the travel length over
neutrino energy (L/E). The oscillation probability of νµ (νµ) → νe (νe) can be expressed to first
order in the matter effect by
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P

(
(−)
ν µ →

(−)
ν e

)
≃ sin2 θ23

sin2 2θ13
(A− 1)2

sin2[(A− 1)∆31]

(+)
− α

J0 sin δCP

A(1−A)
sin∆31 sin(A∆31) sin[(1−A)∆31]

+ α
J0 cos δCP

A(1−A)
cos∆31 sin(A∆31) sin[(1−A)∆31]

+ α2 cos2 θ23
sin2 2θ12

A2
sin2(A∆31), (1.3)

where

α = ∆m2
21/∆m2

31

∆ij = ∆m2
ijL/4E

A = (−)2
√
2GFneE/∆m2

31

J0 = sin 2θ12 sin 2θ13 sin 2θ23 cos θ13. (1.4)

Equations 1.3, 1.4 come from [32]. The sign of the second term in Equation 1.3 is negative
for neutrinos and positive for anti-neutrinos. Since the neutrino mass ordering is related to the
sign of ∆m2

31, Equation 1.3 is also sensitive to the mass ordering. The first term of Equation 1.3
is proportional to sin2 θ23 which makes the νe (νe) appearance probability sensitive to the θ23
octant. As Equation 1.3 contains sin δCP term, whose signs are opposite between neutrino and
anti-neutrino cases, it can change the appearance probability by at most ± 30% depending on
δCP assuming the currently measured mixing angles. This makes the appearance probability
sensitive to the CP violation.

1.5 Measurement of oscillation parameters

In this thesis, the oscillation analysis is performed with an improvement in the statistics compared
to the previous release. In the T2K data taking, the measurement of neutrino beam profiles is
essential to ensure the neutrinos are properly directed to the far detector. One of the neutrino
beam monitors is called MUMON, which is the only monitor to measure the beam profiles on
a bunch-by-bunch basis in T2K. We perform the calibration of electronics and sensors for the
beam operation, and monitor the neutrino beam throughout the whole data taking. Only the
neutrino beam that is satisfied with the criterion on the beam profiles is used in the oscillation
analysis.

For the oscillation analysis, T2K has established a suite of methods. The analysis is di-
vided into five steps; predicting neutrino flux precisely, establishing a robust neutrino interaction
simulator, constraining flux and interaction parameters based on neutrino-nucleus cross section
measurements from the near detectors, selecting analysis samples at SK, and finally extracting
oscillation parameters by fitting to the data. The T2K oscillation analysis methods increase
the sensitivity to CP violation and mass ordering to the highest level in the world. This thesis
explains each step of the oscillation analysis and presents constraints on the neutrino oscillation
parameters based on the latest oscillation analysis results from the T2K experiment.

Even though the T2K experiment has world-leading results on the CP violation, the mass
ordering, and the θ23 octant, the precision has not been sufficient for the discoveries yet. The lat-
est results are still statistically limited, but thanks to continuous efforts to increase the intensity

16



of the neutrino beam, the statistical uncertainty will be reduced to the level of the systematic
uncertainty in the future. The reduction in the systematic uncertainty is expected to increase
the discovery potential of T2K.

1.6 Difficulties in precise measurements of oscillation parameters for the T2K
experiment

In extracting constraints on oscillation parameters by the T2K experiment, we compare the
observed number of events to that of expected events by simulation. The expected number of
events before oscillation is proportional to the product of neutrino flux, neutrino cross section,
and detection efficiency at SK. Therefore, the measurement precisions are determined not only
by statistical uncertainty but also by the systematic uncertainties coming from these factors.

The dominant systematic error comes from the uncertainty of interaction models. As the T2K
neutrino energy is around 1 GeV, neutrino-nucleus interactions are complicated because of many-
body interactions inside a nucleus, which is known as nuclear medium effects. This makes both
precise theoretical calculations and precise measurements difficult, which leads to discrepancies
between different models or between models and measurements. Poor understanding of neutrino
interactions inflates the uncertainty on neutrino cross sections. A mis-modeling of neutrino
interactions may have an effect on the energy reconstruction of neutrinos. As neutrino oscillation
probability depends on neutrino energy, it is necessary to measure the number of expected
events at the far detector as a function of neutrino energy in the oscillation analysis. In order
to reconstruct neutrino energy, for most analysis samples, we assume simple charged current
interactions where there is a charged lepton and no mesons or hadrons except outgoing nucleons
in the final state, called CC0π events. We measure the lepton kinematics by the Cherenkov ring
at SK to reconstruct the energy of the parent neutrino.

In reality, however, it is sometimes difficult to separate CC0π events from neutrino interactions
where a single pion is produced (CC1π events) due to the nuclear medium effects that may
cause pions to be absorbed inside the detector before being detected. When the reconstruction
formula for the CC0π events is applied to the CC1π events contaminating into CC0π events,
it introduces a bias into the reconstructed energy. The effect of this bias affecting the neutrino
oscillation measurements can be mitigated with simulations, but the mis-modeling of nuclear
medium effects can still cause the reconstruction bias in the analysis.

1.7 Measurement of neutrino interactions

The T2K experiment has performed various measurements on neutrino-nucleus interactions with
its near detector. Disadvantages of the near detectors are its target material being mainly
hydrocarbon (CH) and limited particle acceptance. As the far detector deploys a water target
and has 4π acceptance for outgoing particles, there exist differences in target materials and
acceptances between near and far detectors. These differences result in uncertainties in neutrino
oscillation measurements.

In order to deal with these differences, we proposed a new detector complex called WAGASCI-
BabyMIND detectors to measure neutrino interactions with similar conditions to the far detector.
The main target detector, WAGASCI is comprised of plastic scintillators submerged in water
with 4π coverage of outgoing charged particles thanks to the three-dimensional grid structure of
the scintillators. This detector provides mainly a water target with hydrocarbon. The fraction
of H2O to CH is 4:1. As the interaction on the CH target can be the main background of this
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measurement, we installed a fully CH target detector to constrain the cross section on the CH
target in WAGASCI. Another characteristic of this detector complex is its location where the
mean energy of the neutrino is different from that at the near detector location.

The detector installation was completed in 2019. We have taken physics data whose statistics
correspond to 2.96 × 1020 protons on target. This thesis presents the primary cross section
measurement with this detector complex. In addition to the cross section results, we also compare
neutrino interaction models such as NEUT and GENIE with the data fit results. This thesis,
moreover, shows the way of applying this measurement to the oscillation analysis to provide
better constraints on neutrino interaction models.

1.8 Outline of the thesis

This thesis is comprised of four parts. The first part describes the current status of neutrino
physics and focuses the subject on the T2K experiment. The second part explains the analysis
methods from the T2K experiment and presents the latest oscillation analysis results. The third
part switches the subject to a study of neutrino interactions aiming for improving the precision of
constraints on the neutrino interaction and flux parameters used in the T2K oscillation analysis.
The final part summarizes this thesis.

Chapter 2 covers the generic formalism of neutrino oscillations. Not only the derivation of
mathematical formulae but the contemporary measurements of each oscillation parameter from
various experiments are also shown. Chapter 3 describes the principle of the T2K experiment
and overviews the experimental apparatus of T2K. Chapter 4 introduces the underlying neutrino
interaction models and difficulties that accelerator neutrino experiments bear in common.

The next part starts with the measurement of the neutrino beam in Chapter 5. It is followed
by the oscillation analysis methods of the T2K experiment in Chapter 6. The descriptions are
based on the methods in the published results. The published results have been updated based
on the analysis described in this chapter. The differences between the published results and the
updated results are also mentioned. Chapter 7 presents the updated results of the oscillation
analysis. The results are discussed in the contexts of the robustness, the impact on the neutrino
community, and the future prospect to improve the T2K’s sensitivity in Chapter 8. The current
limitation of the oscillation analysis results is also considered in this section.

The third part discusses the measurement of neutrino interaction in the context of improving
the sensitivity for the oscillation analysis with the T2K experiment. Chapter 9 describes detector
complex to measure the neutrino interaction using the T2K neutrino beam line. Methodologies
to analyze data in this analysis are described in Chapter 10. The definition of signal samples
and event selections are discussed in Chapter 11 along with the analysis method of the cross
section extraction. The results of the data fit are shown in Chapter 12 as well as consideration
of these results. One way to apply cross section results to the oscillation analysis is presented in
Chapter 13.

Chapter 14 in the final part concludes this thesis.
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2 Neutrino oscillation

This chapter describes the neutrino oscillation starting from the general formalism to the three
flavors case. In the end, the current measurement status of oscillation parameters of δCP, ∆m2

21,
sin2 θ12, sin2 θ13, ∆m2

32, and sin2 θ23 are explained.

2.1 General formalism

This section introduces a formalism of the neutrino oscillation based on the reference [33]. We
adopt the natural unit system where c = 1, h̄ = 1. We assume n flavor eigenstates denoted by
να are associated with n mass eigenstates denoted by νi via a unitary mixing matrix U . Each
flavor/mass eigenstate is expressed by the following formulae

|να⟩ =
∑
i

Uαi |νi⟩ |νi⟩ =
∑
α

(U †)iα |να⟩ =
∑
α

U∗
αi |να⟩ , (2.1)

where
U †U = 1

∑
i

UαiU
∗
βi = δαβ

∑
α

UαiU
∗
αj = δij . (2.2)

Replacing the Uαi by U∗
αi gives the expressions for anti-neutrinos as in

|ν̄α⟩ =
∑
i

U∗
αi |ν̄i⟩ . (2.3)

The mass eigenstates |νi⟩ are stationary states and show a time dependence given by

|νi(x, t)⟩ = exp(−iEit) |νi(x, 0)⟩ . (2.4)

The initial condition that neutrinos with the momentum p are emitted by a source positioned at
x = 0(t = 0) is represented by

|νi(x, 0)⟩ = exp(ipx) |νi⟩ . (2.5)

In addition, we assume neutrinos are relativistic, which makes the following equation of

Ei =
√
m2

i + p2i ≃ pi +
m2

i

2pi
≃ E +

m2
i

2E
(2.6)

valid because of p ≫ mi, E ≃ p.
For further discussions, we assume the mass differences between two neutrino mass eigenstates

are not identical to 0. Then a flavor neutrino is a coherent superposition of neutrino mass
eigenstates. Neutrinos are detected as flavor states. The flavor states are expressed by

|ν(x, t)⟩ =
∑
i

Uαi exp(−iEit) |νi⟩ =
∑
i,β

UαiU
∗
βi exp(ipx− iEit) |νβ⟩ . (2.7)

The assumption of neutrino being relativistic gives more specific expressions of Ei and it gives
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|ν(x, t)⟩ =
∑
i,β

UαiU
∗
βi exp

(
ipx− iEt− i

m2
i

2

1

E
t

)
|νβ⟩

≃
∑
i,β

UαiU
∗
βi exp

(
−i

m2
i

2

L

E

)
|νβ⟩ , (2.8)

where L = x = ct. Equation 2.8 indicates non-zero mass differences change the phase whose effect
is potentially significant at the macroscopic distance compensating for tiny mass differences. The
time-dependent transition amplitude for a flavor conversion να → νβ is given by

A(α → β)(t) = ⟨νβ|ν(x, t)⟩ =
∑
i

UαiU
∗
βi exp

(
−i

m2
i

2

L

E

)
. (2.9)

In an analogous way, the amplitude for an anti-neutrino transition is given in Equation 2.10,
which is

A(ᾱ → β̄)(t) =
∑
i,β

U∗
αiUβi exp

(
−i

m2
i

2

L

E

)
. (2.10)

The measurement of oscillation probability of να → νβ(α ̸= β) and its conjugate process ν̄α → ν̄β
provides a way to test the hypothesis of the CP violation in neutrinos. One observable in this
hypothesis testing is ∆PCP

αβ given by

∆PCP
αβ = P (να → νβ)− P (ν̄α → ν̄β) α ̸= β. (2.11)

Each transition probability is obtained from the transition amplitude A using Equations 2.9, 2.10,
which are

P (να → νβ) = |A(να → νβ)|2 =
∑
i

∑
j

UαiU
∗
αjU

∗
βiUβj exp(−i(Ei − Ej)t)

=
∑
i

|UαiU
∗
βi|2 + 2Re

∑
j>i

UαiU
∗
αjU

∗
βiUβj exp

(
−i

∆m2
ij

2

)
L

E
, (2.12)

P (ν̄α → ν̄β) = |A(ν̄α → ν̄β)|2 =
∑
i

∑
j

UαiU
∗
αjUβiU

∗
βj exp(−i(Ei − Ej)t)

=
∑
i

|U∗
αiUβi|2 + 2Re

∑
j>i

U∗
αiUαjUβiU

∗
βj exp

(
−i

∆m2
ij

2

)
L

E
. (2.13)

Here, ∆m2
ij represents the mass differences of two neutrino mass eigenstates, νi and νj , defined

by ∆m2
ij = m2

νi −m2
νj .

2.2 Three flavors case

The standard model assumes three-flavor neutrinos. In this section, we discuss the neutrino
oscillation accordingly. Neutrino flavor eigenstates are the superpositions of neutrino mass eigen-
states. Pontecorvo-Maki-Nakagawa-Sakata matrix (PMNS matrix) was proposed to describe the
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mixing of three-flavor neutrinos. We use the following type of PMNS matrix to write down
Equation 2.12.

U =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12s23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13

 , (2.14)

where sij = sin θij and cij = cos θij . The parameter δ is the complex term. 3 In the standard
model, the PMNS matrix is unitary. In this case, there are 4 degrees of freedom (three real
numbers and one complex number) in a 3-by-3 complex matrix. Parameters θij are the mixing
angles in three-flavor neutrinos corresponding to the three real numbers. The parameter δ is
the complex number as the rest of the degrees of freedom, which represents the strength of the
CP-violation.

For the simplicity of the following discussions, the matter effect is not considered in the first
place. In the absence of the matter effect, the probability of a flavor transition να → νβ is
calculated using Equation 2.12

P (να → νβ) =
∑
i

|UαiU
∗
βi|2 + 2Re

∑
j>i

UαiU
∗
αjU

∗
βiUβj exp

(
−i

∆m2
ij

2

)
L

E

=
∑
i

|UαiU
∗
βi|2 + 2Re

∑
j>i

UαiU
∗
αjU

∗
βiUβj

(
cos

(
∆m2

ijL

2E

)
+ i sin

(
∆m2

ijL

2E

))

=
∑
i

|UαiU
∗
βi|2 + 2

∑
j>i

UαiUαjUβiUβj − 4Re
∑
j>i

UαiU
∗
αjU

∗
βiUβj sin

2

(
∆m2

ijL

4E

)

+ 4Im
∑
j>i

UαiU
∗
αjU

∗
βiUβj sin

(
∆m2

ijL

4E

)
cos

(
∆m2

ijL

4E

)

= δαβ − 4Re(Kαβ,ij) sin
2

(
∆m2

ijL

4E

)
+ 4Im(Kαβ,ij) sin

(
∆m2

ijL

4E

)
cos

(
∆m2

ijL

4E

)
,

(2.15)

where
Kαβ,ij = UαiU

∗
αjU

∗
βiUβj . (2.16)

Likewise, the transition probability of anti-neutrinos is calculated. The difference in oscillation
probabilities between neutrinos and anti-neutrinos is given by

∆PCP
αβ = −16Jαβ sin

(
∆m2

12

4E
L

)
sin

(
∆m2

23

4E
L

)
sin

(
∆m2

13

4E
L

)
, (2.17)

where
Jαβ = Im[Uα1U

∗
α2U

∗
β1Uβ2] = ±c12s12c23s23c

2
13s13 sin δ. (2.18)

The parameter Jαβ is called the Jarlskog invariant, and the ± sign denotes cyclic permutation
of (α, β) = (e, µ), (µ, τ), (τ, e). Assuming the mass differences and sine of the mixing angles are

3If we assume neutrinos are Majorana particles, three complex terms are necessary. The other two complex
terms, however, do not show up in the calculation of oscillation probability. Thus, we introduce one complex term
here.
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non-zero, the measurement of the Jarlskog invariant provides a way to test the CP violation.
When we consider the specific neutrino oscillation (νµ → νe), the oscillation probability is given
by

P (νµ → νe) = 4(s223s
2
13c

2
13 + JCP sin∆21) sin

2 ∆31

2
(2.19)

+ 2(s21s23s13c21c23c
2
13 cos δ − s221s

2
23s

2
13c

2
13) sin∆31 sin∆21

+ 4(s221c
2
21c

2
23c

2
31 + s421s

2
23s

2
13c

2
13 − 2s321s23s13c21c23c

2
13 cos δ − JCP sin∆31) sin

2 ∆21

2

+ 8(s21s23s13c21c23c
2
13 cos δ − s221s

2
23s

2
13c

2
13) sin

2 ∆31

2
sin2

∆21

2
,

where ∆ij =
∆m2

ijL

E , JCP = c12s12c23s23c
2
13s13 sin δ. When the difference in the oscillation prob-

ability between νµ → νe and ν̄µ → ν̄e is expressed by

A ≡ P (νµ → νe)− P (ν̄µ → ν̄e)

P (νµ → νe) + P (ν̄µ → ν̄e)
, (2.20)

the leading order of A is written by

A ≈ JCP sin∆m2
21

s223s
2
13c

2
13

. (2.21)

Thus, the measurement of both νµ → νe and ν̄µ → ν̄e oscillations is associated with the CP
complex term (δCP). The parameters δ and δCP are interchangeably used in this thesis.

Next, we assume the specific neutrino mass ordering expressed by

∆m2
21 ≪ ∆m2

31 < ∆m2
32 (∆m2

31 ≈ ∆m2
32). (2.22)

This is called "Normal Ordering". The leading term of the transition probabilities, in particular
νµ → νe and νµ → νµ

4 are given by

P (νµ → νe) ≈ sin2 2θ13 sin
2 θ23 sin

2

(
∆m2

32L

4E

)
, (2.23)

P (νµ → νµ) ≈ 1−
(
cos4 θ13 sin

2 2θ23 + sin2 2θ13 sin
2 θ23

)
sin2

(
∆m2

32L

4E

)
, (2.24)

around the neutrino energy region of E ≈ |∆m2
32|L.

Now we consider the matter effects to calculate the oscillation probability. The modified
oscillation probability for νµ (νµ) → νe (νe) oscillations are written by

4This thesis calls νµ → νe oscillation νe appearance and νµ → νµ oscillation νµ disappearance.
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P

(
(−)
ν µ →

(−)
ν e

)
= sin2 θ23

sin2 2θ13
(A− 1)2

sin2[(A− 1)∆31]

(+)
− α

J0 sin δCP

A(1−A)
sin∆31 sin(A∆31) sin[(1−A)∆31]

+ α
J0 cos δCP

cos
∆31 sin∆31 sin(A∆31) sin[(1−A)∆31]

+ α2 cos2 θ23
sin2 2θ12

A2
sin2(A∆31), (2.25)

where

α = ∆m2
21/∆m2

31

∆ij = ∆m2
ijL/4F

A = (−)2
√
2GFneE/∆m2

31

J0 = sin 2θ12 sin 2θ13 sin 2θ23 cos θ13. (2.26)

As discussed in Chapter 1, the measurement of νµ → νe in the energy region of E ≈ |∆m2
32|L

is sensitive to the θ23 octant, CP violation, and the neutrino mass ordering based on this formula.

2.3 Oscillation parameters

Based on the parametrization in the PMNS matrix, three mixing parameters (θ12, θ13, θ23), one
complex CP phase (δCP) are important for neutrino oscillation physics assuming three flavors
of neutrinos. Only two mass differences have a degree of freedom because of the relationship,
∆m2

21 + ∆m2
32 + ∆m2

31 = 0. In addition, the neutrino oscillation probability depends on three
mass differences (∆m2

21, ∆m2
32, ∆m2

31), which must be determined experimentally. The experi-
ments measuring solar neutrino (solar experiments) have explored the allowed regions of ∆m2

21

and sin2 θ12. The experiments dedicated to measuring neutrinos from nuclear reactors (short-
baseline reactor experiments) have dug into allowed regions of sin2 θ13 and provide stringent
constraints. The other parameters such as ∆m2

32 and sin2 θ23 have been constrained by measure-
ments with artificial muon neutrino beams produced by accelerators (accelerator experiments).
The measurement of atmospheric neutrinos originating from interactions of cosmic rays in the
atmosphere is sensitive to these parameters as well (atmospheric experiments). The following
discussions give a summary of the experimental results of the parameter constraints.

2.3.1 ∆m2
21, sin

2 θ12

One of the long-standing disputes before the theory of neutrino oscillation was acknowledged was
the deficit of the survival probability of the electron neutrinos from the sun in data compared to
the contemporary theoretical prediction. The proposition of the Mikheyev-Smirnov-Wolfenstein
effect (MSW effect) [34, 35] provided an insight into the interpretation of the deficit. The inter-
pretation was useful for the experiments to find out a reasonable solution to the deficit in solar
neutrino survival probability. The survival probability of solar neutrino considering the MSW
effect is given by [36]

Pee = cos4 θ13

(
1

2
+

1

2
cos 2θM12 cos 2θ12

)
, (2.27)
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where

cos 2θM12 =
cos 2θ12 − β√

(cos 2θ12 − β)2 + sin2 2θ12
β =

2
√
2GF cos2 θ13neEν

∆m2
. (2.28)

Various kinds of experiments (Homestake [6], Kamiokande [7], SAGE [8,37,38], GALLEX [39–
41]/GNO [42], Super-Kamiokande [10,43–47], SNO [48] and Borexino [49]) tackled the problem of
solar neutrinos. In particular, the SNO experiment had a significant role in explaining the deficit
in solar neutrino survival probability. As mentioned in Chapter 1, SNO utilized a heavy water
target to discriminate the charged current neutrino interactions and neutral current interactions.
This feature enabled SNO to compare the neutrino flux measured by charged current interactions
with the one measured by neutral current interactions independent of solar neutrino models. The
SNO experiment confirmed that the flux measured by charged current interactions was expected
to be smaller than that by neutral current interactions. These results indicated the deficit in the
solar neutrinos was attributed to the neutrino oscillation.

The solar neutrino experiments have then explored the allowed region of ∆m2
21-sin

2 2θ12 space.
Combining all the results from the solar neutrino experiments with the reactor experiment from
KamLAND suggested the region of ∆m2

21 of 10−5 to 10−4 and a mixing angle of sin2 2θ12 = 0.5
to 1 was the most probable. The global best-fit results are shown in [50];

∆m2
21 = 7.53± 0.18× 10−5(eV2) sin2 θ12 = 0.307+0.013

−0.012. (2.29)

The errors represent the 1σ region to the best-fit values.

2.3.2 sin2 θ13

The parameter sin2 θ13 is associated with the survival probability of νe given by

P (ν̄e → ν̄e) ≈ 1− sin2 θ13 sin
2 ∆m2

31L

4E
− sin2 θ12 cos

4 θ13 sin
2 ∆m2

21L

4E
. (2.30)

Reactor experiments utilize nuclear fusion emitting the anti-neutrino, which is detected by the
inversed β-decay. One of the largest interests in this parameter is whether sin2 θ13 is tiny (< 0.01)
or not. As sine quantities for all the mixing angles appear in the Jarlskog invariant in Equa-
tion 2.18, the CP-violation is prohibited if any of the mixing angles is zero. Even if sin2 θ13 is
not zero but tiny (< 0.01), the sensitivity to the CP-phase drastically decreases. The relatively
large (> 0.01) sin2 θ13 is desired to explore the CP violation as well as determine the neutrino
mass ordering. Several experiments [51, 52] in the early 2000s showed the lower limit of sin2 θ13
being around 0.10 at 90% confidence level considering the allowed regions of ∆m2

32. Three ex-
periments, Daya Bay [12], RENO [13] and Double Chooz [14] have performed measurements,
confirming sin2 θ13 is large enough for an accelerator experiment to be able to explore the CP
violation. Their results are world-leading for the constraints of sin2 θ13. The latest result of the
world average from reactor experiments [50] is

sin2 θ13 = 0.0220± 0.0007. (2.31)

The error shows 1σ region to the best-fit value.

2.3.3 ∆m2
32 (∆m2

31), sin
2 θ23 (sin2 2θ23)

The experimental results obtained so far give two kinds of scenarios regarding the neutrino mass
(m1,m2,m3) ordering.
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• Normal ordering (NO): m1 < m2 ≪ m3

• Inverted ordering (IO): m2 > m1 ≫ m3

As for the mass differences, ∆m2
32 ≈ ∆m2

31 is suggested in either case. The allowed regions
of ∆m2

32-sin
2 θ23 have been explored mainly by the long-baseline accelerator experiments and

atmospheric experiments from the measurements of the νµ → νµ energy spectrum using

P (νµ → νµ) = 1− sin2 2θ13 sin
2 θ23 + sin2 2θ23 cos

4 θ13 sin
∆m2

32L

4E
. (2.32)

The uncertainty of sin2 θ23 is the largest compared to the precision of other mixing parameters.
Therefore, in order to realize the precise measurement of δCP, a tighter constraint of sin2 θ23 is
necessary. The leading term in Equation 2.25 is the first term which includes the contribution
from sin2 θ23. If θ23 is non-maximal mixing (θ23 ̸= π/4), its octant symmetry is closely relevant
to the δCP sensitivity. It is worth noting that the second term in Equation 2.25 has parameter
sin δCP, which is sensitive to CP-violation and ∆m2

31 (≈ ∆m2
32) is associated with δCP sensitivity

as well. The global fit results are shown here.

|∆m2
32| (NO) = 2.514+0.028

−0.027 × 10−3 eV2/c4 |∆m2
31| (IO) = 2.497+0.028

−0.028 × 10−3 eV2/c4, (2.33)

sin2 θ23(NO) = 0.570+0.018
−0.024. (2.34)

The measurement errors in Equations 2.33, 2.34 represent 1σ errors to the best-fit values.

2.3.4 δCP

The measurement of δCP is an important probe to determine if the CP violation exists in the
lepton sector as in the quark sector. As all the sine and cosine quantities of mixing angles
are expected to be non-zero and more importantly sin2 θ13 is a relatively large value, long-
baseline accelerator experiments in principle have a high sensitivity to measure δCP by a careful
arrangement of experimental apparatus with high-intensity neutrino beam. In particular, L/E
(the length of baseline / neutrino energy) is a characteristic of neutrino oscillation experiments.
For the measurement of δCP, experiments choose the L/E quantity to maximize the effect of
neutrino oscillations. The T2K and NOνA experiments are world-leading experiments both of
which have the similar L/E. The T2K results in [53] are

δCP = −1.89+0.70
−0.58 (NO) δCP = −1.38+0.48

−0.54 (IO). (2.35)

In addition, the CP conserving values (0, π) were excluded at a 95% confidence level [53].

2.3.5 Summary of the oscillation parameter measurements

Table 1 shows the summary of measured oscillation parameters from the fit to global data [54].
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Table 1: A summary of the measured mixing values for both mass ordering scenarios from the
global fit analysis [54].

Mixing parameters Normal Ordering (BestFit) Inverted Ordering
best fit ± 1σ 3σ range best fit ± 1σ 3σ range

sin2 θ12 0.304+0.013
−0.012 0.269 → 0.343 0.304+0.013

−0.012 0.269 → 0.343
sin2 θ23 0.570+0.018

−0.024 0.407 → 0.618 0.575+0.017
−0.021 0.411 → 0.621

sin2 θ13 0.02221+0.00068
−0.00062 0.02034 → 0.02430 0.02240+0.00062

−0.00062 0.02053 → 0.02436
δCP/ ◦ 195+51

−25 107 → 403 286+27
−32 192 → 360

∆m2
21 (10−5 eV2/c4) 7.42+0.21

−0.20 6.82 → 8.04 7.42+0.21
−0.20 6.82 → 8.04

∆m2
31 (NO) / ∆m2

32 (IO) (10−5 eV2/c4) 2.514+0.028
−0.027 2.431 → 2.598 −2.497+0.028

−0.028 -2.583 → -2.412

The oscillation parameters ∆m2
21, sin

2 θ12 and sin2 θ13 are relatively well constrained based on
the solar and reactor experiments whereas there are problems to be resolved in measurements of
∆m2

32, sin
2 θ23 and δCP. Accelerator experiments and atmospheric experiments have measured

the latter three oscillation parameters. The early measurements are mostly limited by statistical
errors in accelerator experiments. But the situation has been improved thanks to higher intensity
beams and long-term operations, which in turn makes the systematic uncertainties non-negligible.

One of the pre-dominant systematic errors originates from the lack of understanding of neu-
trino interactions. Its tiny cross section requires a small segmented detector with a high posi-
tional resolution in a large volume in addition to long-run and successive data-taking to reduce
the statistical uncertainty of the cross section measurements. Moreover, complex mechanisms in
multi-body interactions between a neutrino and a nucleus make it difficult to establish a solid
neutrino interaction model, which inflates the uncertainties on neutrino cross sections. In short,
achieving a more precise understanding of neutrino interactions will help the accelerator experi-
ments to solve the degeneracies of mass ordering and θ23 octant, and discover the CP violation.
More details on neutrino interactions are discussed in Chapter 4.
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3 The T2K experiment

This chapter overviews a long-baseline accelerator experiment called T2K experiment. The
former part of this chapter introduces the motivations of T2K and experimental setups. The
latter of this chapter describes the experimental apparatus and the status of T2K data taking.

3.1 Motivation

After the discovery of the neutrino oscillation with atmospheric neutrinos, a long-baseline neu-
trino experiment with accelerator neutrinos, T2K, was proposed to precisely measure the param-
eters of the PMNS matrix. The accelerator provides a high-energy proton beam and produces
charged pions when those protons collide with a target material. The charged pions decay into
muons and muon neutrinos. The main oscillation channels in the T2K experiment are νe (νe)
appearance (νµ → νe) and νµ (νµ) disappearance (νµ → νµ). In the absence of the matter ef-
fect, the oscillation probability of the νe (νe) appearance including a partial sub-leading order is
expressed by

P (
(−)
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(−)
νe ) ≈ sin2 2θ13 sin

2 θ23 sin
2

(
∆m2

32L

4E

)
(−)
+ JCP sin

∆m2
21L

4E
sin2

∆m2
31L

4E
+O(∆m2

21) (E ≈ |∆m2
32|L),

(3.1)
where JCP = cos θ12 sin θ12 cos θ23 sin θ23 cos

2 θ13 sin θ13 sin δCP. Equation 3.1 indicates the mea-
surement of νµ → νe oscillation is sensitive to δCP, sin2 2θ13, and sin2 θ23. The measurement
of the difference in the probabilities between νµ → νe and νµ → νe oscillations contributes to
digging into δCP through the Jarlskog invariant (JCP). On the other hand, the measurement of
νµ → νµ, νµ disappearance is sensitive to sin2 2θ23 and |∆m2

32| according to

P (νµ → νµ) ≈ 1−
(
cos4 θ13 sin

2 2θ23 + sin2 2θ13 sin
2 θ23

)
sin2

(
∆m2

32L

4E

)
+O(∆m2

21) (E ≈ |∆m2
32|L).

(3.2)
As well as measuring each parameter value, it is in principle possible to determine the neutrino

mass ordering by utilizing the matter effects as in Equation 2.25 while neutrino travels through
the matter in the earth. The T2K experiment was designed to achieve as high sensitivity as it
could to, especially δCP.

3.2 Experimental setup

One of the key components in the long-baseline experiment is the proton accelerator providing
the high-intensity beam. The T2K experiment 5 makes use of Japan Proton Accelerator Research
Complex (J-PARC), which is located in Tokai, Ibaraki. The neutrino beamline was constructed
inside the J-PARC facility to incident the neutrino beam to the far neutrino detector located
295 km away from the accelerator, Super-Kamiokande. The near detectors, constructed inside
the J-PARC site, play important roles in monitoring neutrino beam flux and measuring neutrino
interactions, whose results are used in the oscillation analysis. The far detector contains 50 kton
water surrounded by photon detectors to detect neutrinos via Cherenkov radiation produced by
charged particles from their interactions in the water. The overall setup for the T2K experiment
is illustrated in Figure 1.

5T2K stands for "(T)okai" "to (2)" "(K)amioka"
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Super‐Kamiokande J‐PARCNear Detectors

Neutrino Beam

295 km

Mt. Noguchi‐Goro
2,924 m

Mt. Ikeno‐Yama
1,360 m

1,700 m below sea level

Figure 1: The overview of the T2K experiment; the proton beam accelerator (J-PARC), neutrino
beamline and neutrino Near Detectors, and the far neutrino detector (Super-Kamiokande).

The neutrino oscillation probability depends on the distance divided by the neutrino energy
(L/E). The distance in the experiment is fixed at 295 km. At this condition, the neutrino
oscillation probability is illustrated as a function of neutrino energy in Figure 2.
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neutrino

Figure 2: The neutrino oscillation probability for νµ → νe as a function of neutrino energy
(Eν) assuming several scenarios of δCP values. The solid (dashed) lines correspond to normal
(inverted) mass ordering.

The oscillation probability differs depending on the value of δCP. In the T2K setup, the
maximum oscillation probability falls around 0.6 GeV. In order to measure as many neutrino
oscillation events as possible, T2K tuned the peak position of the energy distribution to be
around that energy. While the initial energy of the proton beam roughly determines the resulting
neutrino beam, finer adjustment is achievable by changing the angle relative to the proton beam
at which one observes the neutrinos. As pion decay is a two-body interaction involving µ and
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νµ, the neutrino energy is expressed as a function of the pion energy and the direction of the
neutrino by

Eν =
m2

π −m2
µ

2(
√
p2π +m2

π − pπ cos θν)
, (3.3)

where pπ(mπ), Eµ(mµ) are the momentum (mass) of pion and energy (mass) of muon and θν
is the angle of the neutrino with respect to the angle of the produced pions. Equation 3.3
implies the relationship between neutrino energy and pion energy depends on the direction of
the neutrino. Once the angle is fixed, the neutrino energy is expressed as a function of pion
energy. This relationship contributes to the corresponding neutrino energy distribution as in the
right plot in Figure 3. For instance, if we take 2.5 degrees, the red line in the left plot in Figure 3
shows the plateau around 0.6 GeV for Eν , which in turn makes the peak around 0.6 GeV in the
neutrino energy distribution (see the red line in the right plot in Figure 3).
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Figure 3: Relationships between neutrino energy and pion energy (left) and the neutrino fluxes
corresponding to different neutrino angles (right). The black line shows the case of the neutrino
angle being aligned with the proton beam axis. Both blue and red lines show the neutrino angle
deviates from the proton beam axis.

The deviation from the proton beam axis is referred to as off-axis angle. The T2K experiment
adopts this off-axis method and sets it to 2.5 degrees to tune the expected peak position to be
0.6 GeV. Another advantage of this method is to make the energy distribution narrower. A
narrower band energy can help to reduce the impact of the errors in the reconstructed energy on
the oscillation analysis.

3.3 Experimental apparatus

3.3.1 Beamline

The J-PARC accelerators consist of three types of accelerators [55]; Linear Accelerator, Rapid
Cycling Synchrotron, and Main Ring. The Linear Accelerator (LINAC) injects H− ion from the
source and accelerates it to 400 MeV by a high field gradient provided by normal conducting
magnets. The accelerated H− ion is led to the injection area in the Rapid Cycling Synchrotron
(RCS), where the electrons are stripped off by charge-exchange foils under the presence of an
external electromagnetic field. The ions are then converted to protons. The RCS accelerates
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protons up to 3 GeV, 5% of which are injected into the Main Ring Synchrotron (MR). At the
present, MR is capable of boosting the proton’s energy to about 30 GeV. During the beam opera-
tion, the accelerated protons are extracted by a set of five kicker magnets, when eight bunches of
protons are kicked out from the orbit by one turn in a 2.48-second sequence. Each bunch width
is 80 ns at 3σ, which in turn corresponds to the time structure of neutrino productions. The
repetition cycle has been already upgraded to 1.36 seconds in 2022. This sequence is referred
to as "spill". The beam power is determined by the proton per spill, proton energy, and the
repetition cycle. Presently, 520 kW operation has been achieved.

The neutrino beamline [56] was constructed to generate a high-intensity neutrino beam and
to monitor the beam profiles after the proton spill is extracted from the MR. The beamline
consists of two sub-sections; the primary beamline and the secondary beamline. The primary
beamline focuses the 30 GeV protons in the targeted direction for the T2K experiment, being
equipped with both normal conducting and superconducting magnets. In order to ensure protons
are focused, T2K developed several kinds of detectors to monitor the proton’s intensity, position,
and profiles. In addition, monitoring the loss of the proton beam is essential to achieve high-power
beam operation as well as to secure stable operation. T2K installed the following monitors.

CT (Current Transformer)
Each CT is a 50-turn toroidal coil around a cylindrical ferromagnetic core [56]. It monitors
the beam intensity with a 2% accuracy and 0.5% precision. The conventional measurement
unit for CT in the T2K experiment is protons-on-target (POT).

ESM (Electrostatic Monitor)
ESM has four segmented cylindrical electrodes surrounding the proton beam orbit [56].
This structure helps to monitor the proton beam center position non-destructively.

SSEM (Segmented Secondary Emission Monitor)
SSEM has two thin titanium foils stripped horizontally and vertically, and an anode HV
foil between them [56]. The proton beam hitting the foil produces secondary electrons that
drift through the strip. Measurement of the charge distribution converted from the signal
of secondary electrons provides information on the beam profile. SSEMs are only inserted
into the orbit during the beam tuning.

BLM (Beam Loss Monitors)
Each BLM consists of a wire proportional counter filled with an Ar − CO2 mixture [56].
To avoid serious radiation or damage to the equipment, it triggers an abort alert once the
beam loss exceeds the threshold.

The well-tuned protons strike a 91.4 cm long monolithic graphite target. The secondary
beamline has a role in maximizing the performance of neutrino production. The beamline consists
of target stations, decay volume, and beam dump, which are illustrated in Figure 4. The target
station is composed of the target, three magnetic horns, and a baffle. The target was installed
inside the inner conductor of the first horn.

The electromagnetic forces from horns focus the direction of charged pions produced from the
proton-target collision. Physics operation until 2021 ran all of the horns with an absolute current
of 250 kA. The polarity of the horn current changes the charge of pions to be focused. Positive
pion decays into µ+ and νµ, whereas negative pion decays into µ− and νµ. Therefore, operating
the experiment with opposite horn currents enables us to exchange the neutrinos between νµ and
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νµ. When νµ is made dominantly in the neutrino flux, the operation is referred to as "Forward
Horn Current (FHC)" or neutrino mode, and in the inverted case, "Reversed Horn Current
(RHC)" or anti-neutrino mode. Focused pions go into the decay volume, which is about 96 m
long steel tunnel. This length of the tunnel was determined such that the most of relativistic
pions decay inside it. At the end of the decay volume, a 3.174 m long graphite-core beam dump
was installed to absorb most of the muons from pion decays.

How to make a neutrino beam

15

Focus π,K produced in hadronic interactions.
Switch sign of horn current to focus π–, K– instead

Total three horns to
collect & focus mesons.

π,K+     +

π,K– –

B-field

π,K–      –

Figure 4: The illustration of the secondary beamline (target station, decay volume and beam
dump). The equipment inside the target station is zoomed in so as to emphasize the role of
electromagnetic horns.

3.3.2 Muon monitor (MUMON)

The muons with a momentum above 5.0 GeV/c can pass through the beam dump. The muons
are produced by the two-body decay from pions together with neutrinos. Therefore, the neutrino
profiles can be reconstructed by measuring the muon profiles. T2K developed the muon monitor
(MUMON) to monitor the neutrino beam indirectly.

Performance requirements of MUMON are to measure the intensity of the muon beam with
a precision better than 3% and beam direction with a precision better than 0.25 mrad, which
corresponds to a 3 cm precision of the muon profile [57]. In addition, these measurements have to
be achieved on a bunch-by-bunch basis in real-time even in low-intensity beam tuning. A certain
bunch of T2K neutrino beam timing sometimes shifts with respect to the expected timing, which
must be checked by MUMON. The location for MUMON is subject to the intense muon beam
(105−107 /cm2/bunch) from intensely focused charged pions. It adds an imperative requirement
of high radiation tolerance to the sensors employed for the muon monitor. MUMON was designed
to meet all of the requirements. It comprises two different sets of detectors, both of which are
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aligned in seven-by-seven arrays with a 25 cm gap between the neighboring sensors. One set of the
arrays consists of the 49 sensors of Si PIN photodiode (HAMAMATSU® S3590-08). The other
set of sensors is installed inside ionization chambers (IC). Both Si and IC arrays are installed on
a movable stage to calibrate the response of each sensor using the actual muon beam. Figure 5
illustrates the schematic view of MUMON along with the array configuration.

Array of Si PIN photodiodes
(Not to scale) MUMON

μ

25cm

25cm

Figure 5: A schematic view of MUMON (right) [57] and zoom-in figure (left) for the seven-by-
seven configuration of sensor arrays for Si PIN photosensors. The configuration for IC sensor
arrays is the same as the one in the left figure except for each set of seven sensors being contained
in a long aluminum tray inserted into the chambers. The "heater" inside the "pedestal" space
controls the temperature inside the pit. And both Si and IC arrays are set on the movable stage,
which is used for the purpose of calibration of each sensor.

Each Si PIN photodiode has a 10 × 10 mm2 active area with a depletion layer thickness of
300 µm. The Si sensors have sufficiently high signal yields in each bunch. The high signal yields
make it possible to tune the beam direction in the low-intensity beam operation. On the other
hand, they are largely subject to the severe radiation environment. At the recent T2K beam
intensity, half a year of operation yields 5.0×1020 protons on target (POT). In the beam intensity,
a 1% signal decrease has been observed due to the radiation damage causing the depletion voltage
to decrease. Nevertheless, the performance of Si is still reliable in the physics data taking as
long as the decreasing rate can be understood well. In order to mitigate the effect of radiation
damage on the profiling performance, half Si sensors are replaced with new ones on a one-year
operation basis. Towards higher intensity beam operation, a new type of sensor replacing the Si
sensor has been developed for the last several years.

The IC array consists of seven ionization chambers including seven sensors on an aluminum
tray at an interval of 25 cm. As a medium of each chamber, the T2K experiment makes use of
two types of gases. One option is the compound of Ar with 2% N2, and the other is He with
1% N2. As the signal yields to MIPs are proportional to the atomic number in the first-order
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approximation, Ar gas is suitable in low-intensity beam operation. He gas, on the other hand, is
desirable in high-intensity beam operation because of its high radiation tolerance. When either
gas is filled in a chamber, a large number of ion pairs induced by a charged particle move to the
electrodes of the opposite polarity, generating the ionizing current measured by an electrometer
circuit. Mixing N2 gas provides a quenching effect to make response faster. 6 Contrary to Si
sensors, the responses from IC gases are stable even in continuous high-intensity beam operation
as long as a constant gas temperature, pressure, and purity are maintained. One concern when
Ar gas is used is the space charge effect, which causes a non-linear response in a high intensity
beam operation. We have not seen such behavior when He gas is used. Equipped with both
Si and IC sensors, MUMON can meet the requirements to guarantee stable beam operation for
T2K.

A signal from each sensor travels through about a 30 m long cable running from the un-
derground pit to the electronics container on the ground. A 65-MHz Flash Analog to Digital
Converters (FADCs) is employed as the readout electronics. Each ADC has an input impedance
of 50 Ω and an amplifier of gain-5 or gain-1 with a shaping time of 50 nsec [57]. The gain-5
amplifier is used for the IC sensors while the gain-1 amplifier is used for the Si sensors. In order
to avoid signal saturation in FADCs, the readout system is instrumented with external atten-
uators capable of producing 0, 6, 15 or 30 dB. During the high-intensity beam operation, they
attenuate Si (IC) signals with 30 (6) dB while in the low-intensity beam tuning, the electronics
apply no attenuation.

3.3.3 Near Detectors

The T2K experiment installed a suite of detectors. Those detectors are located inside the under-
ground pit, whose diameter and depth are 17.5 m and 37 m, respectively. The vital roles of near
detectors are to monitor the neutrino beam and measure neutrino interactions. The T2K exper-
iment employed many monitors to ensure the proton beam is aligned in the expected direction.
In addition, it is also important to measure the neutrino direction and intensity directly. One of
the detectors, INGRID, monitors the neutrino beam by measuring neutrinos traveling on axis.
On the other hand, the expected neutrino flux at the far detector side has large uncertainties
without constraints on the flux prediction by the measurements of neutrino interactions. The
uncertainties from neutrino interaction models are also significant in the oscillation analysis. The
measurements of neutrino interactions at another near detector complex, ND280 has contributed
to the substantial reduction in the uncertainties coming from neutrino flux and interactions.

INGRID [56] (Interactive Neutrino GRID), is located on-axis to monitor the direction and in-
tensity of neutrinos on a day-by-day basis. It consists of 14 modules (half modules in a horizontal
row and the other half modules in a vertical row) to form a cross symbol. Each sub-module has a
sandwich structure of 11 scintillator tracking layers and 9 iron planes 7. The total mass of iron is
7.1 tons per module, which guarantees sufficient statistics to measure the neutrino direction with
an accuracy higher than 0.4 mrad within the required precision for the T2K oscillation analysis
with one-day neutrino beam operation. Figure 6 is one of the examples of reconstructed neutrino
profiles in data.

6Another reason why N2 is mixed is to mitigate the Jesse effect [58]. Due to this effect, the signal is insensitive
to the number of impurities in the gas.

7Due to the weight restrictions in the assembly building, the iron plane was not installed between the 10th
and 11th scintillator plane, which was confirmed not to have an impact on the tracking performance.
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Figure 6: A neutrino profile at INGRID in the neutrino mode for the horizontal direction (left)
and the vertical direction (right) with 1-day data during a physics operation. The dotted data
point is fitted with the gaussian function. The mean X and Y centers from the fit results are
used to check the neutrino direction.

The detector complex located 2.5 degrees off-axis at the 280 m site is called ND280 [56].
Detector specifications and arrangements were designed to satisfy several requirements for the
oscillation analysis. Providing information on the neutrino flux at the far detector is one of
the requirements to reduce systematic errors in the analysis. The νµ (νµ) measurements are
necessary to give constraints on the parameters in underlying neutrino interaction models. About
1% contamination from νe (νe) in the νµ (νµ) beam ends up with the irreducible background in
measurements of νe (νe) appearance. Therefore, it is an important task for ND280 to measure the
νe (νe) component of the neutrino flux as a function of neutrino energy to predict the irreducible
background.

UA1 Magnet and SMRD
The magnet surrounding the whole detector provides a dipole magnetic field of 0.2 T. This
magnet consists of water-cooled aluminum coils and eight C-shaped flux return yokes. Each
of these individual yokes is made of 16 iron planes, 48 mm thick, and spaced with 17 mm
air gaps. Both coils and yokes are refurbished from the UA1 experiment at CERN [59]. In
order to fill the air gaps between iron planes inside each yoke, additional active layers made
of plastic scintillators, SMRD [60] were installed. SMRD acts to measure muon momentum
escaping from the inner detectors. In addition, it triggers cosmic rays entering the ND280
detectors and detects beam-related background coming from interactions inside magnet
yokes.

FGD and P∅D
We developed two kinds of detectors to determine the neutrino interaction vertex. They are
two fine-grained trackers, FGDs [61] and one pi-zero detector, P∅D [62]. One FGD tracker
called FGD1 fully consists of scintillator tracking planes, while the other FGD tracker
called FGD2 consists of the sandwich structure of water layers and scintillator tracking
planes. FGD1 acts as CH target detector and FGD2 acts as both CH and H2O target
detector. In addition, they detect charged particles emerging from the neutrino interaction
vertex. P∅D has a water-scintillator sandwich structure for charged particle detection but
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also electromagnetic calorimeters for photon detection. One of the motivations of P∅D is
to detect neutral pions with the electromagnetic calorimeters.

TPC
Charged particles produced from the neutrino interaction in FGDs and P∅D are further
tracked down by other detectors. Three Time Projection Chambers, TPCs [63] were in-
stalled in the way of sandwiching two FGDs. Each TPC consists of the inner container
for Ar-based drift gas. When the charged particles pass through the inner box, ionization
electrons induced in the gas drift away from the central cathode and toward one of the
readout planes. Bulk micromegas detectors amplify these electrons and sample the signal.
TPCs are capable of creating a track of a charged particle. As all of the detectors are under
the magnetic field provided by the UA1 magnet, the trajectory of each charged particle
is bent depending on its charge and momentum. The curvature provides information on
the charge and momentum of the particle by the TPCs. In addition, the measurement
of the energy deposit left in the TPC delivers a powerful tool to distinguish the type of
charged particles, especially proton-pion-muon separation when used with the measured
momentum.

ECAL
Sampling electromagnetic calorimeters, ECALs [64] surround the vertex detectors and
TPCs to cover the charged particles and photons exiting from those detectors. ECALs
have an alternating structure of scintillator layers and lead absorber sheets. The key role
of ECALs is photon detection, in particular from π0 particles produced in the neutrino
interactions inside the vertex detectors. The reconstruction of the energy and direction of
photons fills up a full event reconstruction using all the information from inner detectors.
It also plays a role in electron-muon-pion separation.

The near detector complex is illustrated in Figure 7. Most of the detectors rely on plastic
scintillators and wavelength-shifting fiber (WLS) readouts, with photons from the fibers aggre-
gating in the photosensors, called MPPC (Multi-pixel photon counter) [65]. MPPC is available
even in the 0.2 T magnetic field provided by the UA1 magnet.
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Figure 7: Illustrations of the underground pit housing Near Detector; INGRID and ND280 [56].
INGRID comprises seven sub-modules in a vertical row, seven sub-modules in a horizontal row,
and two sub-modules. Each module has a sandwich structure of scintillator planes and iron
planes. P∅D and FGD detectors are tracking detectors while acting as neutrino targets. Three
TPCs detect a particle trajectory. The surrounding electromagnetic calorimeters play a role in
the detection of photons as well as charged particles. All detectors are encompassed by the UA1
magnet yoke providing a dipole magnetic field.
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3.3.4 Far Detector (FD)

The primary destination of neutrino produced inside J-PARC is the T2K far detector, Super-
Kamiokande (FD) [56, 66]. FD is located 295 km west of the beam source, but 2.5 degrees
off-axis. The detector is the world’s largest land-based water Cherenkov detector and contains
50,000 tons of ultra-pure water inside its cylindrical volume as a target material. The whole
structure is divided into an inner detector (ID) and an outer detector (OD). An about 55 cm
wide cylindrical structure forms the boundary between ID and OD. Both ID and OD surfaces
are instrumented with photomultiplier tubes (PMTs). The number of ID PMTs is about 11,000
in total, which provides 40% PMT cathode coverage in the ID. The collective signals from the
Cherenkov light from a charged particle form a ring image on the surface of the ID. Compared
to the ID, the OD is only sparsely instrumented with 1,855 PMTs in total. Nevertheless, it plays
an important role in rejecting cosmic ray muons and other backgrounds.

In the context of neutrino oscillation measurements, the separation of νe and νµ is the most
prominent requirement for the FD. The basic strategy to distinguish these flavors is to analyze
the pattern of a ring’s edge. Electrons induce electromagnetic cascades while traveling inside
water. Those cascades make a fuzzy ring image, which is a hallmark of an electron event. On
the other hand, muons travel inside water as Minimum Ionizing Particles (MIPs), which makes
a ring image clearer. This is the qualitative approach to tell νe from νµ. In fact, the event
reconstruction adopts a likelihood approach to quantify the fuzziness of a ring image. As a
result, the contamination of other flavors in a reconstructed νe sample is less than 1% level [53].
The event displays from Monte-Carlo simulations for both νe and νµ are shown in Figure 8.

The FD has several limitations in terms of oscillation analysis for the T2K experiment. One
is related to a potential bias in the reconstruction of neutrino energy. The principle of neutrino
detection at the FD relies on the Cherenkov light from a charged particle. The FD can identify
a charged pion if it is above the Cherenkov threshold, in principle, but can also infer its presence
by detecting the electron from its decay chain. The main interaction type is the charged current
quasi-elastic scattering (CCQE), where the charged lepton and the outgoing nucleon exist in the
final state. The energy reconstruction is applied assuming the interaction is CCQE for the main
signal of the T2K oscillation analysis. Sometimes, produced pions in the neutrino interactions
are trapped inside the nucleus. The event mimics the CCQE. When the calculation formula is
applied to this kind of events, it introduces a natural bias into the energy reconstruction.

With respect to the bias, the two-particle two-hole (2p2h) interaction, where two protons
get involved, is another concern. The 2p2h interaction may produce two protons in the final
state which is distinct from CCQE, where only one proton is produced in a neutrino-nucleus
interaction. The typical energy of excited protons in the interaction is not sufficient to create
a Cherenkov light forming a ring image. Therefore, the 2p2h interaction mimics the CCQE
interaction in the final state. Consequently, it causes another bias in energy reconstruction.
Another limitation is that the FD is not capable of distinguishing the neutrino interaction from
the anti-neutrino interaction because the FD is not magnetized. 8

These limitations are covered by interaction model studies and flux predictions. For the nu-
clear medium effects, the dedicated model is introduced to evaluate the effect inside the nucleus.
The analysis applies the external data to tune the parameters in the model. For the 2p2h inter-

8The current Super-Kamiokande contains 0.03% Gd dissolved into the water by mass fraction. This provides a
way to discriminate the ν event from ν̄ event for CCQE interaction because ν̄ interaction is more likely to have a
neutron exiting outside the nucleus. However, all analyses in this thesis were done without introducing the effect
of Gd.
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action, the T2K neutrino interaction generator incorporates an underlying model to parametrize
a cross section for this interaction. The parameters for medium effects and the 2p2h interaction
are constrained by the T2K Near Detector (ND280) measurements. The result is then propa-
gated into the FD event predictions. The detailed descriptions are covered in Section 6.4. For
the inability to separate neutrinos and anti-neutrinos, each analysis sample at the far detector is
determined based on the type of beam operation that is neutrino-mode/FHC or anti-neutrino-
mode/RHC (see Section 6.6 for details). In addition, neutrino and anti-neutrino components
are examined by the neutrino flux predictions established by the T2K experiment. The detailed
descriptions are found in Section 6.2.
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Figure 8: The upper figure shows a schematic view of the FD [56]. The cone produced by a
muon from the neutrino interaction represents Cherenkov light. Also, the lower figures show
event displays from Monte-Carlo simulations for νe event (lower left) and νµ event (lower right).
The electron ring is subject to the electromagnetic shower, which makes the ring image relatively
diffuse. On the other hand, the ring image for νµ event is clearer due to less interaction probability
of muon inside water.
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3.4 Data taking status

The T2K experiment has taken data since 2010. Table 2 shows the history of the T2K beam
operation until 2021. The published oscillation analysis result and the updated result described
in this thesis use data up to Run10 while Run11 data was not introduced because of the FD
condition being changed. 9 Run10 data was newly added for the published result in [67, 68].
The stable beam operation is the outcome of the continuous operation of neutrino monitors,
MUMON and INGRID. Figure 9 illustrates the history of accumulated POT and beam power in
the T2K experiment. The current maximum beam power reaches 520 kW.

Table 2: History of the T2K beam operation. The last column refers to the amount of taken
data in the Near Detector (ND) and in the Far Detector (FD).

Run number Run start Run end Beam mode POT(×1019)
ND FD

1 Jan. 2010 Jun. 2010 ν – 3.26
2 Nov. 2010 Mar. 2011 ν 7.93 11.22
3 Mar. 2012 Jun. 2012 ν 15.81 15.99
4 Oct. 2012 May. 2013 ν 34.26 35.97
5 May. 2014 Jun. 2014 ν̄ 4.35 5.12

ν – 2.44
6 Oct. 2014 Jun. 2015 ν̄ 34.09 35.46
7 Feb. 2016 May. 2016 ν̄ 24.38 34.98

ν – 4.84
8 Oct. 2016 Apr. 2017 ν 57.31 71.69
9 Oct. 2017 May. 2018 ν̄ 20.54 87.88

ν – 2.04
10 Oct. 2019 Feb. 2020 ν – 47.26
11 Mar. 2021 Apr. 2021 ν – 17.81

9The SK collaboration has decided to dope a small fraction of Gadolinium (Gd) inside the water tank to make
the neutron detection efficiency higher. The Gd doping has started in 2020 after Run10, and Run11 is the first
data taking with Gd-water.
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Figure 9: The history of accumulated POT and beam power in the T2K experiment [69]. The
solid lines represent accumulated POT while dotted points represent the beam power. The Run
number corresponds to the first column in Table 2.
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4 Neutrino interaction in sub-GeV energy region

The uncertainty of neutrino interaction models is one of the dominant error sources in the
oscillation analysis of T2K. This chapter describes neutrino-nucleus interaction theories and the
experimental status of the measurements.

4.1 Overview

Neutrino electron scattering with point particles like electrons is a well-understood weak neutrino
interaction. Neutrinos have interactions with hadrons, whose electric charges are distributed in
space. For these interactions, the "Form factor", which represents the structure of the target, is
introduced to take into account the electric charge distribution.

For measurements of accelerator neutrinos in particular for T2K, the energy scale of the
neutrino beam is 1 GeV, where the interaction length is 1 fm. This is comparable to the size of
a nucleus. Therefore, it is important to understand neutrino interactions with nucleons that are
bound inside a nucleus. As the T2K near detector complex has mainly a CH target and the far
detector has a water target, nuclear medium effects inside oxygen and carbon are necessary to
be understood. Many models dealing with the nuclear effects have been extended from a model
assuming a free nucleon as an interaction target. This chapter explains neutrino interactions
with free nucleons and then elaborates on how the nuclear medium effects are considered in the
extended models, citing a concise review of neutrino interactions [70].

Neutrino interactions via the weak force take place by exchanging either W+/W− boson
or Z boson which corresponds to the charged current process or the neutral current process,
respectively. The charged current neutrino interactions with a mean energy of 1 GeV are classified
mainly into three interactions; quasielastic scattering, resonant interaction, and deep inelastic
scattering. They are roughly differentiated by the energy of neutrino, which is shown in Figure 10.
Figure 10 also shows the data points from experimental results. The measurements of total cross
section and those in higher energy regions for the CCQE interaction are mostly consistent with
theoretical predictions. On the other hand, the data results for the CCQE interaction in the
sub-GeV region, resonant interaction (RES), and deep inelastic scattering (DIS) are not shown
in this figure because of the lack of precise measurements for these neutrino interactions. This
chapter focuses on these three interaction modes in sub-GeV energy regions corresponding to the
T2K neutrino beam energy.
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Figure 10: Total neutrino and antineutrino per nucleon charged current cross sections (for an
isoscalar target) divided by neutrino energy and plotted as a function of energy [71]. These
contributions include quasielastic scattering – QE (dashed), resonance production – RES (dot-
dashed), and deep inelastic scattering – DIS (dotted). Example predictions for each are provided
by the NUANCE generator ( [72]). Note that the quasielastic scattering data and predictions
have been averaged over neutron and proton targets and hence have been divided by a factor of
2 for the purposes of this plot. Dotted plots show data from various kinds of experiments: Black
triangle dots ( [73]), Asterisk dots points ( [74]), Black rectangular dots ( [75]), Star dots ( [76]).
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4.2 Interaction with free nucleon

4.2.1 Charged current quasi-elastic scattering

The quasi-elastic scattering is an interaction with a "small" momentum transfer, Q2. In this
thesis, quasi-elastic scattering is defined as the interaction where no other hadrons are produced.
If the nucleon is free, charged current quasi-elastic scattering (CCQE) refers to the interactions
of

νl(k) + n(p) → l−(k′) + p(p′)

ν̄l(k) + p(p) → l+(k′) + n(p′), (4.1)

where k, k′ are four momenta of the neutrino (anti-neutrino) denoted by νl(ν̄l) and lepton (l±),
p, p′ are the four momenta of the incoming and outgoing nucleon (n, p). Figure 11 shows the
Feynman diagram for the quasi-elastic scattering interactions.

time

νl/ν̄l(k)

N(p)(n, p)

l−/l+(k)

N ′(p′)

W+/W−(q)

Figure 11: Feynman diagram for the neutrino-nucleus charged current quasi-elastic scattering.
The time elapses from left to right.

One of the theoretical descriptions is seen in Llewellyn Smith’s formalism [77]. The following
discussions highlight how the differential cross section is extracted, showing the parametrizations
and assumptions used in this formalism. The invariant matrix element M representing the
Equation 4.1 is given by

M =
GF√
2
cos θCIµJ

ν , (4.2)

where GF is the Fermi coupling constant, θC is the Cabibbo angle, Iµ, Jν are the leptonic weak
current and the hadronic current, respectively. The leptonic weak current is expressed by

Iµ = ū(
−→
k ′)γµ(1∓ γ5)u(

−→
k ), (4.3)
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where ∓ corresponds to neutrino (−) or anti-neutrino (+) induced interactions. The hadronic
current is given by

Jµ = ū(−→p ′)Γµu(
−→p ). (4.4)

In the Llewellyn Smith’s formalism, the contribution of the matrix (Γµ) is divided into the
conserved vector current Vµ and the partially conserved axial current Aµ;

Γµ = Vµ −Aµ. (4.5)

The matrix elements for both vector and axial vector currents are given by

⟨N ′|Vµ|N(−→p )⟩ = ū(−→p ′)

[
γµf1(q

2) + iσµν
qν

M +M ′ f2(q
2) +

2qµ
M +M ′ f3(q

2)

]
u(−→p )

⟨N ′|Aµ|N(−→p )⟩ = ū(−→p ′)

[
γµγ5g1(q

2) + iσµν
qν

M +M ′γ5g2(q
2) +

2qµ
M +M ′γ5g3(q

2)

]
u(−→p ), (4.6)

where N,N ′ = n, p, and q2 = (k− k′)2 is the four-momentum transfer squared. The parameters
M,M ′ are the masses of the initial and the final nucleon, respectively. The functions fi(q

2) and
gi(q

2) represent the form factors.
The differential scattering cross section can be calculated using Mandelstam variables s, t, u 10.

The result is

dσ

dq2
=

G2
FM

2 cos2 θC
8πE2

ν

[
A(q2)∓B(q2)

(s− u)

M2
+ C(q2)

(s− u)2

M4

]
, (4.7)

where

A(q2) =
m2 − q2

4M2

[(
4− q2

M2

)
g21(q

2)−
(
4 +

q2

M2

)
f2
1 (q

2)− q2

M2

(
1 +

q2

4M2

)
f2
2 (q

2)

− 4q2

M2
f1(q

2)f2(q
2)− m2

1

M2

((
f1(q

2) + f2(q
2)
)2

+
(
g1(q

2) + 2g3(q
2)
)2)2

+

(
q2

M2
− 4

)
g23(q

2)

]
,

B(q2) =
q2

M2
g21(q

2)
[
f1(q

2) + f2(q
2)
]
,

C(q2) =
1

4

[
g21(q

2) + (f1(q
2))2 − q2

4M2
(f2(q

2))2
]
. (4.8)

For the simplicity of the calculation, a set of assumptions M ′ = M, s − u = 4MEν +
q2, f3(q

2) = g2(q
2) is applied, where there are no second-class currents. The plus (minus) sign

of the B(q2) term in Equation 4.7 is used for neutrino (anti-neutrino) interaction. The leading
terms of the Equation 4.7 come from the contributions of f2

1 (q
2) and g21(q

2), which correspond
to a vector form factor and an axial vector form factor, respectively. The vector form factors are
well understood with the relationship with the Dirac-Pauli form factors of the proton and the
neutron (F p

1,2, F
n
1,2 [78, 79]) by

f1,2(q
2) = F p

1,2(q
2)− Fn

1,2(q
2). (4.9)

10Each variable in this context is s = (k + p)2c2, t = (k − k′)2c2, u = (k − p′)2c2
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The axial vector form factor is parametrized as

g1(q
2) = gA(0)

[
1− q2

M2
A

]−2

, (4.10)

assuming dipole type of form factor. The constant value gA(0) is determined experimentally from
the β-decay of neutrons (−1.2723± 0.0023 [19]). The parameter MA represents the axial vector
mass in a dipole type, characterizing the dipole behavior of the nucleon. The numerical value
of MA has been measured in various kinds of experiments from neutrino-nucleus scattering as
well as the pion electroproduction. The electroproduction experiments suggested it was 1.069±
0.016 GeV/c2 and the early neutrino interaction experiments using hydrogen and deuterium
targets had similar results [80]. The results from some neutrino experiments such as NOMAD [81]
and MINERνA [82] were consistent with them. On the other hand, some neutrino experiments
preferred a higher value of MA most of which lies in the range of 1.2-1.35 GeV/c2. The recent
T2K result showed 1.26+0.21

−0.18 GeV/c2 [83]. Notably, the MiniBooNE experiment showed the
results with the high statistics sample of νµ interactions on 12C. The results were explained with
MA = 1.35± 0.17 GeV/c2. Varying MA from 1.069 GeV/c2 to 1.35 GeV/c2 can change the cross
section of the quasi-elastic scattering by approximately 30%. There are target differences between
the earlier experiments and the MiniBooNE or the T2K experiment. The T2K experiments use
carbon and oxygen targets, where the neutrino interactions are subject to nuclear medium effects
due to the nucleon bound inside a nucleus although the Fermilab experiments used hydrogen and
deuterium targets. We then need to take into account the nuclear medium effects to calculate
neutrino-nucleus cross sections on the carbon or oxygen targets precisely. This issue is revisited
in the latter section.

4.2.2 Charged current meson production

As the minimum threshold of neutrino energy for the meson production is determined by a pion
mass, the threshold is 277.4 MeV/c2 for the charged current charged-pion production. Neutrinos
with higher energy above 1 GeV do not only get involved in the single-pion production but also
promote multi-pion production or the production of strange mesons such as Kaon up to a few
GeV energy. These meson productions are divided into two ways; resonant and non-resonant
productions. The resonant production is dominant in the entire energy region except for the
low energy corresponding to around the energy threshold of the meson production process. The
resonant meson productions are characterized by the mass, parity, spin, and isospin of the excited
states of the nucleon. They are represented by RIJ(MR) where R is the name of the resonance
at the nucleon’s orbital angular momentum 11, I and J stand for their isospin and total angular
momentum quantum numbers, and MR is their mass. The first resonance is ∆++ one called
P33(1232), which is dominant in the T2K experiment. In addition to this classification, the
change in strangeness, ∆S is also important to differentiate the meson production process. The
main processes can be represented by the following reactions.

• ∆S = 0

– νµ(ν̄µ) +N → µ−(µ+) +N ′ + π

– νµ(ν̄µ) +N → µ−(µ+) +N ′ + nπ

11Each angular momentum L=0, 1, 2 corresponds to S, P, D in terms of R
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• ∆S = 1

– νµ(ν̄µ) +N → µ−(µ+) +N ′ + η

– νµ(ν̄µ) +N → µ−(µ+) +N ′ +K

Corresponding Feynman diagrams are shown in Figure 12.

time

νl/ν̄l

N

l−/l+(k)

N

π/K

R

W+/W−(q)

time

νl/ν̄l

N/Υ

l−/l+(k)

N

π/K

Z0(q)

Figure 12: Feynman diagrams for neutrino-nucleus charged current inelastic scattering (left)
and neutral current inelastic scattering (right). In the left diagram, "R" refers to the nucleon
resonance. The dominant resonance in the T2K experiment is ∆++(1232) one. The time elapses
from left to right.

The following discussions focus on the case of ∆S = 0, especially via the ∆++ resonance,
P33(1232). The cross section calculation flow is similar to that for quasi-elastic calculation except
for the Γ matrix involving the hadronic current. The Γ matrix is divided into the vector and the
axial vector currents. Corresponding form factors can be predicted by theories and measured
by experiments. The vector form factors including vector mass, MV were determined from the
electromagnetic data [84] which was compared with theoretical calculations of helicity amplitude
of ∆++ [85]. The axial vector part can be parametrized by a form factor CA

5 [86]. The shape of
CA
5 is traditionally assumed to be the dipole form, which is expressed by

CA
5 (q

2) =
CA
5 (0)

(1 + q2/M2
A,∆++RES

)
. (4.11)

Experiments from Brookhaven National Laboratory (BNL) provided data [87, 88] to estimate
those parameters, whose best fits suggested CA

5 = 1.2,MA,RES = 0.73 GeV/c2. For the cross
section of the single pion production process from almost free nucleons, the only bubble chamber
experiments from ANL [89] and BNL [88] provided available data, which were conducted almost
40 years ago. These results are inconsistent with one another on the cross section of the single
pion production (νµp → µ−pπ+) by about 30 - 40%. This in turn inflates the uncertainty on the
cross section of the interaction.
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The Kaon production process is not dominant in the sub-GeV energy region, whereas it
becomes important to measure the interaction in a few GeV energy regions. Recently, the
charged current induced single kaon production as a function of kaon’s kinetic energy produced
in the final state was measured by the MINERνA experiment [90].

4.2.3 Charged current deep inelastic scattering

Deep inelastic scattering (DIS) is characterized by high momentum transfer, q2, and energy
transfer, ν compared to inelastic scattering, both of which are typically over 1 GeV. The nucleon
receiving the high energy ends up with a jet of hadrons. The typical interaction is described by

νl/ν̄l(k) +N(p) → l−/l+(k′) +X(p′); l = e, µ (4.12)

where X stands for a jet of hadron. Feynman diagrams are also shown in Figure 13.

time

νl/ν̄l(k)

N(p)

l−/l+(k′)

X(p′)
W+/W−(q)

time

νl/ν̄l (k)

N(p)

νl/ν̄l(k
′)

X(p′)
Z0(q)

Figure 13: Feynman diagrams for neutrino-nucleus charged current deep inelastic scattering (left)
and neutral current deep inelastic scattering (right). The time elapses from left to right.

Unlike the quasi-elastic and the meson production processes, the proton form factors in the
case of the DIS process are independent of q2 which is asymptotically a fixed value of x in the
limit of q2 → ∞, ν → ∞, where x is known as the Bjorken scaling. Thus, the cross section
scaling and the form factors depend only on x. The double differential cross section in this weak
interaction process is calculated assuming V-A interactions in the limit of q2 → ∞, ν → ∞. The
expression is

d2σ

dxdy
=

G2
F s

4π

[(
1 + (1− y)2

)
F2(x,Q

2)±
(
1− (1− y)2

)
xF3(x,Q

2)
]
, (4.13)

where s = (p + k)2 ≃ 2p · k, y = p · q/p · k (y is the inelasticity parameter), both F2 and F3

are form factors for DIS. Equation 4.13 can be written by replacing form factors with quark

(anti-quark) cross sections (
(−)
u (x),

(−)

d (x),
(−)
c (x),

(−)
s (x));
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d2σνp

dxdy
=

G2
F s

π
(d(x) + s(x) + (1− y2)(ū(x) + c̄(x))),

d2σν̄p

dxdy
=

G2
F s

π
(d̄(x) + s̄(x) + (1− y2)(u(x) + c(x))),

d2σνn

dxdy
=

G2
F s

π
(u(x) + s(x) + (1− y2)(d̄(x) + c̄(x))),

d2σν̄n

dxdy
=

G2
F s

π
(ū(x) + s̄(x) + (1− y2)(d(x) + c(x))). (4.14)

Integrating all equations in Equation 4.14 over x, y between the limits 0 and 1 gives the expres-
sions of total cross sections for an isoscalar nucleon target for neutrino and anti-neutrino induced
processes;

σνN =
G2

F s

2π

∫
x

(
q(x) +

q̄(x)

3

)
dx, σν̄N =

G2
F s

2π

∫
x

(
q(x)

3
+ q̄(x)

)
dx, (4.15)

where q(x), q̄(x) are the probability density functions for quarks and anti-quarks. The CHARM
experiment presented the experimental results of the total cross section for DIS using the neutrino
beam ranging from 10 GeV to 160 GeV [91]. The results are

σνN/Eν = 0.677± 0.002(stat)± 0.020(syst)× 10−38cm2/GeV, (4.16)

σν̄N/Eν̄ = 0.335± 0.004(stat)± 0.010(syst)× 10−38cm2/GeV.

DIS is not dominant in the T2K experiment whereas this interaction has a non-negligible con-
tribution in the background coming from neutrinos with high energy.

4.3 Interaction with nucleon bound inside nucleus

Most accelerator neutrino oscillation programs need to take into account the fact that the nucleon
is bound inside the nucleus because the interaction length for the energy transfer in the T2K
neutrino energy scale, the typical Q2 for the 1 GeV neutrino interactions corresponds to the
nucleon size of 1 fm.

Neutrino interactions are subject to nuclear medium effects which originate from, for instance,
the nucleon not being at rest or having interactions with other nucleons. Many models have been
proposed to describe neutrino interactions and tested by experiments. This section introduces
several interaction models along with the nuclear medium effects, in particular for quasi-elastic
scattering and resonant pion production processes, both of which are major concerns for the T2K
experiment.

4.3.1 Interaction models for quasi-elastic scattering

The simplest nuclear model to study neutrino interactions is the non-relativistic global Fermi gas
model 12 assuming the motion of nucleon is non-relativistic, which was first applied to neutrino
interactions by Berman [92]. This model describes a system of non-interacting fermions relying
on several assumptions.

12This model has been extended to "relativistic" Fermi gas model and "local" Fermi gas model
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• Each energy state for nucleons, protons and neutrons is filled by two identical particles
with opposite spins.

• All of the lowest states are filled up to a maximum Fermi momentum pF at T = 0 K.

• Two different potential wells are allocated to neutrons and protons. The neutron’s poten-
tial well is deeper than that of the proton’s well because of the absence of the Coulomb
repulsion.

• The average potential that every nucleon feels is a superposition of the potentials from
other nucleons.

This model is able to account for several nuclear medium effects. We then discuss what the
medium effects are and how they have an impact on the neutrino interactions.

Nucleon motion in a nucleus

The nucleon motion in a nucleus can affect neutrino interactions. In the picture of the shell
model, the potential energy that nucleon feels in the nucleus acts as a mean-field, V (r) in
the Hamiltonian given by

H = −
−→
∇2

2M
+ V (r), (4.17)

where M is the mass of the nucleon. This Hamiltonian can describe the motion of the nu-
cleon. The solution of the Schrodinger equation with the Hamiltonian, Equation 4.17 gives
the wave function of the nucleon in the momentum space. The momentum distribution of
the nucleon follows the wave function. To calculate neutrino cross sections, the momentum
of nucleon needs to be convoluted by this momentum distribution called Spectral Function
(SF). The simplest case of the Fermi gas model gives the SF of

S(−→p ,E) ∝ θ(pF − p)δ(E −
√
|−→p |2 +M2 + ϵ). (4.18)

where E,−→p are the energy and momentum of the nucleon. This effect is visible in the shift
of the elastic or quasi-elastic peak and the smearing of the peak depending on the SF.

Pauli Blocking
In the Fermi gas model, the ground state is defined as the state where all the nuclear
states in the Fermi sea are filled up to the momentum pF . Whatever reactions can excite
a nucleon at a certain state creates a hole in the previously occupied state. This is called
the creation of particle-hole (1p-1h). As both nucleons, proton and neutron are fermions,
Pauli’s exclusion principle is valid in this model. Consequently, if the states up to a certain
momentum are already occupied by other nucleons, another nucleon’s excitation is blocked.
If the nucleon momentum is not high enough to excite to a higher state, the nucleon cannot
get outside of the nucleus. This effect is called the Pauli Blocking, which ends up with the
reduction in the cross section, especially in the region of the low momentum transfer.

Binding Energy
There exists binding energy among nucleons. As a result, the nucleons are off-mass shells,
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and the energy-momentum relation (p2 = M) is not guaranteed anymore. In fact, many
theories indicate that the effective mass of nucleons is reduced, which is related to the
strength of the potential energy responsible for nuclear binding. Assuming the neutrino
interaction with a free nucleon, the energy-momentum conservation gives the relationship
of the energy transfer expressed by

q0 = ∆E ≃ −q2

2M
. (4.19)

The change in the effective mass of nucleons can violate this relationship, which may shift
the peak of the energy distribution for free particles.

Coulomb correction
An outgoing lepton is subject to the Coulomb distortion in the Coulomb field of a nucleus.
This effect can be considered by replacing the energy transfer q0 with q0 − Vc(r) where
Vc(r) is the Coulomb potential expressed by

Vc(r) = Zfα4π

(
1

r

∫ r

0

ρp(r
′)

Z
r′2dr′ +

∫ r

∞

ρp(r
′)

Z
r′2dr′

)
, (4.20)

where α is the fine structure constant, Zf is +e (-e) for positively (negatively) charged
leptons.

Considering all of the nuclear effects stated above, in the Fermi gas model, the free nucleon
cross section is multiplied by a factor of (1 − D(q2, N, Z, kF )/N), where N is the number of
nucleon targets and D is a factor depending upon the four-momentum transfer squared, q2, N,Z
and the Fermi momentum kF of the target nucleus. This non-relativistic Fermi gas model has
been extended to the relativistic Fermi gas model by Smith and Moniz [93, 94]. In this model,
the reduction factor 1 − D(q2, N, Z, kF )/N was replaced with the response function R(−→q , q0).
The expression for the double differential cross section is given by

(
d2σ

dΩldEl

)
= C

(
dσfree
dΩl

)
R(−→q , q0),

R(−→q , q0) =
1

(4/3)πp3FN

∫
d3pNM2

ENEN ′
δ(EN + q0 − EB − EN ′)θ(pFN

− |−→p N |)θ(|−→p N +−→q | − pFN′ ),

(4.21)

where dσfree
dΩl

is the free nucleon cross section for the neutrino or anti-neutrino scattering, N,N ′ =
n or p. In the charged current scattering, neutrinos interact with neutrons and anti-neutrinos
interact with protons. Then the factor C is chosen to be C = A − Z for a neutrino induced
process and C = Z for an anti-neutrino induced process. The global Fermi gas model assumes
that Fermi momenta for both proton and neutron (pFN

, pFN′ ) do not depend on their interaction
points. They are expressed by

pFN
= (3π2ρn)

1/3, pFN′ = (3π2ρp)
1/3, (4.22)

where ρn and ρp are densities for neutron and proton. On the other hand, in the local Fermi gas
model, these densities are assumed to depend on interaction points. The density functions are
given by
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ρp(r) =
Z

A
ρ(r), ρn(r) =

A− Z

A
ρ(r), (4.23)

where ρ(r) is the nuclear density, which was determined experimentally by the electron-nucleus
scattering experiments [95, 96]. In order to calculate the scattering cross section, the Fermi
momenta need to be integrated over the whole nucleus.

Nucleon-Nucleon correlation
The nucleon-nucleon correlations have an important role to understand the neutrino in-
teraction with nucleons in a nucleus, in particular for accelerator neutrino experiments
such as T2K. Those correlations appear as either a short-range effect or a long-range ef-
fect, which corresponds to the exchange of pion or heavier mesons. The short-range effect
is associated with the Meson Exchange Current effect (MEC), which happens when two
nucleons exchange the mesons in flight in a nuclear medium shown in Figure 14. These
nucleon-nucleon correlations are treated in the microscopic model by Martini [97] in the
relativistic Fermi gas model by Nieves et al. [98] by taking into account the MEC diagrams
such as the ones in Figure 14.

W±/Z0 W±/Z0

W±/Z0

W±/Z0

Figure 14: Feynman diagrams for some typical 2p-2h contributions from the meson exchange.
Solid (dashed) lines denote nucleon (pion) propagators. Arrows pointing to the right (left) denote
particle (hole) states. Both diagrams show the ph-ph interaction driven by pion exchange where
the outgoing gauge boson is coupled to the pion (second nucleon) in the left (right) figure.

One of the hottest topics on the nuclear medium effects is the interpretation of discrepancies
in the results of MA. The MiniBooNE collaboration reported the differential cross section for the
charged current quasi-elastic scattering process using a high statistic sample of νµ interactions
in 12C with the averaged energy of 750 MeV [99]. The results show the best-fit value of MA

was 1.35 ± 0.17 GeV/c2 with the relativistic Fermi gas model while the world average at that
moment was 1.026 GeV/c2. This discrepancy indicated there were some missing contributions in
the quasi-elastic interactions in the MiniBooNE measurements assuming the other experimental
results were true or the value of MA was wrong in the other experiments or there were invalid
assumptions in underlying theoretical models. One of the early attempts to account for this
discrepancy is to consider the Final State Interactions mimicking the quasi-elastic events. Even
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if neutrino interactions produce hadrons or mesons along with a lepton, some of them may be re-
absorbed by the nucleus. As a result, only the lepton can be detected in the final state, which ends
up increasing the quasi-elastic like events in cross section measurements. Many theoretical models
were proposed including these FSI effects. However, they could not explain the MiniBooNE MA

value in a consistent manner. On the other hand, Martini et al. and Nieves et al. emphasized
there were additional contributions from MEC and nucleon-nucleon correlation effects. The
enhancement in the cross section from the MiniBooNE experiments can be explained by taking
into account the two-particle two-hole (2p-2h) excitations in addition to the interference with 1p-
1h excitations. The theoretical calculation including these contributions has a better agreement
with the MiniBooNE cross section results using the value of MA = 1.049 GeV/c2 [100]. On the
other hand, there has been no clear evidence of 2p-2h excitations with neutrino probes while they
are confirmed by electron scattering experiments. This is due in large part to the difficulty to
separate the contributions from quasi-elastic events and the nucleon-nucleon correlations. This
lack of understanding of 2p-2h contributions leads to the large systematic uncertainty on the
neutrino oscillation measurements in T2K.

4.3.2 Interaction models for meson productions

The final state interactions (FSI) are important effects in neutrino meson productions with
nucleon in a nucleus. When a pion is produced inside the nucleus, it is sometimes subject to
scattering or absorption in the presence of strong interactions of final state pions in the nuclear
medium. Consequently, there are several effects to be considered; the pion cannot get outside of
the nucleus, the pion can change its direction, energy, and charge or even produce more pions.
Considering the pion absorption, while it can enhance the yield of quasi-elastic scattering events,
on the contrary, it should reduce the number of CC single pion production event candidates,
CC1π in comparison with the theoretical predictions. The CC1π events mainly come from
resonant and non-resonant pion productions. The earlier calculations of those processes were
described in Rein and Sehgal model [101]. Then the model was modified for the inclusion of the
nuclear medium effects, which was seen from the works [93] by Smith and Moniz in the non-
relativistic global Fermi gas model explained in the previous section. The first implementation
of the FSI effect in a theoretical model was done by Adler et al. [102]. This model uses a
multipole scattering theory of pions. Another approach is to prepare a distorted wave function
for pions replacing the plane wave function by solving the Klein-Gordon equation for pions in
an optical potential. The approach of the distorted wave function was utilized in the model
of distorted wave Born approximation (DWBA) [103] and Glauber model [104–106]. For high
energy and forward angles corresponding to a low q2 region, the Glauber model is a more accurate
prescription for FSI. In addition, the model proposed by Vicente Vacas [107] should be noted
because it is prevalent in neutrino interaction generators for neutrino programs.

Vicente’s model disentangles the effects from pion absorption dominant in lower energy regions
around a few hundred MeV and the pion production prevalent in the higher energy regions. In
the initial iteration of the simulation, pions are generated given momentum and charge, which
travel in z-direction, with a random impact parameter

−→
b , obeying |

−→
b | < R, where R is the upper

bound for the nucleus radius. The pions are placed at (
−→
b , zin), where zin = −

√
R2 − |b2|. The

next iteration moves them along with the z-direction in small steps (equivalent to the length δl)
until they get out of the nucleus or interact. The interaction probability of pion is assumed to be
represented by P (q, r, λ), where −→q , r are the pion momentum and charge, and r is its position.
The value of P (q, r, λ)δl is taken as a reference value to judge if the pion has an interaction
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inside the nucleus. Inside the iteration loop, once that randomly generated number from 0 to 1
exceeds the reference value, the pion is assumed to have an interaction. Then it determines the
interaction type according to the pre-calculated weights.

The modifications taking into account the FSI have non-negligible effects on the theoreti-
cal prediction compared to the free-nucleon cases [108]. The theoretical calculation was also
compared to several kinds of neutrino interaction modes implemented in neutrino interaction
generators (GiBUU [109], NuWro [110], GENIE [111], NEUT [112]) along with the experimental
data, which is shown in Figure 15. There has not been a solid neutrino model to describe major
experimental data for this interaction process.

Figure 15: Comparisons of the differential cross section as a function of momentum transfer
(Q2) for CC1π+ sample (left) and CC1π0 sample (right) [113]. CC1π+ (CC1π0) refers to the
interaction topology where there exists only one charged (neutral) pion in the final state. The
MiniBooNE data [114] were compared with various neutrino generators (GiBUU, NuWro, GE-
NIE, NEUT) and theoretical models (Athar et al. [115], Nieves et al. [116]).

4.4 Importance of interaction models in neutrino oscillation measurements

In T2K, the mean energy of neutrinos is around 1 GeV. In the oscillation analysis, we compare
the event rate in data with the prediction obtained from the established model by theories and
experiments. The event rate before the oscillation is mainly defined as a function of the neutrino
flux, the neutrino cross section, and the signal detection efficiency. Knowledge about neutrino
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interactions is important to reduce one of the systematic uncertainties on the neutrino oscillation
measurements.

The nuclear medium effects are the major cause to impede the construction of a solid neutrino
interaction model. Due to the T2K far detector’s limitations to deal with the nuclear medium
effects, the nuclear effects can affect the energy reconstruction of neutrinos. As the neutrino
oscillation probability depends on the neutrino energy (see Equation 2.23 13), the energy re-
construction for signal samples is essential for the sensitivity to neutrino oscillation parameters.
The simplest interaction to calculate neutrino energy among three major scattering processes is
the quasi-elastic scattering where there are no additional hadrons in the final states. Assuming
the quasi-elastic interaction, where muon is produced as a lepton, reconstructed neutrino energy
without the nuclear medium effects is given by

Erec
ν =

M2
p + 2EµMn −M2

n −m2
µ

2(Mn − Eµ + Pµ cos θµ)
. (4.24)

Considering the nuclear effects, the assumptions to derive this formula (p2 = M2
n, p

′2 = M2
p )

are not valid anymore because of the binding energy between nucleons and of the nucleons
not being at rest. The modification is done by changing p2n → (Mn − EB)

2 − −→p 2
n where EB

is the binding energy and −→pn is the spectral function of the nucleon in a nucleus. It means the
reconstructed energy has to depend on the effective binding energy and model-dependent spectral
functions. Thus, in addition to the precise measurements of cross section, the understandings
of the binding energy and spectral functions are also important for the precise measurements of
neutrino oscillations.

The effect of the nucleon-nucleon correlations (2p2h interactions) on the reconstructed energy
is not negligible. Misidentification of the 2p2h events as the CCQE events leads to an energy
bias because nucleons take a part of the energy, which cannot be considered in Equation 4.24.
In order to mitigate the effect of this energy bias by simulation, a deeper understanding of the
ratio of interaction type in each signal sample is important.

The T2K near detector, ND280 has measured neutrino-nucleus cross sections to deepen the
understanding of the effect of the neutrino interactions on the oscillation measurements. In
addition, we have developed our own neutrino interaction simulator called NEUT to model the
neutrino interactions including the nuclear medium effects such as Pauli blocking and 2p2h
interactions. The ND280 measurements are utilized to constrain the interaction parameters
in the models. The constraints can reduce the model uncertainties in a data-driven way, and
increase the sensitivity of the neutrino oscillation measurements in T2K. On the other hand,
the main target of the ND280 is hydrocarbons and the phase space coverage to the large angle
scattering particles is limited due to the scintillator structure of the vertex detectors, FGDs and
P∅D. These issues are discussed in part 3 in detail.

13

P (νµ → νe) ≈ sin2 2θ13 sin
2 θ23 sin

2

(
∆m2

32L

4E

)
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Part II

Measurement of neutrino oscillation
parameters from the T2K experiment

5 Measurement of neutrino beam

Section 3.3 introduces the design of the T2K muon monitor, MUMON. The prominent role of
MUMON is to confirm the neutrino beam is directed to Super-Kamiokande at 2.5 degrees off-axis
by providing a sufficiently precise muon beam profile. It is necessary to monitor the neutrino
beam direction on the accelerator bunch-by-bunch basis for the T2K beam operation to ensure
the off-axis neutrino beam. This is because the timing of neutrino beams might change on
a bunch-by-bunch basis, which must be monitored in order to collect good-quality data. The
oscillation analysis described in this thesis has experienced an increase in statistics taken in Run10
as in Figure 9. One of the author’s contributions to the analysis is to work on MUMON in order
to monitor the neutrino profiles precisely throughout the data taking. The following descriptions
cover the calibration methods and performance of the neutrino beam profile measurements.

5.1 Calibration

MUMON has 49 sensors in Si and IC detectors. The responses from the sensors should ideally
be the same for the same signal. However, each channel may have a different response due to
the radiation damage of the sensor or a small change in the circuit property. In order to correct
the channel responses, we perform two kinds of calibrations for each beam operation in T2K.

The calibration on the first stage, electronics calibration is done to correct the response of
each readout electronics. In the measurement of each channel’s response, we input a set of signals
of known charges to each channel. From the measured charges, we know the relationship be-
tween input charges and responses. Using the relationships, the differences in responses between
channels can be corrected. This calibration is performed prior to the beam operation.

The calibration on the second stage, detector calibration is performed during the beam oper-
ation. The procedures are different between Si and IC detectors. During the detector calibration
for Si sensors, the reference Si sensor is moved to the center of the seven-by-seven array. Then
each of the sensors is moved to the center behind the reference sensor. The ratio of the signal
yield from each sensor to the one from the reference sensor is measured. On the other hand, the
reference sensor is not available for the IC detector. The whole array is moved in the way how the
center position is moved to nine points in three by three with an interval of 25 cm between two
neighboring points. These array movements end up producing nine data sets, corresponding to
profiles at different beam positions. For each profile, χ2 is calculated by taking into account the
difference between yields calculated by the relative gain of each channel and the averaged yield of
the channel. The summation of all χ2 values is the function of the relative gain of 48 channels 14.
The minimum χ2 method extracts the best-fit values of each relative gain.

Both detector calibrations correct the relative difference with respect to a certain yield of the
reference sensor. These calibrations contribute to suppressing the individual difference at less
than 0.1 % level.

14One relative gain is defined as 1.0, and then one degree of freedom is lost.
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5.2 Waveform analysis

The proton beam pulse has an eight-bunch structure in a spill, which is also reflected in the muon
beam structure. Figure 16 exemplifies typical waveforms of a channel observed in MUMON. A
bunch-by-bunch yield is defined as the integral of ADC counts subtracted by the common pedestal
in a spill. The average ADC outside the expected 1st and 8th bunch timings gives the pedestal
for each spill. In order to reflect known factors from horn power supplies and proton beam width
to affect muon flux, corresponding corrections are applied in the calculation. 15 The integral of
yields in eight bunches defines a signal response of the channel. In the case of IC-He detector,
the waveform is distorted due to the pileup effect. Since a He ion is much lighter than an Ar ion,
the drift speed of He ion gas is faster. The time constant of capacitor discharge is slower than
the shorter time of the charge collection in the circuit. Nevertheless, the yield is calculated in
the same way as above. It may have a negative effect on the profile measurement. We have not
so far seen the major effects of the pile-up on the neutrino beam profile measurement.
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Figure 16: Examples of a waveform from each sensor (Left: Si, Middle: IC-He, Right: IC-Ar)
at around 400 kW beam power operation in a spill. All of them clearly show an eight-bunch
structure. The waveform in the case of IC-He has a distinct feature due to the pile-up effects.

5.3 Linearity and stability measurements

The linear relationship between the muon flux and the signal response from a sensor is the
prominent requirement to profile the muon beam properly. As the muon flux is proportional to
the initial proton beam intensity, we use Current Transformers (CT) installed in the primary
beamline to estimate the muon flux. The response from Si or IC detectors is measured in the
sense of the integral of all the forty-nine sensors. Then, the relationship between CT values and
signal responses is tested. Figure 17 shows the result of linearity measurements for Si, IC (Ar)
and IC (He) using the proton beam provided by J-PARC. The integral of the signal responses
divided by the CT value is drawn against the corresponding proton beam power. The deviation
from the perfect linearity stays within almost 1% fluctuation, which satisfies the requirement,
3% for all of the sensors. This is the case for IC-He as well. It also confirms pile-up effects seen
in the waveform do not affect the linearity of the sensors significantly.

15The charged pions decay into muon, which forms muon flux into MUMON. The muon flux depends on how
well the horns focus the pions, which is potentially affected by the horn current. The test measurement reveals
the relationship between the power of the horn power supply and muon profiles. That turns into one of the
correction factors. In addition, increased beam powers result in a high-intensity proton beam. This affects the
proton beam width because of the repellent force between protons, which in turn has an impact on the muon flux.
The Monte-Carlo simulation confirms the effect. The correction factor was determined by the simulation result.
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Figure 17: Results of linearity measurement with the beam power. Each point includes 50 spills
for this measurement. These plots show the signal response defined as the integral of all the
channels divided by the CT value at each beam power. The color refers to the population of
the number of shots. If we were to achieve perfect linearity, the data points would be aligned
with a constant straight line. Two lines indicate 1% (by a broken line) and 3% (by a solid line)
fluctuations.

The stable response from both detectors during one period of physics operation is mandatory
as an intensity monitor. 16 As discussed in the detector design, Si sensors are subject to signal
degradation during high-intensity beam operation while IC sensors have a superior performance
in terms of stability. At the beginning of the T2K experiment, as the beam intensity is lower due
to the limitation of the beam power being up to 50 to 100 kW, the signal degradation did not
matter. The current maximum beam power is over 500 kW. The impact of the signal degradation
on the stability is necessary to check. Figure 18 shows the history of signal responses from each
detector. The data set for the IC-Ar detector was physics data taken in 2019 while that for
the IC-He and Si detector was data taken in 2021. Both IC sensors achieved stable operation
within just 1% fluctuation of signal yields. In addition, they did not have any obvious tendency
to degrade during the period. On the other hand, the tendency of the degradation in Si sensors
is clearly seen in two weeks of the beam operation. The signal depletion rate is around 1% per

16We can conduct the T2K measurement in accordance with the availability of the Main Ring. The unit of
operation time is a cycle. Each cycle corresponds to a one-month operation. The T2K experiment conducts one
or two cycles in each period.

57



three months of operations under the 500 kW beam power. This degradation is not significant
to determine the muon profile during the one-year operation for the T2K experiment at that
moment as long as the replacement of Si sensors is done.
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Figure 18: Results of stability measurement during around two weeks of the beam operation
under 480 kW beam power. The integral of signal yields of all the sensors is normalized by the
corresponding CT values. The normalized integral value is plotted as time elapses.

5.4 Measurement of muon beam profile

The aforementioned waveform analysis gives a bunch-by-bunch image of signal yields exemplified
in Figure 19. This shows that MUMON satisfies one of the requirements; to measure the profile
on a bunch-by-bunch basis. In the context of the oscillation analysis, the MUMON profile
measurement is used as one of the criteria to select a good spill that can be used for the T2K
oscillation analysis. The cut condition on the muon profile is described below.

• Beam angle is within 1 mrad, which corresponds to the fit center from Si and IC being
less than 10 cm. The 1 mrad uncertainty on the beam angle results in the 2% and 3%
uncertainties on the energy scale and the neutrino flux, respectively. These systematic
uncertainties are not dominant compared to other uncertainties.

• The fluctuation on total signal yield in a spill from Si and IC is within ± 5% with respect
to the average yield throughout the beam operation to be able to function as a backup
detector of T2K on-axis near detector, INGRID, measuring the neutrino flux fluctuation.
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Figure 19: An example of muon beam profile measured by Si sensors in the first bunch under
480 kW proton beam operation. The profile width is typically 100 cm for both X and Y positions.
The surface overlaid on the histogram represents the two-dimensional gaussian fitting.

The recent physics data taking was conducted in 2019 for two months and 2020 for two months.
The selection results from MUMON in 2020 beam operation are shown in Figure 20. The figure
includes only results from Si sensors. The profile measurement from IC sensors provided the same
selection results. The center positions measured by MUMON satisfy the criteria throughout the
period. However, the measurement of the integral of signal yields finds three spills that are
deviated outside the criteria. All three spills are scrutinized by checking waveforms observed in
several monitors. The overlaid waveform of these problematic spills on one of the waveforms from
the good spills revealed a timing shift in MUMON. As the cause of the timing shift is unknown,
those three spills are rejected from the good spill selections, which amounts to only 0.0004%. 17

Otherwise, MUMON confirmed that the T2K neutrino beam was properly focused in the aimed
direction.

5.5 Summary

MUMON has fulfilled its role in monitoring neutrino beams. The author’s contributions to the
published paper are to maintain and operate MUMON during the T2K Run10, which corresponds
to the updating statistics for the oscillation analysis described in this thesis.

17During the beam operation in 2019, two problematic spills were found in MUMON due to the same reason.
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Figure 20: Results of the profile and intensity measurements from MUMON (only Si sensors).
The top and middle figures show the profile center in the X and Y direction, respectively. All
the spills pass the selection. The bottom one is the history plot for the intensity measurement.
Based on the criteria, three spills are rejected.

60



6 Oscillation analysis methods

This chapter describes the analysis methods of the T2K experiment to measure the neutrino
oscillation parameters.

6.1 Overview

The methods are divided into five steps; neutrino flux prediction, neutrino interaction modeling,
near detector fitting, event reconstruction at the far detector, and far detector fitting. The
precise prediction of the unoscillated neutrino flux at the far detector is essential. The error
sources on the flux prediction come from beamline components and hadronic interactions. They
are estimated in a Monte Carlo simulation framework with a hadronic interaction simulation tool.
Furthermore, the T2K has made use of the external experimental results of the pion and kaon
cross sections to constrain the uncertainties on hadronic interactions inside the target. Section 6.2
focuses on the method and the results of the flux prediction. We have developed a software
package to simulate neutrino interactions including the nuclear medium effects. Section 6.3
introduces our framework to simulate neutrino interactions as well as the interaction models on
which it is based. These flux prediction and neutrino interaction models include more than 100
parameters in total. Without any additional data-based constraints on these parameters, they
inflate the systematic uncertainties. ND280 has collected neutrino data to measure the neutrino-
nucleus cross sections. Near detector fitting frameworks utilize the data to give constraints on
all the parameters simultaneously taking into account all the correlations among them. The
method and the results are described in Section 6.4. At the far detector, the main measurement
objects are νe appearance and νµ disappearance. Section 6.5 describes analysis samples including
their selection criteria. The final step to get results on the neutrino oscillation parameters is the
far detector fit with reconstructed events from data and all nuisance parameters. Section 6.6
overviews the core of the fitting algorithm.

The descriptions are based on the analysis in the published results [67]. In this thesis, sev-
eral updates have been added to the published results. The differences between them are also
described in this chapter.

6.2 Neutrino flux model

A precise estimation of unoscillated neutrino flux at the far detector is a key ingredient in
the oscillation analysis. The T2K experiment has developed its own framework to provide the
nominal flux prediction and its uncertainties. The simulation consists of three processes to
produce the flux prediction.

1. Simulate proton-nucleus interactions inside the graphite target.

2. Geant3-based Monte-Carlo simulation reproduces the experimental apparatus of the sec-
ondary beamline. The simulation tracks down all of the particles exiting from the graphite
target which are produced by proton interactions.

3. Tune the flux prediction from the Monte-Carlo simulation based on external experiments.

The T2K neutrino flux model relies on external software to handle hadronic interactions,
FLUKA 2011.v2 [117] inside the target. The Geant3-based Monte-Carlo simulation, JNUBEAM [118]
tracks down all particles exiting the target. In the Geant3 simulation, the initial proton beam
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generator reflects every detail of the proton beam properties such as energy and beam direction.
The geometry reflects the measurements of alignment and dimension for each piece of equip-
ment. The output of JNUBEAM software provides the prior neutrino flux prediction based on
the proton beam profiles that are measured in the beam operation. The hadronic interactions
simulated by FLUKA are furthermore studied by external experiments such as NA61/SHINE.
The NA61/SHINE experiments ( [119–121]) dedicated to studying the hadronic interactions with
proton beam has contributed to improving the precision of the flux prediction. They used a 2 cm
long graphite target called thin target [119] and a 90 cm long graphite target called replica tar-
get [120, 121]. As the replica target has the same dimension as the T2K’s graphite target and
has larger phase space coverage for exiting pions, it has superior performance in understanding
hadronic interactions for the T2K experiment.

In addition to the nominal neutrino flux prediction, we can estimate the uncertainties using the
JNUBEAM software. The potential sources responsible for uncertainties on the neutrino flux are
categorized into "beam-related" and "hadronic interactions". Beam-related mainly refers to the
uncertainties coming from the misalignment of the target and horn, and magnetic field distortion.
The uncertainties on hadronic interactions include the ones on primary proton interactions,
meson multiplicities and kinematics, and secondary interactions. The NA61/SHINE results on
the pion and kaon cross section are applied to constrain the uncertainties on hadronic interactions.
Applying the cross section results on the thin target can reduce the uncertainties to a 10% level
around the peak energy of T2K’s neutrino beam. The cross section results on the replica target
are divided into the pion production results [120] and kaon production results [121]. As the pion
production is the main contribution to the T2K neutrino beam, whose energy range is about
1 GeV, applying the pion production results improves the uncertainties on hadronic interactions
from 10% to 5% around that energy region. On the other hand, the kaon production contributes
to higher energy regions, typically more than 2 GeV, and the uncertainties in the corresponding
energy region are reduced to around 5% level from 10%. The published results [16] use the pion
production results as well as the thin target results but the kaon production results, which are
first applied in the updated results described in this thesis.

The neutrino flux predictions before neutrino oscillations with all the pion and kaon cross
section results applied are shown in Figure 21 for both neutrino and anti-neutrino modes. The
beam-intrinsic νe constituting an irreducible background in the neutrino oscillation analysis is
1%. The contribution from wrong-sign flavors such as νµ to νµ or νµ to νµ comes from mainly
the dispersing charged pions. The fraction of the background is suppressed in the lower energy
region up to 1.5 GeV thanks to the horns dispersing wrong-sign pions. In the intermediate energy
region from 1.5 GeV to 3 GeV, pions that are not focused contain a larger fraction of π− in νµ
mode, which increases the contamination from pion backgrounds. In the high energy tail, kaon
production becomes significant, which leads to νµ contamination being less significant.

Figure 22 shows the uncertainties of νµ or νµ enriched neutrino flux including both right-sign
and wrong-sign neutrinos at the far detector. The total uncertainties around 1 GeV are around
10% level in the case of right-sign (anti-)neutrino due to the cross section results on the replica
target from the NA61/SHINE experiments. The reduction has been achieved around the 2 GeV
to 7 GeV region, which is thanks to the flux tuning based on the kaon production results for
both right-sign and wrong-sign cases. In addition, a small reduction is seen in sub-GeV region in
the updated results with respect to the published results, which is attributed to the statistical
update on the NA61/SHINE thin target measurements. On the other hand, a small increase in
uncertainty is seen around the 1 GeV region for the updated results. This is due to the update
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on the horn field asymmetry in the JNUBEAM software 18.
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(b) anti-neutrino mode

(c) neutrino mode (d) anti-neutrino mode

Figure 21: Unoscillated neutrino flux prediction at the far detector (SK) broken down by neutrino
flavor (top) and the parent particles of the neutrinos (bottom). The flux tuning from the mea-
surements of the thin target and the replica target was applied. For the neutrino mode (FHC),
the fraction of νµ is 94.3% whereas that of νµ is 4.8%. For the anti-neutrino mode (RHC), the
fraction of νµ is 92.7% whereas that of νµ is 6.5%.

18A bug in the JNUBEAM software about the magnetic field by the horns not being implemented correctly
was found. After the proper implementation of the horn field gave a slight increase in the uncertainties around
the peak energy of the neutrino beam. This bug fix was applied in the updated analysis.
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(a) Right-sign neutrino in neutrino mode
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(b) Right-sign anti-neutrino in anti-neutrino mode
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(c) Wrong-sign anti-neutrino in neutrino mode
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(d) Wrong-sign neutrino in anti-neutrino mode

Figure 22: Fractional uncertainties for both neutrino (upper) and anti-neutrino (lower) modes
further classified into right-sign neutrinos (left) and wrong-sign neutrinos (right). Each colored
line corresponds to the major sources of the flux uncertainties. Orange: "hadronic interactions"
is the collective category to include uncertainties from the primary proton interactions, meson
multiplicities and kinematics and the secondary interactions. Blue: It comes from the errors
of the beam profile and the resulting neutrino directions. Magenta: The error comes from the
fluctuation of horn current and magnetic field distortion. Green: This shows the effect of the
misalignments of the horns and the carbon target. Brown: It represents the uncertainty of the
water flow for the horns. Gray: The error on the protons on target, POT, is included.
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6.3 Neutrino interaction modeling

Chapter 4 emphasizes the importance of comprehensive knowledge of neutrino interactions. De-
spite all of the efforts from theoretical and experimental approaches, no solid model of neutrino
interactions is available. This requires each experiment to select a set of adequate models to
simulate neutrino interactions. We developed a neutrino interaction generator to handle this
situation. The generator is named NEUT, which is a program library [112] containing collec-
tive interaction models to simulate each interaction by inputting the simulated neutrino flux
provided by JNUBEAM. In order to implement contemporary corrections to conventional inter-
action models, the libraries have been updated by modifying relevant treatments to each type of
interaction [122].

6.3.1 Model selections in 1p1h interactions

If neutrinos interact with a nucleon inside a nucleus, ejecting the excited nucleon outside the
nucleus, it is categorized into the 1p1h interaction. The T2K oscillation analysis focuses on
charged current interactions, in particular, charged current quasi-elastic (CCQE) interaction,
which is a part of the 1p1h interaction. It is important to understand the nuclear ground state
for this interaction. The recent measurement [123] suggests a model called the Spectral Function
(SF) is in good agreement with the data. The SF model is a shell model description of the
nucleon momentum (k) and energy (E), both of which constitute the spectral function S(E, k).
The spectral function acts as a correction factor to the single nucleon cross section in order
to factorize a fully exclusive neutrino-nucleus cross section. This is the same treatment as that
used in the description of the electron scattering cross section. Both theoretical and experimental
results are able to make the SF model robust for neutrino experiments. Therefore, NEUT has
adopted the SF as a base model. The single nucleon component uses the BBBA05 [124] to tune
the vector part of the form factor, while it adopts a simple dipole form factor for the axial part.
One drawback of the SF model is the missing implementation of the FSI effect on the lepton,
which has an impact on the lepton kinematics. The potential effect is simulated by another
neutrino interaction generator [110], which is propagated into NEUT.

6.3.2 Model selections in 2p2h interactions (two particle two hole)

Chapter 4 mentions the discrepancies in the axial part of the form factor between the cross
section measurements from the experiments [80] using the bubble chamber on deuterium target
and those from MiniBooNE and T2K experiments using mainly carbon target. The inclusion
of 2p2h interaction in the conventional model made them consistent. The modification to the
existing model by taking 2p2h interactions into account is promising for better understanding
neutrino interactions. In addition, the appropriate treatment of 2p2h interactions is important
not to introduce a reconstruction bias into neutrino energy.

There are several 2p2h models, Nieves et al. [116], Martini et al. [125] and SuSAv2 [126].
Although each of them describes the experimental data in certain kinematical phase space or
target material, none of them has perfect descriptions of 2p2h interactions. NEUT selects the
Nieves model as its base one. In order to take the model difference into account, several kinds of
systematic parameters affecting the shape and normalization of 2p2h interactions are introduced
in the oscillation analysis.
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6.3.3 Model selections in meson productions

Single-pion production is one of the main processes in the T2K neutrino energy region. The T2K
oscillation analysis has two samples whose main interaction type is single-pion production. This
interaction is necessary to understand as one of the signals as well as the significant background in
CCQE-like events. The characteristic of single pion production is a pion scattering off a nucleus.
The single pion production has two types of mechanism for nucleon’s excitation, resonance and
non-resonance. In the T2K neutrino beam energy, the resonant single pion production via ∆
(1232) resonance is predominant. NEUT uses the Rein-Segal model (see Section 4.3.2) with its
extension to account for lepton mass effects [127] and the modified axial form factor (CA

5 ) [128]
focusing on ∆ (1232) resonance. 19 For the non-resonance production, NEUT only models
isospin -1/2 (I1/2) interaction, while no model for isospin -3/2 (I3/2) channel is available. One
of the bubble chamber results [89] confirmed that the effect of this channel was small. While
the resonant interaction occupies the majority in the single-pion production, NEUT models the
coherent interaction with the updated Rein’s model (Berger-Segal model [131]).

6.3.4 Model selections in deep inelastic scattering

As the neutrino energy reaches around 5 GeV, neutrinos can interact with a quark inside a nucleon
which results in breaking the nucleon (Section 4.2.3). Considering the T2K neutrino flux, the
interaction is not dominant. Nevertheless, this interaction is important in order to understand
the background from the high-energy tail in the neutrino flux. In calculating the DIS cross
section, two Bjorken scaling variables, denoted by x, y in Section 4.2.3 have an important role in
constructing Parton Distribution Functions (PDFs). Bodek-Yang corrections [132] are applied to
the PDFs so as to mitigate the differences between data and MC in the low momentum transfer
region, Q2 < 1.5 GeV2/c2.

6.3.5 Implementations of nuclear medium effects

We have also developed its treatments on nuclear medium effects, in particular FSI and Coulomb
corrections. The single pion production and 1p1h interaction, especially QE are largely subject
to the FSI effects. In addition, a hadron exiting a nucleus may have an interaction before it is
reconstructed (Secondary Interaction, SI). NEUT relies on a semi-classical intra-nuclear cascade
model to simulate pion interactions to account for FSI effects. The numerical method is similar
to Vicente’s model described in Section 4.3.2. In order to take into account the differences in
comparison with the external data or other models, the differential cross sections of π±−A, where
A is a various kind of nucleus, as a function of pion momentum is fitted against the external
data. Six scaling factors are fitting parameters having an impact on the interaction rate for each
FSI effect such as absorption, charge exchange, and so on. The best-fit parameters and their
uncertainties are propagated into the oscillation analysis as prior parameters.

Coulomb corrections have an effect on decreasing (increasing) the negatively (positively)
charged lepton momentum, which ends up with the shift of reconstructed neutrino energy. The
key variable to understand the effect is the Coulomb potential which is proportional to the charge
of the nucleus. It was extracted by the fit to electron scattering data in [133]. The main target

19There was a deficit in data for the single pion production with forward going lepton [129]. One paper [130]
suggests the inclusion of non-lepton mass in the calculation of single pion production leads to the suppression of
the coherent interaction in the forward-going process. This is known as the "lepton mass effect".
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materials are carbon in the near detector and oxygen in the far detector. Corresponding mo-
mentum shifts are applied. The momentum shifts for neutrinos are -3.6 MeV/c (-4.3 MeV/c) on
the Carbon (Oxygen) target and +2.6 MeV/c (-3.3 MeV/c) on the carbon (oxygen) target for
anti-neutrinos.

6.3.6 T2K parametrization for neutrino interaction models

This section summarizes the parametrization for neutrino interaction models. When possible,
theory-driven parameters are prioritized. It is necessary to introduce more degrees of freedom
in order to describe available experimental neutrino-nucleus cross section results. Therefore,
additional empirical-driven parameters are included.

1p1h interactions
The central value and uncertainty of MQE

A (1.03 ± 0.06 GeV/c2) are allocated to de-
scribe available experimental data and the world average of the measurements. The
CCQE suppression factors based on the experimental results from MINERvA [134, 135]
and T2K [136, 137]) are parametrized as a function of momentum transfer, Q2. In the
published results, parameters for both low and high Q2 regions are used. In the updated
results, low Q2 parameters are removed and more theory-driven parameters for the Pauli-
Blocking are added. Pauli Blocking is one of the nuclear medium effects to affect the cross
section in the low Q2 regions. In NEUT, the cross section for the portion of the phase
space in which the pre-FSI nucleon getting involved in the primary interaction has a lower
value than a certain Fermi momentum (kF ) is set to 0. The parameter kF is 209 MeV/c for
both carbon and oxygen. There is no data to give a clue of which value should be taken as
kF . This analysis assigned 30 MeV/c as the uncertainty of the kF conservatively so that
the ND fit could drive the systematic error 20.

2p2h interactions
The 2p2h interaction occurs in either nn (neutron-neutron) or pn (proton-neutron) pairs
for neutrinos while it occurs in either pn or pp pairs for anti-neutrinos. This analysis
takes into account the fraction between these alternative two interactions in applying the
normalization. As there are three underlying 2p2h models, SuSAv2, Nieves et al., and
Martini et al., which predict different fractions, the uncertainty is inflated to account for
these model differences.

CC Single-Pion Production (SPP) interactions
Single resonant pion production is based on the Rein-Sehgal model. The model has
three characteristic parameters, the resonant axial mass (MRES

A ), the axial form factor
at zero transferred momentum (CA

5 ) and the normalization of the I1/2 non-resonant com-
ponent. The framework to tune and compare neutrino interaction generators called NUI-
SANCE [139] used the available bubble chamber data from ANL [88,89], BNL [87,140] to
determine the uncertainties of those parameters. In addition, we reanalyzed data [141] to
extract central values of each parameter. The normalization parameters on the CC and
NC coherent cross sections are assigned with the uncorrelated 30% uncertainties based on
the MINERνA data [142].

20One of the standard values obtained from the experimental result is 228 MeV/c for Carbon [138]. Therefore,
30 MeV/c with respect to 209 MeV/c is as reasonably high as being considered conservative.

67



DIS interactions
The main DIS parameters are associated with the Bodek-Yang (BY) corrections. They are
parametrized by the differences in the cross section between with and without corrections.
The impact of the BY corrections is small at the high transferred momentum region,
Q2 ≥ 1.5 GeV2/c2. At the lower transferred momentum region, the effect of the BY
corrections is significant. In accordance with this behavior, two kinds of parameters as a
function of the final state invariant mass, denoted by W are introduced; W < 2 GeV/c2

and W > 2 GeV/c2 regions.

Final state interactions (FSI)
The published results added pion FSI parameters based on the external data from pion-
nucleus measurements. They were, however, not applied to nucleon FSI. The updated
analysis introduces a parameter to deal with the nucleon FSI. The parameter increases or
decreases the weight of an event if the nucleon exiting from the nucleus by the neutrino
interaction is found to have an FSI effect 21, otherwise, does nothing. This effect ends up
making multi-nucleon CCQE more or less likely depending on the direction of the tweak
of the parameter.

6.4 Near detector fit

The T2K Near Detector Complex (ND280) has measured the neutrino interactions. In the
context of neutrino oscillation analyses, we utilize the ND280 measurements to add constraints to
the parameters in the flux prediction and neutrino interaction modeling through the near detector
fitting (ND fit). The T2K flux prediction is already well-tuned by the external experiments
(NA61/SHINE), having smaller uncertainties overall. While some of the cross section parameters
have theory-driven central values and uncertainties, the uncertainties of most parameters are
not theory-driven or inflated to account for various neutrino cross section measurements or
divergent theories. The data by ND280 have the potential to give additional constraints on
the flux and neutrino interaction parameters while taking into account the correlation between
these parameters. The primary purpose of the ND fit is to find out a set of central values and
uncertainties for both flux and cross section parameters describing the data.

6.4.1 Analysis samples

We make the analysis samples to the ND fit. In the published results, they are categorized from
three points of view, which is illustrated in Figure 23. First, the event selection requires all the
events to have an interaction vertex inside the fiducial volume of either FGD1 or FGD2. Second,
analysis samples are classified by the neutrino flavor candidate and neutrino beam operation
mode. The T2K experiment has collected data both at neutrino and anti-neutrino enriched
modes. Thanks to the charge identification by the UA1 magnet installed in ND280, it is able to
distinguish neutrino interactions (νµ) from anti-neutrino interactions (νµ) by the curvature of the
muon candidate track. As the νe events are statistically limited, only the νµ or νµ interactions are
selected. The analysis samples consist of the right-sign muon neutrino events at both neutrino
and anti-neutrino modes and the wrong-sign muon neutrino event at the anti-neutrino mode. The
νµ contribution in the anti-neutrino mode amounts to about 30% although the contribution of
wrong-sign neutrinos in the neutrino mode is about 5% in total due to the difference in the cross

21If the particle has the same momentum after the FSI as the one before the FSI, it is tagged by "no FSI".
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section between neutrinos and anti-neutrinos which is originated from the helicity suppression.
Third, samples are classified by the event topology, in other words, pion multiplicity. The main
analysis sample at the far detector is CCQE-like events without any pion at the final state.
Correspondingly, this event topology called CC0π is the most important sample in the ND fit.
When the number of pions in the final state is one in an event, it is called CC1π event, which
is dominated by single-pion production. Otherwise, they are categorized into CCother events.
CC1π and CCother samples are necessary to understand the contamination of background into
the signal sample, CC0π.

FGD1 TPC FGD2 TPC

μ+

μ μ μ

μ-

p p

p p p�

�

�
�

CC0� CC1� CCother

ν in ν mode ν in ν mode ν in ν mode

μ

p p

μ

μ-

ν ν

ν ν ν

ν ν ν

Figure 23: The classification of analysis samples in the ND fit. Vertex detector(top); Each event
must include the neutrino interaction vertex inside FGD1 or FGD2. Neutrino flavor (middle);
The neutrino flavor must be νµ or νµ. The muon from the neutrino interaction is bent due to
the magnetic field by the UA1 magnet. Event topology (bottom); A charged pion is tagged by
the particle identification in TPC or FGD if the track is reconstructed. It is also tagged if the
Michel electron tagging passes the selection.

For the purpose of better understanding of the CC0π events, we split the CC0π sample
by the proton multiplicity in the updated analysis. The dominant interaction mode of the
CC0π topology is CCQE. The contribution from the 2p2h interaction, where two protons are
measured, is not negligible. The further classification of the CC0π sample depending on the
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proton multiplicity is expected to help to disentangle these interaction modes. ND280 is capable
of particle identification of proton from the energy deposit in the reconstructed momentum.
According to the number of protons, the CC0π sample is split into the CC0π0p and CC0πNp,
where N includes 1. The CCother samples are split into the CCother0γ and CCotherNγ based
on the photon detection. This sample split has the potential to improve the purities of CCQE
and the CC1π+ for the CCother0γ sample to enhance the capability for the ND fit to constrain
CCother events at the far detector. This additional classification is summarized in Figure 24.
The CC1π sample in νµ FHC samples and νµ RHC and νµ FHC samples remain unchanged.
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Figure 24: Illustrations of the new classification with respect to the proton multiplicity for the
CC0π samples (Top) and photon detection for CCother samples (Bottom). The CC0π samples
are split into the CC0π0p and CC0πNp. CCother samples are split into the CCother0γ and
CCotherNγ based on the photon detection in the electro-magnetic calorimeters.

6.4.2 Fitting strategy

We developed two independent ways of fitting parameters in the ND fit. The primary approach
is to explore the set of parameters such that they minimize the test statistic (χ2) via a gradient-
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decent algorithm in Minuit2 22. The other method relies on Markov-Chain-Monte-Carlo (MCMC)
algorithm to explore the most probable parameter space in the fashion of posterior distributions.
In this section, a more detailed fitting algorithm and the performance of the Minuit2 approach
are shown.

Minuit2 minimizes the test statistics (χ2). It is defined as the negative log-likelihood (χ2 ≡ −2 logL)
in the ND fit. The log-likelihood consists of two components given by

−2 logL = −2 logLstat − 2 logLsyst, (6.1)

where "stat" and "syst" stand for statistic and systematic contributions, respectively. Statistical
contribution is expressed with the number of events in MC and Data (NMC, NData) as follows if
the statistical fluctuation in MC is ignorable:

−2 logLstat = 2

samples∑
j

bins∑
i

(
NMC −NData +NData log

NData

NMC

)
. (6.2)

Equation 6.2 represents the likelihood taking into account the statistical uncertainty based on the
Poisson process. As the number of MC statistics is limited, the statistical fluctuation stemming
from the limited MC samples may not be negligible. Barlow and Beeston proposed a model to
include the effect in the binned likelihood [144]. The ND fit is based on the Barlow and Beeston
model. Moreover, the actual likelihood reflects the approximation that J.S. Conway proposed to
make the calculations feasible [145]. 23 The modified likelihood is

−2 logLstat = 2

samples∑
j

bins∑
i

[(
NMC −NData +NData log

NData

NMC

)
+

(βi − 1)2

2σ2
βi

]
. (6.3)

The last term under the summation is the correction factor squeezing the effect of finite MC
statistics. The variable βi is the scaling factor (as in NMC = β × Ngen

MC, where Ngen
MC is the

MC truth by the amount of generated MC) in each bin and σβi
refers to the relative statistical

uncertainty of βi.
Systematic contributions are divided into flux, neutrino interaction, and detector parameters.

They are given by

−2 logLsyst = (−→x −−→u )V−1(−→x −−→u ). (6.4)

Equation 6.4 forms a penalty term of the prior parameters. The variable −→x is the vector for
the systematic parameters thrown during the fit and −→u refers to the central values as prior
parameters. The prior values for the neutrino flux and neutrino interactions are given directly
by the flux tuning results and neutrino interaction modeling described in this chapter. The
covariance matrix (V) contains the uncertainties of parameters including correlations. The prior
uncertainties of detector parameters are evaluated by the dedicated control samples for the ND
fit. The overall uncertainties including neutrino flux, neutrino interaction, and ND280 detector
on the total event rate are around 10% for the analysis samples.

22The software tool kit named "ROOT" [143] implements this algorithm as a Fortran heritage.
23If one needs to apply the Barlow and Beeston model directly, additional scaling parameters whose number

corresponds to the number of bins in the fit are necessary. This is unfeasible in this analysis because the ND fit
introduces about 4000 bins in total. Conway’s suggestion is to assume each scaling parameter follows the Gaus-
sian distribution. The extraction of each scaling parameter is then analytical although it requires transcendent
equations to solve.
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6.4.3 Fit results on flux and neutrino interaction parameters

The ND fit used a data set corresponding to 19.867× 1020 protons on target (POT), which is di-
vided into the neutrino mode (11.531×1020 POT) and the anti-neutrino mode (8.336×1020 POT).
The correlation matrix between the flux and cross section parameters and the parameter con-
straints are summarized in Figure 25 and Figure 26, respectively. The parameter definitions for
the flux and interaction parameters are shown in Appendix A. A strong correlation between flux
and cross section parameters is seen. For instance, The parameters pulling down the neutrino
flux at the high energy seem to be affecting high Q2 parameters being pulled up. The most ef-
fective parameter in 1p1h interactions, MQE

A , is compatible with the model. The Pauli-Blocking
parameters are pulled up against the prior values to reduce cross section in the low Q2 region in
response to the flux parameters. All of the 2p2h parameters have good compatibility with the
model while newly added parameters (2p2h shape nn/np parameters) move largely to this data
fit but within the prior uncertainty. For the SPP parameters, overall compatibility is good, but
C5
A is pulled down outside the 1σ error of its prior. The data-MC differences before the fit for

this sample are a major reason for this.
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Figure 25: ND fit correlation matrix for the flux and cross section parameters. The first 100
parameters are neutrino flux parameters, and the other parameters are neutrino interaction
parameters.
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(b) CCQE interaction
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(c) 2p2h interaction

ν
2p

2h
 N

or
m

 ν
2p

2h
 N

or
m

 

2p
2h

 N
or

m
 C

 t
o 

O ν
2p

2h
 E

de
p 

L
ow

 E

ν
2p

2h
 E

de
p 

H
ig

h 
E

ν
2p

2h
 E

de
p 

L
ow

 E

ν
2p

2h
 E

de
p 

H
ig

h 
E

P
N

N
N

 S
ha

pe

2p
2h

 S
ha

pe
 C

 n
p

2p
2h

 S
ha

pe
 C

 N
N

2p
2h

 S
ha

pe
 O

 n
p

2p
2h

 S
ha

pe
 O

 N
N

P
ar

am
et

er
 v

al
ue

2.0−
1.5−
1.0−
0.5−
0.0
0.5
1.0
1.5
2.0
2.5
3.0

T2K Run1-10, 2022 Preliminary2p2h Parameters

5A
C R

E
S

A
M

π
 n

on
-R

E
S 

B
kg

. L
ow

 p
1/

2
I

 n
on

 R
E

S 
B

kg
.

1/
2

I

R
S 

D
el

ta
 D

ec
ay

µν
 N

or
m

 
0 π

SP
P

 

µν
 N

or
m

 
0 π

SP
P

 

C
C

 C
oh

 C

C
C

 C
oh

 O

P
ar

am
et

er
 v

al
ue

0.0

0.5

1.0

1.5

2.0

2.5

 

µν
R

es
. E

b 
C

 

µν
R

es
. E

b 
O

 

µν
R

es
. E

b 
C

 

µν
R

es
. E

b 
O

 

P
ar

am
et

er
 v

al
ue

0

10

20

30

40

50

 SPP Parameters T2K Run1-10, 2022 Preliminary

(d) CCSPP interaction

Figure 26: Parameter constraints by the ND fit on FHC νµ flux, CCQE, 2p2h, CCSPP parame-
ters. The vertical axis in flux parameters refers to the "ratio" to the generated value whereas it
means the actual parameter values in the interaction parameters.

6.4.4 Fit results on ND prediction

The MC predictions before and after applying the ND fit results are plotted against data to see
the impact of the fit on the ND predictions. Figure 27 is one of the comparisons for the FGD1
νµ CC0π (CC1π) sample at νµ mode. The best-fit values of systematic parameters obtained by
the ND fit pull up the number of events predicted by MC for the CC0π0p sample. On contrary,
the MC prediction for the CC1π sample is slightly pulled down, making the agreement between
data and MC better.

These comparisons showcase the ability of flux and interaction parameters to constrain CC0π
and CC1π event rates for different neutrino species to account for the data to large extent. It may
also indicate that mis-modelling or potential bias has a non-negligible impact on the predictions
not only in the near detector but also in the far detector. Thus, the potential bias must be
studied by simulated data in the context of the oscillation parameter constraints to minimize the
risk of introducing that bias. The bias studies are described in Appendix C.
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(a) Before applying fit results, CC0π

 (MeV/c)
µ

p
0 200 400 600 800 1000 1200 1400 1600 1800 2000

N
um

be
r 

of
 E

ve
nt

s

0

500

1000

1500

2000

2500

3000

3500

4000
 0pπ CC0µνFGD1 

 (MeV/c)µp
0 200 400 600 800 1000 1200 1400 1600 1800 2000

N
um

be
r 

of
 E

ve
nt

s

0

500

1000

1500

2000

2500

3000

3500

4000
Data  CCQEν

 CC 2p2hν π CC Res 1ν
π CC Coh 1ν  CC Otherν

 NC modesν  modesν

 0pπ CC0µνFGD1 

 (MeV/c)µp
0 200 400 600 800 1000 1200 1400 1600 1800 2000

M
C

ND
at

a
N

0.6
0.8
1.0
1.2
1.4

T2K Run1-10, 2022 Preliminary

(b) After applying fit results, CC0π
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(c) Before applying fit results, CC1π
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(d) After applying fit results, CC1π

Figure 27: Comparisons of ND predictions for FGD1 νµ CC0π0p (upper) and FGD1 νµ CC1π
(lower) as a function of muon momentum between before (left) and after (right) applying the
fit results. The coloured histogram was the simulated events from NEUT. The black points
represent data. Each distribution is broken down by the interaction type. The graphs below the
comparison plots show the ratio of the number of events in data to the number of events in MC.

6.4.5 Compatibility of fit results with MC models

This analysis then performed a set of studies to ensure the validity of the fit. The goodness of the
fit is assessed with a number of simulated data sets with a set of systematic parameters being
varied based on the prior central values and uncertainties including their correlations among
them. It is quantified by the test statistic called p-value of the probability that a toy experiment
gives χ2 being identical or exceeding the χ2 from the data. If the test statistic gives an extremely
low value, for instance, less than 0.01, it indicates the model is not compatible with the data.
The threshold was set to 0.05 to evaluate the model compatibility in this analysis. The criterion
is applied to the total χ2 of likelihood. It is then applied to each likelihood contributor such as
each sample, all samples with only neutrino flux parameters, and so on. Table 3 summarizes each
p-value. The total p-value is 0.143, which is relatively small yet higher than the criteria (0.05),
which means the fit results are compatible with the prior models. Removing the ad-hoc Q2

parameters might be responsible for this smaller value. The p-value of the detector systematic
parameter is relatively low, which indicates the overall treatment of ND280 detector systematics
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should be improved in the future to guarantee reliable results from the ND fit. The p-value of
the flux parameters is also lower than the threshold. Considering the strong correlations between
the flux and interaction parameters, we should focus on the total p-value because it accounts for
all the correlations between systematics properly.

Table 3: Results of the p-value for each likelihood contributor. This table only shows the FHC
νµ FGD1 samples.

Likelihood contributor p-value (before the fit)

FHC νµ CC0π at FGD1 CC0π0p 0.13
CC0πNp 0.35

νµ FHC CC1π at FGD1 0.22

FHC νµ CCother CCother0γ 0.86
CCotherNγ 0.08

All samples 0.143
Neutrino flux 0.045
ND detector 0.036
Cross section 0.735

75



6.5 Event reconstruction of analysis samples at the far detector

6.5.1 Sample Classification

The measurement channels in the T2K oscillation analysis are νe appearance and νµ disappear-
ance. Analysis samples can be classified into these two categories. They are further classified
by interaction topologies. The dominant interaction type is the charged current quasi-elastic
(CCQE) interaction while the second dominant interaction type is the single-pion production
(CCSPP). We use the interaction topologies to define the signal. The main signal topology is
CCQE-like event called CC0π, where there is one charged lepton but no pions in the final state.
Another signal topology is CC1π, where there is only one reconstructed pion in the final state
as well as one reconstructed lepton. Both νe appearance and νµ disappearance channels have
two CC0π samples (νe 1-Ring and νe 1-Ring in νe appearance, νµ 1-Ring and νµ 1-Ring in νµ
disappearance) and one CC1π sample (νe CC1π+ 1-Ring in νe appearance and νµ CC1π+ in
νµ disappearance). The νe appearance channels are sensitive to the oscillation parameters, δCP,
sin2 θ23, and sin2 2θ13 whereas the νµ appearance is sensitive to |∆m2

32 | and sin2 2θ23. The
νµ CC1π+ sample is the sample added in the updated results. The analysis does not update the
statistics, but this sample contributes to a 30% increase in muon-neutrino samples. As νµ CC1π+

mainly comes from the single-pion production, the mean energy of the parent neutrino is around
1.2 GeV, which is away from the energy at the maximum oscillation probability. As the oscilla-
tion probability around 1.2 GeV is about half of the maximum probability, the oscillation effect
is still visible for this sample.

The classification of these samples is summarized in Table 4. The schematic view of three
samples (νe 1-Ring, νµ 1-Ring and νe CC1π+1-Ring) are shown in Figure 28 and νµ CC1π+ in
Figure 29.

Table 4: Classification of analysis samples at SK. The νµ CC1π+ sample is added in the updated
results and the other samples were already included in the published results.

Main interaction Beam operation Oscillation channel Sample name

CCQE
neutrino mode νe Appearance νe 1-Ring

νµ Disappearance νµ 1-Ring

anti-neutrino mode νe Appearance νe 1-Ring
νµ Disappearance νµ 1-Ring

CCSPP neutrino mode νe Appearance νe CC1π+1-Ring
νµ Disappearance νµ CC1π+
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1-Ring νe

1-Ring νμ

CC1�+

1-Ring νe

Figure 28: Schematic view of analysis samples for νe 1-Ring (Top), νµ 1-Ring (Middle) and νe
CC1π+1-Ring (Bottom). For the top and middle figures, they assume CCQE interaction with
neutron inside 16O, getting a proton outside the nucleus. With respect to the νe CC1π+1-Ring
sample, only π+ is considered because π− is highly likely to be trapped inside nucleus. The
corn-like line represents a Cherenkov ring produced from each charged particle.
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νμCC1�+ 

Figure 29: Illustration of the typical Multi-Ring event (left) and event display (right) for the
νµ CC1π+ sample from the simulation. The event display shows two rings from charged particles
and two rings from the Michel electrons. The largest ring image corresponds to the ring from µ.
The right top image from the outer detector guarantees this neutrino interaction happens inside
the inner detector. The right bottom plot shows the time information of each ring, where the
Michel electrons are delayed with respect to the charged particles.

6.5.2 Event selection

The primary event selections are a fiducial volume (FV) cut and a fully contained (FC) cut
both of which are applied to all the samples. The FV cut can reject the events coming from the
interactions outside the inner detector, typically cosmic-ray muons. The FC cut selects the lepton
stopping inside the inner detector in order to ensure the performance of energy reconstruction
and particle identification. 24 To the events after these selections, particle identification is applied
to classify an electron-like (e-like) event or a muon-like (µ-like) event. The rest of the selections
for e-like samples (νe 1-Ring, νe 1-Ring, νe CC1π+ 1-Ring), and µ-like samples (νµ 1-Ring,
νµ 1-Ring, νµ CC1π+) are summarized below.

Event selections for 1-Ring e-like samples after the common selections

1. The number of the reconstructed ring is one.

2. The notable contamination into 1-Ring e-like samples in the low energy region, less
than 100 MeV, comes from neutral-current (NC) neutrino interaction and νµ inter-
action. The number of 1-Ring e-like events is not large in that region. In order to
reject those backgrounds, a visible energy cut (Evis) is applied. The parameter Evis is
defined as the energy of an electron that on average produces a Cherenkov ring with a
total light yield equal to that of the observed ring. The cut requires Evis to be larger
than 100 MeV for all the 1-Ring e-like samples.

3. The distinct feature between the CC0π sample and the CC1π+ sample is the existence
of Michel electron. No Michel electron candidate is acceptable for the νe 1-Ring and
νe 1-Ring samples, while one reconstructed ring originating from Michel electron is
required for the CC1π+ sample.

24A lepton not stopping inside the tank fills up the hits inside a ring. As the SK particle identification relies
on the fuzziness of the ring pattern, it has no power of particle identification to that lepton.
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4. The rest of the cuts are common for all the 1-Ring e-like samples. The neutrino
oscillation probability is the highest around 0.6 GeV in the configuration of the T2K
experiment. The probability gradually decreases along with the increasing energy.
Even though the T2K beam has a high energy tail, the oscillated νe spectrum has a
small contribution in the high energy range, more than 1.25 GeV. Thus, the kinematic
cut with respect to the reconstructed neutrino energy, Eν < 1.25 GeV is applied. If
π0 is produced in neutrino interactions, it can mimic the electron-like event without
two e-like rings by two photons being reconstructed. Therefore, π0 rejection cut is
also applied based on the likelihood ratio between the electron hypothesis and the π0

hypothesis in the reconstructed π0 invariant mass.

Event selections for 1-Ring µ-like samples after the common selections

1. The number of the reconstructed ring is one.

2. The Cherenkov light requires a definite threshold for the particle velocity depending on
the medium. 25 We cannot reconstruct any Cherenkov ring accurately if the particle
is not sufficiently above the Cherenkov threshold. This analysis uses a 200 MeV/c
cut for muon momentum, which corresponds to 30 MeV as the visible energy. This is
large enough to reconstruct the momentum accurately.

3. Unlike the 1-Ring e-like samples, 1-Ring µ-like samples are allowed to have one Michel
electron because the cut includes FC cut and the stopped muon might generate a decay
electron.

4. The main background of the 1-Ring µ-like samples comes from mis-reconstruction of
π+ ring as µ−ring. Therefore, π+ rejection cut is applied.

Event selections for νµ CC1π+ samples after the common selections

1. The number of the reconstructed ring and Michel electrons: A signal topology implies
there would be two Michel electrons in the absence of the final state interactions
(FSI). In reality, the FSI effect may prevent a pion from exiting from the nucleus
due to the absorption. One-Michel-electron events are also allowed to consider such
FSI effects. It should be noted that other µ-like samples are allowed to have one-
Michel-electron events. In order to make this sample independent of the other 1-
Ring samples, the threshold on the number of Michel electrons is associated with the
number of reconstructed events. When the number of reconstructed rings is two or
more, either one or two Michel electrons are required. Otherwise, two Michel electrons
are mandatory.

2. Log-likelihood ratio cuts: The signal topology of the νµ CC1π+ sample is defined
as µ− and π+ being reconstructed in the final state. The main background con-
taminating this sample is multi-pion interaction and charged-current deep inelastic
scattering (CCDIS), where two particles (in particular, one muon and another parti-
cle) are misidentified as µ− and π+. We prepare three kinds of log-likelihood ratios;
Le,Lππ,LBO2R. The parameter, Le is the likelihood assuming the ring is produced
from an electron, Lππ is the likelihood assuming the ring is produced from two π±-like

25The relationship among the Cherenkov angle (θ), velocity ratio (β) and refractive index (n) is expressed
cos θ = 1/βn. The obvious deduction is that only charged particles having the speed (β > 1/n) can create a
Cherenkov light.
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particles. We assume ππ instead of µ, π to reduce the computation time in the fit.
The parameter, LBO2R is the largest likelihood out of the 2R ee, eπ±, π±e hypotheses.
The abbreviation of "BO2R" stands for "the Best Of the other 2-Ring hypothesis".
For the νµ CC1π+ sample, Lππ is higher than the other likelihoods. We require
lnLππ/Le > c0 + c1p

min
ππ and LBO2R/Lππ < c2, where pmin

ππ is the lowest momentum
ring under the π±π± hypothesis and c0, c1, c2 are the constant parameters that are op-
timized using a figure of merit 26. The figure of merit is defined as S/

√
S +B, where

"S" is the number of signal events and "B" is the number of background events. This
cut contributes to the substantial reduction in the background from CCDIS and CC
multi-pi interactions.

The reconstruction of neutrino energy is performed in accordance with the interaction type.
For four CCQE-like samples, the neutrino energy is calculated by

Erec
ν =

(Mn − Eb) · El −m2
l /2 +Mn · Eb − E2

b /2 +
(
M2

p −M2
n

)
/2

Mn − Eb − El + pl cos θl
, (6.5)

where Mn,(p) is the mass of neutron (proton), El, pl, θl are the lepton energy, momentum, and
angle, respectively. The variable Eb is the binding energy. As most interactions occur inside
the nucleus 16O, the binding energy of oxygen (27 MeV) is used. On the other hand, the νe
CC1π+1-Ring sample needs a different equation assuming the ∆ (1232) resonance, which is the
dominant interaction for the CCSPP interaction. The formula is

Erec
ν =

(M2
∆++ −M2

p −m2
X)/2 +MpEl

Mp − El + pl cos θl
. (6.6)

Here, M∆++ refers to the mass of resonant delta and mX is the mass of an electron (pion) in the
case of the νe CC1π+ 1-Ring (νµ CC1π+) sample.

6.6 Far detector fit

The far detector analysis (FD fit) has two fitting frameworks. One way is already mentioned in
Section 6.4, which is based on the Bayesian Markov Chain Monte Carlo (MCMC) method. One
of the characteristics of the MCMC fit is to be capable of simultaneous fits of the near detector
and the far detector data sets. The other method is a frequentist approach by integrating all of
the nuisance parameters to extract confidence intervals of the oscillation parameters of interest.
The systematic part in nuisance parameters is constrained by the ND fit (Minuite2 approach).
Contrary to the Bayesian analysis, the Monte Carlo integration via grid scan performs the fit
in a sequential manner from the ND fit to the FD fit. In this section, the grid-scan analysis is
described. 27

6.6.1 Construction of confidence interval

The grid-scan method is based on a maximum likelihood with MC integration. A set of prior
values of systematic parameters are derived from the constraints obtained from the ND fit.
Nuisance parameters are marginalized in the calculation of the likelihood. The parameter space

26For 1-decay electron sample, c1 = −400, c2 = 1.2, c3 = 340 and for 2-decay electron sample, c1 = −400, c2 =
1.0, c3 = 310.

27See Appendix B for the MCMC approach.
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is divided into grid points for the parameters of interest, either in one-dimension or in two-
dimension. The likelihood at each grid point of oscillation parameters is calculated. The starting
point of this analysis is to define the likelihood, which is

L(Nobs,xobs,o,f) =
∏

s∈samples

[
Lstat.(N

obs
s ,xobs

s ,o,f)
]
× Lsyst.(f), (6.7)

where Nobs is the observed number of events, xobs is the measured parameters of lepton kinemat-
ics or neutrino energy in data and variable o(f) stands for the vector of oscillation (systematic)
parameters. The likelihood is divided into two contributions from the statistical part (Lstat.) and
the systematic part (Lsyst.) 28. As the previous section describes, the far detector samples con-
sist of six sub-samples. Correspondingly, the calculation runs over each sample. The likelihood
contributor from systematic parameters does not depend on the sample classification. Therefore,
it multiplies the statistical part independently. Similarly to the MCMC approach, parameter
constraints on oscillation parameters are calculated in only one- or two-dimensional space. All
the nuisance parameters are then marginalized. The marginal likelihood is

Lmarg(N
obs,xobs,o) =

∫
dfLsyst.(f)L(Nobs,xobs,o,f)

≃ 1

N

N∑
i=1

1

Lsyst.(f)
L(Nobs,xobs,o,f)

=
1

N

N∑
i=1

 ∏
s∈samples

Lstat.(N
obs
s ,xobs

s ,o,f)

 . (6.8)

The derivation from the first line to the second line in Equation 6.8 relies on the assumption
that many parameter sets are thrown to evaluate the integral. This approximation is in principle
asymptotically valid with respect to N → ∞. In practice, as the sensitivity of the current analysis
is limited by the statistics, the number of throws (N) should be sufficiently large such that the
error originating from the N number is enough small compared to the statistical errors. It should
be noted that the likelihood described in Equation 6.8 is calculated in each grid point on relevant
oscillation parameters. This likelihood function is fed into the calculation of a log-likelihood ratio,
given by

D = −2 ln

(
Lmarg(o)

Lmax
marg

)
. (6.9)

The Wilks’ theorem [146] claims the log-likelihood ratio written in Equation 6.9 asymptotically
approaches the χ2 distribution with the degree of freedoms equivalent to the number of parameter
dimensions as far as the following assumptions are valid.

• The sample size is sufficiently large.

• The likelihood function can be approximated by the Gaussian distribution.
28Unlike the ND fit, the likelihood contributor from statistical fluctuation is not based on the Barlow Beeston

model but calculated based on only the Poisson term. On the other hand, the likelihood contributor from
systematic parameters is calculated based on the same logic as the ND fit. The corresponding covariance matrix
is the post-fit one from the ND fit.
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• True values of the parameters of interests are away from the physical boundaries.

When those assumptions are valid, Equation 6.9 can be rewritten by

D = ∆χ2(o) = −2 ln

(
Lmarg(o)

Lmax
marg

)
. (6.10)

Equation 6.10 provides a way to constrain the parameter spaces in the fixed delta-chi-squared
value (∆χ2

fix)
29. The interval is defined as the region of the parameter space for which the

∆χ2 is inferior to a certain fixed value, ∆χ2
fix. This interval is a "confidence interval". This

approach is interpreted as a frequentist method. The assumptions under Wilk’s theorem are
invalid for certain oscillation parameters, in particular for δCP and sin2 θ23 because the likelihood
function cannot be assumed to be Gaussian for both cases. In those cases, an alternative method
proposed by Feldman and Cousins [147] is applied. 30 With respect to the extraction of best-
fit oscillation parameters, we apply the Minuit2 algorithm in four oscillation parameter spaces
(sin2 2θ13, sin2 2θ23, ∆m2

32, δCP) to find out the most plausible parameter set.

6.6.2 Construction of credible region

The MC integration with the grid scan approach can be utilized to construct credible regions
using the marginal likelihood derived above. Here, we use the posterior probability for each
oscillation parameter of interest instead of the ∆χ2. An additional difference with respect to the
construction of confidence intervals is that mass ordering is also marginalized in this analysis,
where it is taken as a discrete variable with two values to which we can assign prior probabilities
P (NO), P (IO). The normal ordering case corresponds to P (NO) = 1, P (IO) = 0, and inverted
ordering case corresponds to P (NO) = 0, P (IO) = 1. When marginalizing over the mass ordering,
we assume that both orderings are equally likely before the fit and take P (NO) = P (IO) = 0.5.
The posterior density for a parameter (x) is then defined as,

P (x) = α× [Lmarg(x|NO)P (NO) + Lmarg(x|IO)P (IO)] , (6.11)

where α is a scaling parameter to make the probability over the whole range of the parameter x
equal to 1.

29∆χ2
fix depends on the number of degrees of freedom given a target coverage. With respect to the four values

of target coverage (68%, 90%, 95.45%, 99.73%), they correspond to 1 (2.3), 2.71 (4.61), 4 (6.18), 9 (11.62)
respectively depending on the degree of freedoms (parenthesis refers to the two degrees of freedom).

30Feldman and Cousins demonstrated an example to apply their method to the measurement of neutrino
oscillation in the paper. In evaluating the confidence intervals, we make use of the critical χ2 borders corresponding
to each confidence level (1σ, 90%, 2σ and 3σ) instead of fixed χ2 to extract those intervals.
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7 Results of oscillation analysis

This chapter presents the updated results of the oscillation analysis [68] using 19.663 × 1020

protons on target (POT) in the ν mode and 16.344×1020 POT in the ν mode. Compared to the
previous results in [53], the additional statistics correspond to 4.726× 1020 POT in the ν mode.
The statistics are the same as the published results.

7.1 Systematic uncertainty

The ND fit results (Section 6.4) are used in the far detector analysis to evaluate the error sizes on
each sample. Table 12 shows the size of systematic uncertainties in each sample. After the ND
fit, there is a notable decrease in the systematic uncertainties. The improvement ranges from 25
to 75%. The smaller contributions from the Flux ⊗ Interaction than the naive quadrature sum
of the Flux and Interaction contributions indicate the effect of the anti-correlation between flux
and interaction parameters. In either case before or after the ND fit, the overall uncertainty in
the ν mode is larger than in the ν mode. Table 12 includes the FD-only systematic parameters
that are not constrained by the ND fit. The most significant contribution of all unconstrained
parameters comes from the isospin (I1/2) non-resonant interaction with the low-momentum pion
parameter. This parameter has a large impact on ν interactions, which inflates the uncertainties
in the ν mode. The parameter value is tuned by the neutrino mode data set, but there is no
available data for the anti-neutrino mode data set. Therefore, a larger uncertainty is assigned
for the anti-neutrino interactions. Figure 30 demonstrates the effect of the reduction in the
uncertainties and the shift in the best-fit parameters on the oscillated spectrum of each sample.
The spectra for the CCQE-like samples are pulled up after the fit. This tendency reflects the
fact that higher cross sections for CCQE-like interactions compared to the prediction from the
nominal interaction model are favored in the ND fit 31. Figure 30 also shows that the ND fit
pulls down the predicted spectrum for the νe CC1π+ 1-Ring sample, which corresponds to the
movement of the CC resonant parameters in the ND fit.

Table 5: Error sizes for the systematic parameters. Numbers represent the errors after (before)
the ND fit. Error budgets are divided into each contribution from neutrino flux (Flux), neutrino
interaction model (Interaction), and other parameters (FD + SI + PN), where FD stands for
the SK detector systematic parameters, SI stands for Secondary particle Interaction and PN
stands for Photo-Nuclear effects. SI and PN are evaluated at the far detector independently
of the other detector parameters. FD+SI+PN errors are calculated as the quadrature sum of
these errors. The errors from Flux ⊗ Interaction are calculated by combining the two contri-
butions. Total uncertainties naively correspond to the quadrature sum of "Flux ⊗ Interaction"
and "FD+SI+PN".

FD sample Error size (%) Flux ⊗ Interaction Total (%)Flux Interaction FD + SI + PN

νµ 1-Ring ν mode 2.8 (5.0) 3.8 (15.8) 2.0 (2.6) 2.7 3.4 (16.7)
ν mode 2.9 (4.6) 4.2 (13.6) 1.7 (2.2) 2.6 3.9 (14.6)

νe 1-Ring ν mode 2.8 (4.9) 4.8 (16.3) 3.1 (3.1) 2.8 5.2 (17.3)
ν mode 3.0 (4.6) 4.8 (13.1) 3.8 (3.9) 2.97 5.8 (14.4)

νe CC1π+ 1-Ring ν mode 2.8 (5.1) 5.0 (14.7) 13.6 (13.6) 3.4 14.3 (20.9)
νµ CC1π+ ν mode 2.8 (5.2) 3.3 (10.6) 4.1 (5.0) 2.2 4.9 (12.5)

31See Section 6.4, which showed the number of data exceeds the predictions before the fit.
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(e) νe CC1π+ 1-Ring
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(f) νµ CC1π+

Figure 30: Distribution of reconstructed neutrino energy with (red band) or without (blue band)
applying the ND fit after the oscillation. Oscillation parameters are set to the nominal values
(∆m2

21 = 7.53× 10−5 eV2/c4, ∆m2
32 = 2.494× 10−3 eV2/c4, sin2 θ12 = 0.307, sin2 θ13 = 0.0220,

sin2 θ23 = 0.561, δCP = −1.601). The normal mass ordering is assumed as the neutrino mass
ordering.
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7.2 Result of observed events

Table 6 shows the total number of observed events for each sample along with the predictions
with various true δCP values. The shifts in the number of events of the e-like samples clearly
reflect the δCP dependency of the νµ → νe (νµ → νe) oscillation probabilities. It is expected
that the number of events in µ-like samples is almost unchanged because the νµ disappearance
channels do not depend on δCP in the leading order 32. There are two potential discrepancies
between data and MC predictions according to Table 6. One is a "deficit" in data for the νµ 1-
Ring sample and the other is an "excess" in data for the νe CC1π+ 1-Ring sample. The MCMC
method quantified the significance of these discrepancies with the p-value test using the posterior
predictive distributions. The p-values using the shape (rate-only) information are calculated for
the νµ 1-Ring and νe CC1π+ 1-Ring samples, which are 0.35 (0.04) and 0.89 (0.27), respectively.
The rate-only p-value is relatively small, but not significant when we consider the look-elsewhere
effect with a factor of 6, which corresponds to the number of samples. It demonstrates both
discrepancies are not significant considering the statistical and systematic errors and the model
is compatible with the data.

Table 6: Predictions for the number of events at the far detector using oscillation parameters
and systematic parameters at their best-fit values while varying δCP.

FD sample True δCP (rad.) Data-π/2 0 π/2 π

1-Ring µ
ν mode 358.67 358.01 358.63 359.41 318
ν mode 139.42 139.04 139.43 139.79 137

1-Ring e ν mode 99.06 83.56 68.61 84.10 94
ν mode 17.02 19.34 21.43 19.09 16

1-Ring CC1π+ e ν mode 10.85 9.449 7.702 9.104 14
CC1π+ µ ν mode 118.53 118.01 118.50 119.02 134

The observed number of events in two-dimensional binning for each sample is shown in Fig-
ure 31. They are the results of the grid-scan method. In creating the MC predictions, the
systematic parameters are set to the best-fit values from the ND fit, and the oscillation parame-
ters are set to their best-fit values shown in the next section. The data distributions are in good
agreement with the MC prediction. There seem some bins having relatively large differences be-
tween data and MC, for example, the 2nd bin for the νe CC1π+ 1-Ring sample. We investigated
where the observed number of data was consistent with the MC predictions by using p-value
statistics. See Appendix G for details.

32See Equation 2.32,

P (νµ → νµ) = 1− sin2 2θ13 sin
2 θ23 + sin2 2θ23 cos

4 θ13 sin
∆m2

32L

4E
.
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(f) νµ CC1π+

Figure 31: The number of observed events for the far detector samples. The µ-like 1 Ring samples
in the top two figures are binned by the reconstructed neutrino energy and the outgoing lepton
angle with respect to the incoming neutrino angle. The e-like 1 Ring samples in the middle
two figures and the bottom left figure are binned by the reconstructed lepton momentum and
angle. The νµ CC1π+ sample in the bottom right figure is binned by the reconstructed neutrino
energy. The dotted points (data), except for the νµ CC1π+ sample, are plotted on the colored
two-dimensional distribution of MC predictions with oscillation parameters set to their best-fit
values. They are also projected onto the horizontal and vertical axis. For the νµ CC1π+ sample,
data points are overlaid on the one-dimensional histogram. In each one-dimensional distribution,
the error bars represent the Poisson errors. 86



7.3 Measurements of oscillation parameters

The primary oscillation parameters to be measured in T2K are δCP, sin2 θ23, ∆m2
32 (∆m2

31),
and sin2 θ13. The analysis with constraints on sin2 θ13 from the reactor experiments enhance the
sensitivity to δCP and sin2 θ23. We present both results with and without the reactor constraint.
When the reactor constraint is used, the prior assumption on sin2 θ13 is changed from the uniform
distribution (0, 1) to the Gaussian distribution of its global average with the mean of 0.0861 and
1σ error of 0.0027 [50]. The constraints on the mass-squared difference parameters are smeared
by the suggested value from the T2K bias studies, 3.100 × 10−5 eV2/c4. We extract oscillation
contours using alternative simulated data sets to test the robustness of the fits and check the
potential biases stemming from our interaction models. The method is described in Appendix C.
We present measurements on oscillation parameters mainly from the grid-scan method. The
cross-fitter comparisons were also performed, which are described in Appendix E.

7.3.1 Best fit results for oscillation parameters

Table 7 shows the best fit results with 1σ errors estimated using the fixed ∆χ2 method. The
best fit of δCP is close to −π/2, and the CP-conserving values (π and 0) are outside of the 1σ
error band. The errors on δCP are significantly reduced by using the reactor constraint. The
standalone measurement of sin2 θ13 is consistent with the reactor measurements although the
error is much smaller in the analysis with the reactor measurement. For sin2 θ23, the best-fit
value is in the higher octant (θ23 > π/4) region when the reactor constraint is applied whereas
the best-fit value is in the lower octant (θ23 < π/4) region in the T2K standalone analysis.

Table 7: Results of the best-fit oscillation parameters from the data fit with or without the
reactor constraint with uncertainties estimated using the fixed ∆χ2 method.

Parameter With reactor constraint Without reactor constraint
Normal ordering Inverted ordering Normal ordering Inverted ordering

δCP (rad.) −2.18+1.22
−0.47 −1.37+0.52

−0.68 −2.25+1.33
−0.74 −1.25+0.66

−0.90

sin2 θ13/10−3 22.0+0.76
−0.6 22.1+0.74

−0.63 26.6+2.5
−6.2 29.3+2.7

−6.5

sin2 θ23 0.559+0.018
−0.078 0.560+0.019

−0.041 0.466+0.107
−0.016 0.465+0.100

−0.016

∆m2
32/10−3eV2/c4 2.506+0.047

−0.059 2.474+0.050
−0.056 2.506+0.048

−0.058 2.473+0.051
−0.054

7.3.2 Measurement of δCP

The sin δCP dependency on the νµ → νe oscillation probabilities creates two extrema at δCP = ±π
2 .

In addition, sin δCP is a cyclic function. These characteristics of δCP make the assumption of the
likelihood of the parameter in Wilk’s theorem invalid. The Feldman and Cousins (FC) method
is applied to evaluate the constraints. Considering the size of the significance of its constraints,
the standalone analysis is based on the fixed ∆χ2 method whereas the analysis using the reactor
constraint is done with the FC method. Figure 32 shows the global data fit results of the
frequentist measurement of δCP with and without the reactor constraint. The significance at
each true δCP point is almost doubled with the reactor constraint. The results with the reactor
constraint show the CP conserving values (0, π) are ruled out by 90% confidence level from the
grid-scan method assuming the normal ordering scenario. This is further discussed in the next
chapter in the context of a comparison between the data fit results and the sensitivity. The
confidence intervals for δCP are summarized in Table 8.
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Figure 32: Results of the frequentist measurement of δCP from the analysis without (top) and
with (bottom) the reactor constraint. Each of them assumes both mass ordering scenarios. Since
the result without the reactor constraint is based on the fixed ∆χ2 method, the corresponding
target coverage (1σ, 2σ and 3σ) lines are shown. The analysis using the reactor constraint, on
the other hand, is based on the FC method. The lines corresponding to the target coverages
are determined by the critical ∆χ2 distribution. Alternatively, the error bands to represent each
target coverage are shown.
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Table 8: Data fit results of confidence intervals for δCP from the grid-scan method. The results
for both mass ordering scenarios (NO/IO) with the reactor constraint are shown.

Significance normal ordering inverted ordering
1 σ [-2.76, -1.03] –
90% [-3.08, -0.52] [-1.92, -0.89]
2 σ [-π, -0.29] ∪ [3.04, π] [-2.22, -0.66]
3 σ [-π, -0.31] ∪ [2.59, π] [-2.80, -0.14]

7.3.3 Measurement of sin2 θ23

The measurement of the νµ → νµ samples has the sensitivity to sin2 2θ23, whereas the mea-
surement of the νµ → νe samples has the sensitivity to sin2 θ23. As a result, the likelihood for
sin2 θ23 does not become a Gaussian-like distribution. Therefore, the FC method is also applied
to the measurement of sin2 θ23 with the reactor constraint. The results are shown in Figure 33.
The octant preference is different between the results with and without the reactor constraint.
Assuming the normal mass ordering, the result with the reactor constraint shows a mild pref-
erence at 1σ significance for the upper octant against the lower octant. The maximum mixing
scenario is rejected by 1σ significance. Table 9 summarizes the data fit results on the parameter
constraints.

One way to quantify the octant preference is the Bayes factor. The MCMC obtained posterior
predictive distributions of sin2 θ23, which are converted to the corresponding Bayes factor to
examine the preference. The result is shown in Table 10. It confirms the normal mass ordering
and the upper octant are more plausible than the other scenarios. The corresponding Bayes
factors are calculated by taking the fractions of each scenario, which are 2.8 as the ratio of the
normal ordering to the inverted ordering and 3.0 as the ratio of the upper octant to the lower
octant. Either Bayes factor is small to conclude the mass ordering and θ23 octant.

Table 9: Data fit results of confidence intervals for sin2 θ23 from the grid-scan method. The grid-
scan method gives results for both mass ordering scenarios (NO/IO) with the reactor constraint.

Significance normal ordering inverted ordering
1 σ [0.460, 0.491] ∪ [0.526, 0.578] –
90% [0.444, 0.589] [0.525, 0.582]
2 σ [0.437, 0.594] [0.459, 0.588]

Table 10: Fractions of the posterior probability from the MCMC analysis assuming the different
scenarios for the mass ordering (NO/IO) and the θ23 octant with (without) the reactor constraint.

sin2 θ23 Sum
< 0.5 > 0.5

∆m2
32

> 0 [NO] 0.20 (0.24) 0.54 (0.39) 0.74 (0.63)
< 0 [IO] 0.05 (0.15) 0.21 (0.22) 0.26 (0.37)

Sum 0.25 (0.39) 0.75 (0.61) 1.000
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Figure 33: Results of the frequentist measurement of sin2 θ23 without (top) and with (bottom)
the reactor constraint. The same style as in Figure 32 is used except that the error band for 3σ
coverage is missing in the FC method here.
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7.3.4 Measurement of mass-squared differences (∆m2
32, ∆m2

31)

The energy of the oscillation dip in the νµ disappearance is sensitive to the mass-squared differ-
ence parameters. The likelihood function of these parameters can be considered as a Gaussian.
The FC method is not necessary to construct the confidence intervals of the mass-squared differ-
ences paameters by the grid-scan method. The confidence intervals with the fixed ∆χ2 method
are shown in Figure 34. The fit result of the mass-squared difference is reported according
to the mass ordering. When the normal ordering is assumed, ∆m2

32 is reported. When the
inverted ordering is assumed, |∆m2

31| is reported so that the value becomes positive and it cor-
responds to the atmospheric mass ordering. Since the inverted mass ordering is represented by
m2 < m1 < m3, m2 < m1 is the solar mass ordering and m1 < m3 is the atmospheric mass
ordering in the inverted mass ordering scenario. The axis of Figure 34 has two alternative axes.
The combined results do not improve the parameter constraints significantly compared to the
standalone result. The µ-like samples are sensitive to the ∆m2

32 parameters. On the other hand,
the reactor constraint on sin2 2θ13 has a large effect on the e-like samples. As a result, the reactor
constraint has only a small effect on the measurement of the ∆m2

32 parameters.

7.3.5 Measurement of sin2 θ13

Figure 35 shows the results of the constraints on sin2 θ13 from the analysis with and without the
reactor constraint. The result with the reactor constraint is dominated by the prior constraint
from the reactor experiments.
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Figure 34: Results of the frequentist measurement of ∆m2
32 (NO) and ∆m2

31 (IO) without (top)
and with (bottom) the reactor constraint. The horizontal axis means ∆m2

32 for the plot based on
the assumption of NO (blue) whereas ∆m2

31 for the plot based on the assumption of IO (orange).
Each broken line corresponds to the target coverage for 1σ, 2σ and 3σ.
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Figure 35: Results of the frequentist measurement of sin2 θ13 without (top) and with (bottom)
the reactor constraint. Each broken line corresponds to the target coverage for 1σ, 2σ and 3σ.
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7.3.6 Measurement of Jarlskog invariant

The Jarlskog invariant is one of the indicators of whether the CP phase is violated in the leptonic
sector as in the quark sector. Unlike the δCP, the measurement of the Jarlskog invariant provides
a basis-independent way to verify the CP violation. The JCP invariant is written down by

JCP = c12s12c23s23c
2
13s13 sin δ, (7.1)

where cij , sij represent the cosine and sine functions for the corresponding mixing angles (θij).
The MCMC analysis using the marginalized likelihood computes all of the posterior distributions
marginalizing only the mass ordering. The Jarlskog invariant is then calculated based on each
set of posterior parameters with Equation 7.1. Figure 36 shows the result of the credible region
of the Jarskog invariant depending on two kinds of the prior choices. The results are found to be
prior-dependent, which stems from the Bayesian analysis. The CP conserving value (JCP = 0)
is rejected by 2 sigma significance for the case of the prior flat in δCP, but not for the prior flat
in sin δCP.

δsin23c23s12c12s13
2c13 s≡J 
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Figure 36: Probability density distributions of the Jarlskog invariant with two different prior
choices with reactor constraints from the MCMC analysis. Bayesian posterior distributions
can be affected by the prior distribution multiplying the likelihood. This analysis chose two
alternative prior distributions, uniform distribution in δCP (blue) or uniform distribution in
sin δCP (orange).
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8 Discussions on the oscillation analysis results

This chapter discusses the oscillation analysis results presented in the previous chapter in terms
of the interpretations, the robustness of the analysis, the impact on neutrino physics, and future
improvements.

8.1 Intepretations of the results on the oscillation parameters

We discuss the relationship between the observed number of events and the constraints on the
oscillation parameters, and the preferences of the neutrino mass ordering and θ23 octant.

Based on the Bayesian analysis and the differences in confidence intervals between NO and
IO, our data prefer the normal ordering scenario. In order to relate this to the observed number
of events, we use the "Bi-probability plot", which is shown in Figure 37. It should be noted that
this plot was created with the reactor constraint. The horizontal axis is the number of neutrino
candidates and the vertical axis is the number of anti-neutrino candidates. The data point is
overlaid on the MC prediction assuming various scenarios such as the mass ordering and θ23
octant. The bi-probability plot is useful to relate the number of e-like and µ-like candidates to
the best-fit points of the oscillation parameters. The effect on the matter effect in T2K is not
so high, which is reflected in the many overlap regions between NO and IO cases. However, our
data point is near the NO region a bit away from the degeneracy region in Figure 37. This leads
to the weak preference of the normal ordering in this analysis. In addition, the best-fit point is
on the blue contour, which corresponds to sin2 θ23 = 0.55. We see the δCP of −π/2 on the blue
contour being closed to the best-fit point.

We see the different best-fit points in the octant with and without the reactor constraint in
Figure 33. This can be also understood by seeing the bi-probability plot. Figure 38 shows the
comparison of the two bi-probability plots. One on the left is the same plot as in Figure 37. The
other one is the plot without the reactor constraint, namely with a different value of sin2 θ13.
The best-fit point of sin2 θ13 is 0.1034, which is larger than the value with the reactor constraint,
0.0869. In this case, the contours in color are shifted to the right (more e-like candidate events).
Consequently, the T2K data is near the red contour, which corresponds to sin2 θ23 = 0.45, namely
the lower octant.
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Figure 37: Bi-probability plot with the observed number of events for e-like and µ-like candidates.
The solid contour refers to the "NO" case and the broken contour refers to the "IO" case. They
are further divided by color depending on the value of sin2 θ23. The certain δCP values (π, π/2,
0, −π/2) are also shown as circular or rectangular points. The gray region is the 68% contour
around the best-fit point taking into account the fluctuations of systematic parameters. The
data is shown with the horizontal and vertical error bars.
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Figure 38: Comparison of the bi-probability plots with (left) and without (right) the reactor
constraint. Correspondingly, the assumed sin2 θ13 are changed. The plotting style is the same as
in Figure 37.
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8.2 Comparison with sensitivity

The δCP constraint in the data fit gave a stronger constraint compared to the sensitivity re-
sults [16]. The difference between the sensitivity and the data fit was within the statistical
fluctuation. There is a possibility that this difference was caused by an unknown factor to make
the effect of the CP violation larger. It is worth checking if the difference is shrunk or further
inflated to verify the possibility. For the sensitivity study, the oscillation parameters are set to
the best-fit values obtained in this analysis (in Table 7) with the systematic parameters set to
the prior values before the far detector (FD) fit. The impact of the FD fit on the systematic
parameters is small due to large statistical uncertainty. We decided to use the prior values when
we did the sensitivity study. The mass ordering is assumed to be the normal ordering. The
frequentist grid-scan method is used to fit the MC data to extract the sensitivity.

The fit results on the parameter constraints showing the sensitivity are overlaid on the data-fit
results in Figure 39. It shows two-dimensional ∆χ2 contours for the parameters that have a large
effect on the νµ to νe appearance (δCP, sin2 θ13) and the parameters that have a large effect on the
νµ disappearance (∆m2

32, sin
2 2θ23). They are called, appearance parameters and disappearance

parameters, respectively. The data-fit results are mostly consistent with the sensitivity except
for δCP. There is a relatively large discrepancy between the sensitivity and the data fit for δCP.

A Brazil band plot is used to check if the data-fit result on δCP is consistent with the MC
prediction including the statistical fluctuations. It is created as follows.

1. Assume that the true mass ordering is the normal ordering and true δCP is −π/2.

2. Create 100k toy experiments with these true oscillation parameters and the nominal sys-
tematic parameters, taking statistical fluctuations into account.

3. Set the upper and lower bounds of ∆χ2 at each δCP value by defining the interval containing
all points where the density of toys per ∆χ2 exceeds a certain threshold. Each threshold
is adjusted to obtain the desired fraction of toys (68% and 95%).

The obtained error bands (Brazil bands) are plotted against the data-fit result in Figure 40.
The data contour is consistent with the 68% error band of the MC prediction with the statistical
fluctuation. Therefore, we have not so far seen a sign of new physics inferred from the discrepancy
between the sensitivity and the data fit beyond the statistical fluctuation.
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Figure 39: Comparisons of the two-dimensional contours between the data fit and the sensitivity
for the appearance parameters (top) and the disappearance parameters (bottom). Blue: sensi-
tivity results with the oscillation parameters set to the best-fit values. Orange: data-fit results.
The left (right) figures show the results with (without) the reactor constraint.
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8.3 Impacts of the systematic parameters on data fit results

We performed a fit considering only the statistical fluctuation to separate the statistical and sys-
tematic uncertainties. We produce posterior probability (P ) distributions for a certain oscillation
parameter (o) assuming a certain mass ordering (MO), which is written by

P (o) = α× [Lmarg(o|MO)] , (8.1)

where α is a constant such that the integral of a whole probability distribution is normalized to
1. When the mass ordering is marginalized, Equation 8.1 is then modified into

P (o) = α× [Lmarg(o|NO)P (NO) + Lmarg(o|IO)P (IO)] . (8.2)

The systematic impact on the most probable value in a one-dimensional probability distri-
bution is evaluated by (syst)2 = (total)2 − (stat)2. Table 11 shows the decompositions of the
statistical and systematic errors on the most probable value of each oscillation parameter. We
confirm the constraints on the oscillation parameters are statistically limited. Therefore, in or-
der to increase the T2K’s sensitivity, it is primarily important to increase the statistics. The
systematic uncertainty is, however, not negligible in this analysis. It is expected that the sys-
tematic uncertainty will be reduced and the systematic uncertainty will be more important to
be suppressed [68]. The reduction in the systematic uncertainties is also important to increase
the discovery potential of T2K.

Table 11: Decompositions of the statistic and systematic errors on the best-fit values from the
posterior distribution through the grid-scan method. These fits are performed with the reactor
constraint except for sin2 θ13.

oscillation parameter result mass orderingstat. error syst. error
δCP 0.79 0.25 NH

sin2 θ23 0.024 0.007 NH+IH
∆m2

32/10−3 eV2/c4 0.046 0.017 NH
sin2 θ13/10−3 4.6 2.4 NH

8.4 Impacts of the major updates in the updated results on the contours

The major updates and their effects with respect to the published results are summarized below.

Update a: Update flux model with 2010 replica target data
Reduce the flux uncertainty at high energy regions (a few GeV).

Update b: Update neutrino interaction models
Make the interaction models more robust by changing the models, adding parameters, and
replacing parameters in the models with more theory-driven uncertainties.

Update c: Add new sample in the ND fit
Categorize the CC0π samples by their proton multiplicities and classify the CC other
samples based on the photon detection. This results in stronger constraints on the neutrino
interaction models that are not constrained much by data.
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Update d: Update the prior constraint on sin2 θ13 by the reactor experiments
The prior constraint on sin2 2θ13 is updated to be 0.0220 ± 0.007 [50]. The sensitivity to
the appearance parameters such as δCP is increased.

Update e: Add new sample at the FD fit
The νµ CC1π+ sample is added to the FD samples. The sensitivity to the disappearance
parameters, ∆m2

32 and sin2 θ23 is increased.

Each update is sequentially applied to the published results presented in the Neutrino 2020
conference in order to pin down what effect is stronger in the context of the constraints on
the oscillation parameters. We provide the contours corresponding to the following updating
components.

• Contour A = Oscillation analysis in the T2K published results
Contours correspond to the T2K official data release for the published results [148].

• Contour B = A + Update a + Update b + Update c
The ND fit uses the improved constraints on the flux uncertainties and updated models
and constraints of the neutrino interactions with the updated sample classifications. 33

• Contour C = B + Update d
The update on the PDG constraint on sin2 2θ13 (0.0220± 0.007 [50]) is applied.

• Contour D = C + Update e
The new FD sample is added to the FD fit, making the contours reflect all the updates.

Figure 41 shows the results on each contour in two-dimensional ∆χ2 contours with the reactor
constraint. As the constraint on sin2 2θ13 is dominated by the reactor constraint, the best-fit
value in this parameter is determined by the mean value of the prior. The best-fit values of
sin2 2θ13 in the contours of A and B are overlapped in the upper plot in Figure 41. About the
1σ interval on δCP between the published results in blue and the updated results in red, a wider
range of values for δCP is permissible in this analysis, especially near the value of π. The weaker
constraint is also reflected in the errors associated with the best fit values presented in Table 7.
Another comparison between the contours before and after adding the new sample at the FD tells
that there does not seem a notable change in the constraints on the appearance parameters. The
νµ CC1π+ sample is one of the µ-like samples. It is expected to increase the sensitivity to the
disappearance parameters (sin2 θ23, ∆m2

32) instead of the appearance parameters (δCP,sin2 θ13).
On the other hand, the contours for the disappearance parameters show a relatively large

change, in particular between contour A pointing to the published results and contour B pointing
to the published results + updates in the ND constraints. The change in ∆m2

32 is largely due
to the updates on the smearing factor being larger than that in the published results. Besides,
constraints on sin2 θ23 in the updated results allow the lower octant to be more probable. The
impact of adding the new sample at FD is visible by comparing contour D in red with contour
C in green. The improvement in the constraint on ∆m2

32 is about 5% with respect to its 1σ
error. The reason why the improvement is small is partly because the neutrino energy of the new
sample is away from the maximum oscillation probability. The sensitivity to the disappearance
parameters is weaker than that of the CCQE-like 1-Ring µ samples. More plots related to the
impact of the new FD sample are shown in Appendix F.

33As the flux and interaction parameters have a strong anti-correlation, it would be difficult to see the individual
effect for them. Therefore, both updates were imposed at once.
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Figure 41: Two-dimensional evolution contours for the appearance parameters (top) and disap-
pearance parameters (bottom) with the reactor constraint on sin2 θ13 from the grid-scan method.
Each colored line corresponds to which updates are reflected in each contour.

102



8.5 Comparison with other experiments

Other experiments have reported their results of constraints on the oscillation parameters re-
cently. Their basic features are briefly described below.

Super-Kamiokande experiment
The SK detector has been used for neutrino measurements such as accelerator neutrinos
and atmospheric neutrinos. Atmospheric neutrinos are produced from a similar interaction
chain to that of the accelerator neutrinos except that the interactions are initiated by
cosmic ray protons. The results from the SK experiment include the oscillation analysis of
the atmospheric neutrinos to show the constraints on the same oscillation parameters as
those from the T2K experiment [149,150].

MINOS (MINOS+) experiment
MINOS (Main Injector Neutrino Oscillation Search) is one of the long-baseline experiments
with accelerator neutrinos. MINOS+ is a second-generation program. The MINOS exper-
iment has made use of a 120 GeV proton beam from the Fermilab NuMI accelerator to
produce an intense νµ or νµ beam. The neutrino energy mainly ranges from 1.5 GeV to
10 GeV. The MINOS far detector 34 is located 735 km away from the target on-axis with
respect to the proton beam. 35 The latest result covers the oscillation analysis with both
data sets taken in the MINOS and MINOS+ experiments [151]. The result is the outcome
of the combined analysis of the accelerator neutrinos and the atmospheric neutrinos.

NOvA experiment
NOνA (NuMI Off-axis νe Appearance) is another long-baseline (810 km) experiment using
the same proton accelerator as the MINOS experiment. It adopts the off-axis neutrino
beam. The peak energy of neutrinos is around 2 GeV. This experiment has a similar L/E
to that of the T2K experiment. 36 The NOνA experiment reported both νe (νe) appearance
and νµ (νµ) disappearance results [152, 153], which are competitive with those from the
T2K experiment.

IceCube experiment
IceCube is an experiment specialized in measurements for neutrinos coming from space
in order to study astrophysics and cosmology as well as particle physics. The detector
is located at the south pole to utilize a natural ice block as its target. The IceCube
collaboration has reported the measurement of the atmospheric neutrinos [154].

We compared the neutrino oscillation results from this analysis with the recent measurements
by those experiments in order to see the impacts of our results on neutrino physics. Comparisons
of the constraints on the oscillation parameters are shown in Figures 42, 43.

34It has a sandwich structure of steel and segmented scintillator layers. The MINOS detector has particular
strength in detecting charged-current νµ (νµ) interaction. Therefore, it has a good sensitivity to νµ (νµ) disap-
pearance, which in turn helps the experiment to provide competitive constraints on disappearance parameters
(sin2 θ23 and ∆m2

32).
35Since MINOS adopted an on-axis strategy, neutrino energy is broadly spanned from 1.5 GeV to 10 GeV energy

regions.
36Since the NOνA experiment has a longer baseline, neutrinos tend to be subject to matter effects more

frequently than in the T2K experiment. This leads to the NOνA experiment being more sensitive to the neutrino
mass ordering, whereas the T2K experiment is more sensitive to δCP. Consequently, both experiments have
complementary roles in constraining those parameters.

103



23θ2sin

0.35 0.40 0.45 0.50 0.55 0.60 0.65

]4
/c2

 [
eV

322
m∆

2.2

2.4

2.6

2.8

3.0

3.2

3−10×

T2K 2022 Super-K 2022 MINOS+ 2020

 2020ANOv IceCube 2022 Best fits

90% C.L.
Normal ordering

 PreliminaryNeutrino 2022T2K, Super-K, IceCube: 
 131802 (2020)125 032004 (2022),  MINOS+: PRL 106: PRD ANOv

Figure 42: Comparisons of the constraints on the oscillation parameters in the sin2 θ23-∆m2
32

plane among the neutrino oscillation experiments. In addition to the updated result from the
T2K experiment, Super-Kamiokande experiment [149,150], NOνA experiment [152,153], IceCube
experiment [154] and MINOS+ experiment [151] are shown. The computing methods are different
among experiments. The NOvA and IceCube constraints are produced with the Feldman and
Cousins (FC) method while the constraints from the other experiments are computed with the
fixed ∆χ2 method. The treatments of the mass ordering are also different. The NOvA experiment
takes the minimum over both mass orderings. On the other hand, the other experiments assume
the normal mass ordering in creating these contours.

23θ2sin

0.35 0.40 0.45 0.50 0.55 0.60 0.65

π
 / 

C
P

δ

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0
Normal
ordering

23θ2sin

0.35 0.40 0.45 0.50 0.55 0.60 0.65

π
 / 

C
P

δ

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

T2K 2022 Super-K 2022

 2020ANOv Best fits

Inverted
ordering

90% C.L.,
minimum
taken over
both mass
orderings

 032004 (2022)106: PRD A Preliminary,  NOvNeutrino 2022T2K, Super-K: 

Figure 43: Comparisons of the constraints on the oscillation parameters in the sin2 θ23-δCP plane
among the neutrino oscillation experiments. The T2K and NOvA ( [152, 153]) experiments
produced the contours with the FC method whilst the SK ( [149, 150]) experiment computed
contours with the fixed ∆χ2 method.

104



The updated results from the T2K experiment provide the leading constraints on these pa-
rameters. Particular attention should be paid to the distinct features of the oscillation contours
in sin2 θ23-δCP plane between T2K and NOνA as in Figure 43. In the normal ordering case,
the T2K constraint covers the wide range of the regions around δCP being −π/2 whereas the
NOνA contour shrinks around that region. In fact, the NOνA experiment favors π/2 for δCP

assuming the normal ordering, which is a different indication from T2K. On the other hand,
in the case of the inverted mass ordering, both contours cover a similar region with a tighter
constraint by the T2K experiment. It should be noted that even in the normal ordering case,
we have an overlapped region between T2K and NOνA experiments. Considering the differences
in the sensitivities in the mass ordering and the δCP between these experiments, the different
behaviors in contours are not surprising. Figure 44 shows the bi-probability plot obtained in the
NOνA experiment. The degenerate region is much smaller than that in T2K, which is due to
the longer baseline with larger matter effects in NOνA. Compared to our results, the difference
in the observed number of events between anti-neutrino candidates and neutrino candidates is
less in NOνA, which results in the different best-fit δCP value, π/2 from the our result, −π/2.

Figure 44: The bi-probability plot for the NOνA’s oscillation analysis results [155]. The red
contours refer to the inverted ordering case and the blue contours refer to the normal ordering
case. They are further divided by θ23 octant, lower and upper octants. The four δCP values are
placed on each contour.
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8.6 Future measurements by the T2K experiment

Our analysis is statistically limited as shown in Table 11. The top priority is to increase statistics
by upgrading the proton beam power in J-PARC and increasing the horn current in the T2K
beamline while achieving more beam operations. Thanks to the continuous beam operations,
the statistical uncertainty has been reduced and the systematic contributions has been more im-
portant. The contribution from each systematic parameter is broken down in Table 12. Overall,
the dominant contributions come from the interaction parameters, which stem from the lack of
understanding of neutrino interactions. For the 1-Ring CC1π+ e sample, we see the dominant
error coming from FD. This originated from the 100% uncertainties on the measured variables
such as the number of ring for the NC 1π and NC other interactions. Therefore, this large
uncertainty comes from the uncertainties of the neutrino interaction models.

To reduce systematic uncertainties in neutrino interactions, we need to establish a solid model
to describe the experimental data. Establishing a solid model is challenging as some models can
explain measurements at certain conditions, otherwise, they do not. To overcome this situation,
more precise measurements to test each model are imperative. The main target of ND280 is CH
while that of the FD is water. To consider the difference in the target material, the difference in
cross sections between the carbon and oxygen targets is included in the systematic parameters.
The recent ND280 upgrade is specialized in the improvement of measurements on the CH target
while the remained water target detector lost part of the water target volume because of problems
in the water containers. It is desirable to install a new detector complex consisting of water
target detectors to comprehensive the difference in neutrino interactions between the carbon and
oxygen targets. This is more important in the context of splitting some parameters such as
Pauli-Blocking depending on the material in establishing NEUT.

The neutrino oscillation depends on the neutrino energy and the neutrino cross sections of
interaction types differ depending on the neutrino energy. T2K reported that a certain neutrino
interaction model can describe the CC0π double differential cross section results on the water
target for forward-going muons better while the alternative model describes the data better
for high-angle muons [156]. It is difficult to pin down the energy region that causes data-MC
differences seen because the T2K neutrino flux has a broad energy tail. It is important to
understand neutrino-nucleus interactions at different neutrino energy to understand the ratio of
neutrino interaction types to reduce the systematic uncertainties in the oscillation measurements.

Considering these issues and requirements for the ND measurements, measurements of neutrino-
nucleus interactions on the water target at different neutrino energy are desirable. We developed
a new detector complex and installed it in 2019. The next part of this thesis discusses the details
of the measurement, presents the first result on the cross sections with the detector complex,
and shows a way to apply the cross section results to the oscillation analysis.

Table 12: Error sizes for systematic parameters from the updated analysis broken down by each
contribution, Flux, Interaction (NuInt.) with or without the ND constraints

FD sample Error budget (%) Total (%)Flux NuInt. (w/ ND) NuInt. (w/o ND) FD + SI + PN

1-Ring µ
ν mode 2.8 2.7 0.7 2.0 3.4
ν mode 2.9 3.5 2.4 1.7 3.9

1-Ring e ν mode 2.8 3.8 2.9 3.1 5.2
ν mode 3.0 3.5 3.3 3.8 5.8

1-Ring CC1π+ e ν mode 2.8 4.1 2.8 13.6 14.3
1-Ring CC1π+ µ ν mode 2.8 3.0 1.4 4.1 4.9
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Part III

Measurement of neutrino-nucleus cross section
and applications to the oscillation analysis

9 The WAGASCI-BabyMIND detectors

We developed a new near detector complex around 280 m away from the T2K proton target, called
WAGASCI-BabyMIND. This chapter describes motivations to develop this detector complex and
summarizes the detector specifications and performances. At the end of this chapter, the concept
of the MC simulation framework is briefly mentioned.

9.1 Motivation

We aim for measurements of neutrino-nucleus interactions on H2O and CH targets at mean energy
of neutrinos different from the one in the ND280 location with larger acceptance of detectors to
muons scattering at high angles. This section elaborates on our motivations.

9.1.1 Energy dependency of neutrino interaction

The neutrino oscillation probability varies depending on the neutrino energy. Therefore, the
inputs of neutrino interaction measurements in several kinds of mean neutrino energy are ideal
to understand neutrino interactions affecting on the event prediction at FD. With respect to
the data and model discrepancies mentioned in Section 8.6, it might be challenging for ND280
to disentangle the potential deficiencies in the model because it is unclear which energy region
contributed to the discrepancies. If cross section measurements at different mean energy of
neutrinos are possible, they can provide a way to disentangle the effect of energy dependency
on the data-model differences. 37 In Section 3.2, we show that different angles off-axis give a
different flux spectrum. It is possible to measure the neutrino interactions at different mean
energy of neutrinos from that in the ND280 location if a detector complex is installed at different
angles from 2.5 degrees off-axis.

Standalone measurements at different angles off-axis are valuable for the purpose of diagnosing
the discrepancies between data and model. In addition, joint analyses of measurements in two
different off-axis angles provide a unique way to analyze neutrino-nucleus cross sections. We
can subtract one flux from another flux to cancel a high energy or low energy contribution
analytically [157]. The different off-axis angles, for instance, 1.5 degrees off-axis and 2.5 degrees
off-axis give different neutrino energy spectra, both of which have a similar long energy tail in
higher energy regions. One way to remove the contribution from the high-energy tail is to tune
the coefficient of scaling parameters of one flux at 1.5 degrees off-axis such that those high-
energy tails are overlapped and subtract the flux at 2.5 degrees off-axis from the tuned flux at
1.5 degrees off-axis. This technique is shown in Figure 45. Even without the flux subtraction
method, the cross section measurements at 1.5 degrees off-axis can be combined with the ND280

37The lower energy region (below 0.6 GeV) has a larger contribution from CCQE and 2p2h, whilst the higher
energy region (a few GeV) has a large contribution from resonance production and deep inelastic scattering.
If a measurement at a lower mean energy of neutrino shows a good agreement with a model, it indicates the
discrepancies might have been coming from the higher energy region.
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measurements in the ND fit. We provide a practical way to realize the combined analysis in the
latter chapter.

Figure 45: A flux subtraction method with two different flux spectra at different angles off-axis
to obtain two kinds of fluxes having fewer contributions in low or high energy regions. The
left figure shows the two flux spectra for 2.5 degrees off-axis (ND280) and 1.5 degrees off-axis
(WAGASCI). The linear subtraction defined in the legend in the right figure provides two possible
flux spectra to remove lower energy contribution in red and higher energy contribution in black.
The coefficients, a, b are 0.35 and 0.75, respectively.

9.1.2 Target and acceptance differences between ND and FD

Since the target material of the FD is H2O, it is important to understand the neutrino-nucleus
interactions on the H2O target. ND280 has performed the cross section measurements on the H2O
target for the CC0π sample [158]. Figure 46 shows the comparison of CC0π H2O cross sections
with two alternative models, with and without 2p2h contributions [158]. These results indicate
the model with 2p2h contributions is more compatible with the data in the high scattering
angle regions, but it is less compatible in the muons forward scattering regions. As discussed
in the previous section, it is challenging to pin down the cause of the discrepancy because we
do not know which energy region in the neutrino spectrum is responsible for this difference.
More water cross section results with the different mean energy of neutrinos could have a clue
to understanding this difference.

Although two of the vertex detectors in ND280 (FGD2, P∅D) have H2O as one of the target
materials, the currently ongoing project to upgrade the ND280 detector complex plans to replace
the partial water-target detector (P∅D) with an intensely segmented detector made of cubic
plastic scintillators [68]. 38 The upgrade project is promising to increase the performance of
measurements on the CH target in ND280, but one of the downsides is that the amount of
H2O target materials is going to be smaller in ND280. In addition, the conventional ND280
detectors with the H2O target have limited acceptance to high scattering muons, typically more
than 60 degrees with respect to the neutrino beam direction. On the other hand, FD is the
H2O target detector having 4π acceptance to charged particles. As the model compatibility
in Figure 46 depends on the muon scattering angle, more data in a wide range of phase space

38This upgraded detector is going to be made of six million cube-formed scintillators, each of them has the
dimension of 1 cm cubic. Three wavelength-shifting fibers will be inserted through each cube to obtain three-
dimensional information about a particle hit.
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will be important to investigate the differences. Therefore, the detector complex capable of
measurements of neutrino-nucleus cross sections on the water target in a wider range of phase
space are necessary to compensate for the ND280 cross section measurements.
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FIG. 9. A comparison of the CC0π water cross section against two Martini model predictions on carbon, one with 2p2h contributions
and one without.
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Figure 46: A comparison of the CC0π water cross section against two Martini model predictions
on carbon, one with 2p2h contributions and one without [158]. The angle regions are divided
into eight, where the differential cross sections as a function of muon angle and momentum are
shown.
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9.1.3 Target physics

One of the vital goals of this measurement is to understand neutrino interactions to verify
underlying models in combination with ND280 measurements. We aim for the measurement of
differential cross sections for a charged current neutrino-nucleus interactions on H2O and CH
targets as a function of muon kinematics. It is ideal to measure double differential cross sections
if the statistics are enough. The available data set is not large enough to extract the meaningful
result of double differential cross sections. Instead, we extract single differential cross sections
as a function of muon momentum and angle.

9.2 Detector complex

The requirements mentioned in Section 9.1 are fulfilled by detector designs and their arrangement.
For the measurement at the different mean energy of neutrinos, a whole detector complex was
installed at 1.5 degrees off-axis. Figure 47 points to the location of the detector complex and
structures of detectors. The peak energy of neutrino goes up to 0.86 GeV at this off-axis angle
while it is 0.60 GeV at 2.5 degrees off-axis. The WAGASCI-BabyMIND detectors are divided
into two kinds of vertex detectors and two kinds of muon range detectors. The vertex detectors
detect the charged current νµ interactions, and the muons produced from the interactions are
detected by the muon range detectors.

All of the detectors have the same signal detection method using plastic scintillators, wavelength-
shifting fibers, and MPPCs. Each detector has tracking planes that are aligned with the beam
axis or with the axis perpendicular to the beam axis. Tracking planes are made of plastic scin-
tillator bars. When charged particles are incident to scintillators and interact with them, the
scintillators emit scintillation light with a wavelength of around 400 nm. This wavelength is
close to, but outside the lower region for the effective area of MPPC. We use wavelength-shifting
fibers called Y11 [159] which absorb the scintillation light and emit the light whose wavelength
is distributed with a peak around 500 nm. This wavelength is matched with the effective area of
MPPC. MPPC is a semi-conductor photo sensor consisting of pixel arrays. Each pixel unit con-
tains Geiger mode avalanche photodiodes and quenching resisters. When the charged particles
are incident to the depletion layer of MPPC, electron-hole pairs are created, which are acceler-
ated in an external electric field. In a region with a high-gradient electronic field, the accelerated
electrons release more electron-hole pairs by the consecutive collision with lattice atoms. The
sequential creation of electron-hole pairs is called avalanche multiplication. As each sensor works
in the Geiger mode, it outputs a pulse at the same amplitude when the photon is detected in a
pixel. Therefore, if the pixel density is sufficiently large with respect to the incident rate of the
charged particles, the sensor is expected to have a linear response to the number of pixels with
the avalanche multiplication.
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Baby MIND
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WAGASCIProton Module
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Figure 47: The location of WAGASCI-BabyMIND detector complex and detector components for
the WAGASCI detector (middle) [160] and BabyMIND (bottom). The top two figures illustrate
the location of a whole detector complex (left) and configuration (right). The right middle
figure shows how both grid and plane scintillators are assembled to form a grid-like structure.
The bottom two figures show one unit of a magnet plane (left) and a scintillator plane (right),
respectively. Each magnet plane has two slits through which aluminum coils can be wound.
Yellow materials on both edges in a magnet plane are flux returns to minimize stray field, which
is estimated to be below 10 mT. Horizontal layers of the plane are segmented in a finer fashion
than a vertical layer in order to enhance the performance of charge identification.
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9.2.1 Water target detectors (WAGASCI)

Detectors to serve H2O target in this measurement is scintillator trackers submerge in a water
box, called "WAGASCI detectors" 39 in a dimension of 1.25 m × 1.25 m × 0.46 m. Each tracking
plane is segmented by two kinds of scintillator bars. One type of scintillator bar, grid scintillator
is 1020 mm × 25 mm × 3 mm size and has 4 mm wide slits in an interval of 32.5 mm to insert
other scintillator bars, forming a grid-like structured tracking plane. The tracking plane consists
of vertically aligned grid scintillators and horizontally aligned grid-scintillators. The other type
of scintillator bars is in the same dimension as the grid scintillators but without any slit, called
plane scintillator. A pair of vertically aligned plane scintillators and horizontally aligned plane
scintillators sandwiches a tracking plane consisting of grid scintillators, being a tracking plane
unit. Water fills with space segmented by these scintillators. A WAGASCI detector consists
of eight tracking planes in water to act as a tracker for charged particles. In the middle in
Figure 47 the scintillator assembling for the WAGASCI detector is illustrated. Grid-scintillator-
based tracking planes enable this detector to enhance the detection efficiency of particles scattered
at high angles, even more than 60 degrees with respect to the neutrino beam axis. We use two
WAGASCI detectors whose structures are almost identical.

Each WAGASCI detector is equipped with 1280 MPPCs (S13360), whose signals are read out
by Silicon PM integrated Read-Out Chip (SPIROC) [161, 162]. Collective SPIROC chips are
stored in Active Sensor Unit (ASU), which conveys the analog signals from SPIROC to interface
boards. The interface boards process the digital data and output them to our DAQ PCs.

9.2.2 CH target detectors (Proton Module)

To understand neutrino interactions on the CH target, we measure the cross section on the CH
target. For this purpose, we deploy a detector called Proton Module [163]. 40 Proton Module
is comprised of fully active scintillator tracking planes surrounded by four veto planes. The
dimension is 1.42 m × 1.42 m × 0.96 m. Each tracking plane consists of 25 mm and 50 mm wide
scintillator bars, both of which are about 1.2 m long. The finer scintillators are aligned around
the central part of a plane while coarser ones are aligned around the marginal part to make finer
segmentation around the center of this detector.

The electronics consist of Trip-t Front end Board (TFB) and Back End Board (BEB). Each
MPPC is connected to the TFB, and the signal is read out by a Trip-t chip [164]. The readout
signals are conveyed to BEB, where the triggers are published. The digitized signals are then
output to DAQ PCs.

Both WAGASCI detectors and Proton Module contain neutrino interaction target materials.
They are called "vertex detectors" hereafter.

9.2.3 Downstream muon range detector (Baby MIND)

As we aim for a single differential cross section as a function of muon kinematics, muon iden-
tification is an essential task for the detector complex. We developed two kinds of muon range
detectors (MRDs) that cover different phase spaces. Muons going downstream are covered by a
magnetized iron-core magnet detector, BabyMIND. The size of the detector is 4 m × 2 m × 4.5 m.

39It is the abbreviation of "WAter Grid and SCIntillator".
40This detector was originally designed to measure neutrino interaction as one of the on-axis detectors for the

T2K experiment. We reused this detector for the off-axis neutrino interaction measurements in the WAGASCI
project.
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BabyMIND has 18 scintillator tracking planes to detect particles’ trajectories. In addition, this
downstream MRD has 33 iron-core magnet planes, each of which is 3.0 cm wide, energized by
140 A current, providing a magnetic field of 1.5 T in the X direction [165] as they are shown in
Figure 47. Therefore, it is capable of identifying the charge of a particle.

The number of MPPC (S12571-025C) channels is 3996 for all of the tracking planes. We use
CITIROC chips [162] to digitize the MPPC signals, which are embedded in a Front End Board
(FEB). Each FEB is connected to a Master Clock Board (MCB), which receives the beam trigger
and sends processed signals to the DAQ PCs.

9.2.4 Muon range detectors aside vertex detectors (WallMRD)

In order to detect muons going backwards or in the perpendicular direction with respect to
the beam axis, the other type of MRD, WallMRD was designed. This detector has a sandwich
structure of irons and scintillators but without a magnetic field. 41 It has alternating ten iron
planes and nine scintillator planes. The number of iron planes was determined such that it
is sufficient to measure the momentum of muons by their range. The total number of MPPC
channels is 160. The electronics are the same as the WAGASCI one and both are integrated
such that we can operate them simultaneously.

Both BabyMIND and WallMRDs are called MRDs hereafter.

9.3 Detector specification and performance

Each detector was examined if it met the fundamental requirements to perform as a tracking
detector. First, the stability of the dark noise rate of MPPC must be guaranteed under the
experimental environment. In addition to the stability, its effect has to be suppressed with a
certain electronic threshold to separate the signal hit from dark noises of MPPC. We set the
threshold to 2.5 p.e. Second, a sufficient amount of light yield for a Minimum Ionizing Particle
(MIP) is necessary to ensure a high hit detection efficiency and particle identification. Our
detectors achieve around 20 p.e. or more for the mean yield for MIP. Third, detectors must have
a high hit detection efficiency for MIP. Even if a detector fulfills the two requirements, insufficient
efficiencies are caused by a misalignment of the scintillator bar or a small gap between neighboring
scintillator bars. We have to confirm that all detectors have the expected hit detection efficiency,
which is more than 95%. Fourth, as a tracking detector for charged particles, a two-dimensional
and three-dimensional track reconstruction efficiency must be high. We expect the reconstruction
efficiency to be higher than 95% for the typical angle and momentum regions in each detector.
The measurements for detector performances are described in this section.

9.3.1 Dark noise

The dark noise rate for each detector was studied by specific calibration runs. We confirmed
that the dark noise rate was stable for all the detectors. Figure 48 shows the MPPC dark noise
history plots for the Upstream WAGASCI during 2020 and 2021 data taking. The dark noise

41There is a reason why we designed a magnetised detector only for downstream MRD. Charge identification
is specifically important for muons in terms of cross section measurements to reduce a wrong-sign component in
neutrino flux. Positive muons scattered from the anti-neutrino interaction have a tendency to go forward due to
helicity suppression. Consequently, wrong-sign contamination matters for mainly forward-going muons, whereas
large-angle-scattering muons are likely to be negative muons from neutrino interactions. Therefore, the charge
identification is more significant for the downstream MRD.
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rate is drastically reduced in 2021 data taking due to the change in the hit threshold from 2.5 p.e.
to 3.5 p.e. Our timing window in the beam bunch opens for about 580 ns. Therefore, 1 kHz dark
noise in 2020 is expected to have a negligible impact on the contamination in signal detection.

(a) 2020 data taking (b) 2021 data taking

Figure 48: The MPPC dark noise history of the Upstream WAGASCI in the 2020 data taking
(left) and in the 2021 data taking (right).

9.3.2 Light yield

The mean light yield for each type of scintillator bars was measured by using MIP-like particles.
As the light yield is proportional to the path length in each scintillator, a light yield distribution
is normalized by the path length.

The mean of the light yield per unit path length (p.e./cm) is then calculated based on the
distributions. The results are shown in Figures 49, 50. The absolute values of the mean light
yields are high enough to detect MIP-like particles, and the comparisons between MC and data
are also good enough. The differences are within around 10%.

114



0 10 20 30 40 50 60 70

 angle (degree)µ

0

5

10

15

20

25

30
M

ea
n 

of
 li

gh
t y

ie
ld

 d
is

tr
ib

ut
io

n 
(p

.e
.)

MC

Data

(a) INGRID type scintillator in Proton Module
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(b) Scibar type scintillator in Proton Module
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(c) Grid scintillator in Upstream WAGASCI
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(d) Plane scintillator in Upstream WAGASCI
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(e) Grid scintillator in Downstream WAGASCI
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(f) Plane scintillator in Downstream WAGASCI

Figure 49: The mean light yield for MIP-like particles as a function of muon angle for Proton
Module (top), Upstream WAGASCI (middle), and Downstream WAGASCI (bottom). Error
bars represent only statistical errors. As both vertex detectors have two types of scintillator
bars, the plots are divided into two for each scintillator bar (left and right).
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(a) Scintillator in WallMRD South
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(b) Scintillator in WallMRD North
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(c) Horizontal scintillator in BabyMIND
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(d) Vertical scintillator in BabyMIND

Figure 50: The mean light yield for MIP-like particles as a function of the angle with respect to
the initial neutrino direction for WallMRD (top) and BabyMIND (bottom). The vertical error
bars represent only statistical errors on the corresponding mean light yields. The Figures 50a, 50b
are the mean light yield plots for the scintillator bars of WallMRD south and WallMRD north
detectors. As BabyMIND has two types of scintillator bars, Figures 50c, 50d correspond to the
horizontal and vertical scintillator bars, respectively.

9.3.3 Hit detection efficiency

The hit threshold is set to 4.5 p.e. for the vertex detectors to separate signal hits from noise
hits. It is necessary to confirm the threshold is not too high with respect to the mean light yield
for each scintillator bar by checking the hit detection efficiency. If there is a misalignment of
scintillator bars resulting in a small slit or hole between neighboring scintillators, the hit detection
efficiency is reduced. We need to confirm the effect of possible misalignment is negligible.

The hit detection efficiency was evaluated with MIP-like tracks. For all the detectors except
for WAGASCI detectors, plane-by-plane hit efficiency was evaluated. As WAGASCI detectors
have a three-dimensional grid-like structure unlike the other detectors, a block group is defined to
estimate the hit detection efficiency. Each block contains a combination of one line of plane scin-
tillators and two lines of grid scintillators. For WAGASCI detectors, the hit detection efficiency
is measured for each block. The evaluation was done in the following way.

• Collect MIP-like tracks passing through a detector of interest

• Find a plane or a block whose neighboring planes or blocks have a hit from the track
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• Check if the plane (block) has a hit

Plane being evaluated 

Block 1 Block 2 Block 3

Proton Module WAGASCI detectors

Block being evaluated 

Pln 1 Pln 2 Pln 3 Pln 4 Pln 5

Figure 51: Illustration of the evaluation method for the hit detection efficiency. The left one shows
the Proton Module case. As each plane is separated, the hit detection efficiency is evaluated plane
by plane. The right one is for the WAGASCI detectors case. Each block contains a combination
of one line of plane scintillators and two lines of grid scintillators. The block-by-block efficiency
is calculated in this case.

The process is illustrated in Figure 51. Figure 52 shows the results for each detector. For
most angle regions, the hit efficiency exceeds the 95% level. Moreover, overall differences stay
within around a few % between MC and data.
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(a) Proton Module
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(b) Upstream WAGASCI
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(c) Downstream WAGASCI
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(d) WallMRD South
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(e) WallMRD North
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(f) BabyMIND

Figure 52: The results of hit detection efficiency as a function of MIP-like particles’ angle with
respect to the initial neutrino direction. The vertical error bars represent statistical errors in hit
detection efficiencies. Each plot corresponds to the hit detection efficiency of each detector.
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9.3.4 Two-dimensional tracking efficiency

Two-dimensional tracking efficiency was evaluated for the vertex detectors with the MIP-like
tracks passing through either muon range detector. The evaluation was done in the following
way.

• Reconstruct at least one three-dimensional track in a muon range detector.

• Extrapolate the track to the vertex detectors.

• Check if the distance between the extrapolated track line and each hit in the vertex detector
is less than 200 mm.

• If the number of planes having at least one hit satisfying the conditions is four or more,
check if there is a reconstructed cluster in the vertex detector. Otherwise, the event is
dismissed.

This process for the Proton Module is illustrated in Figure 53. WAGASCI detectors follow
the same way. The results are shown in Figure 54. The horizontal axis on the figures refers
to bin numbers corresponding to the binning schemes used in this cross section measurement,
which is shown in Table 13. The measured tracking efficiency in both detectors is sufficient
for the cross section analysis. The efficiency in data seems to exceed the efficiency in MC for
both detectors, but the difference is within a few % levels. We confirm the level of difference is
acceptable because it is not expected to cause significant systematic uncertainties.

Table 13: Bin numbers for θµ measurement. The reconstruction efficiency for the bins from 0
to 8 is used for the signal samples in this analysis. The 9th and 10th bins are made for the
reconstruction efficiency in the regions to be used for control samples in this analysis.

Bin number 0 1 2 3 4 5 6 7 8 9 10
Lower bound (degree) 0 10 15 20 25 30 35 40 50 0 20
Upper bound (degree) 10 15 20 25 30 35 40 50 70 20 70

119



Proton Module A muon range detector

Within threshold

Outside of threshold

D2

D3
D1

Figure 53: Illustration of the evaluation method for the tracking efficiency. Once the algorithm
confirms there is at least one three-dimensional track in a muon range detector, the track is
extrapolated to one of the vertex detectors, here the Proton Module. Then it checks if each
hit in the vertex detector satisfies the condition on the distance between the hit point and the
extrapolated line. If the event has four or more hits satisfying the conditions, the algorithm
checks if there is a cluster reconstructed in the vertex detector.
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(a) WAGASCI detectors
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(b) Proton Module

Figure 54: The results of two-dimensional tracking efficiency for WAGASCI detectors (left) and
Proton Module (right). The horizontal axis corresponds to the MIP-like particles’ angle as it is
shown in Table 13. The vertical error bars represent statistical uncertainties.

9.3.5 The summary of detector specification and performances

Table 14 summarizes the fundamental detectors’ performances as well as their specifications. We
confirm that each detector’s performance is suitable for the target physics. All of the perfor-
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mances shown in Table 14 were estimated by the measurement using physics data. We confirm
the difference in each performance stays within a few percentages, which does not make a large
systematic uncertainty.

Table 14: Performances of the vertex detectors (top) and the muon range detectors (bottom) of
WAGASCI-BabyMIND. Each mean of light yields is estimated for MIP. The light yields are not
corrected by the path length here. WAGASCI, Proton Module and Baby MIND have two kinds
of scintillators, corresponding to two different light yields. Hit detection efficiency (Hit. eff) for
each detector was estimated by using physics data. Two-dimensional tracking efficiency (Recon.
eff 2D) was calculated for only the vertex detectors.

Detector Target / Material Light yield (p.e.) Hit. eff Recon. eff (2D)

Vertex WAGASCI H2O : CH = 4 : 1 18 / 24 ∼95% ∼100%
Proton Module CH 20 / 50 >95% ∼100%

MRD Wall MRD iron and scintillator 18 ∼95% –
Baby MIND magnet and scintillator 17 / 30 >95% –

9.4 Monte Carlo simulation

Monte Carlo simulation (MC) begins with generating neutrino flux based on JNUBEAM (see
Section 6.2). It takes into account the different off-axis angles for the flux prediction. The
neutrino flux inputs are fed into NEUT (see Section 6.3) to simulate neutrino interactions on a
specific target material considering neutrino kinematics. The output of the neutrino interaction
simulator contains all information on the primary interactions of neutrinos and the final states
of all particles from the interactions. In order to simulate detector responses and iterative
interactions, secondary, tertiary, and so on, we developed Geant4-based Monte-Carlo simulation
framework. A whole description of the detector complex was implemented in this framework.
In addition, the detector responses in particularly to MIP-like particles are tuned based on the
physics data, which are shown in Section 9.3. Thus, the output of the whole procedure above
provides simulated data for the reproduction of data that are obtained in physics runs.
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10 Track reconstruction

In order to study neutrino interactions, it is necessary to analyze hit patterns, find particle
trajectories, reconstruct interaction vertices, and measure relevant track properties. The whole
procedure from analyzing hits up to measuring relevant track properties is called reconstruction.
In this analysis, the reconstruction is divided into five steps. The first step is to search for
track candidates in each detector by classifying hits that are likely to come from the same
particle ("Track Seeding"). The next step is to search for a pair of tracks between detectors
corresponding to the same particle ("Track Matching"). The third step is to find an interaction
vertex using the information in the Matching step ("Vertex Reconstruction"). The processes up
to the third step are done in two-dimensional space in the XZ or YZ view. Next, we look for
a pair of two-dimensional track candidates to reconstruct a three-dimensional track candidate
("Three-dimensional track reconstruction"). Lastly, the candidate is analyzed by each algorithm
suitable for the measurement of its property, such as angle, momentum, particle type, particle
charge, and track-per-cluster ratio. This chapter provides a principle for each procedure as well
as a core algorithm used. More details are described in Appendix H.

10.1 Track Seeding

Track seeding is to analyze hit patterns in two-dimensional space to classify hits based on possible
particle trajectories or noises. In most cases, particle trajectories are supposed to be straight
in each detector because it is not magnetized except for the downstream MRD, BabyMIND. In
addition, the particles to be detected in BabyMIND are MIP-like particles that do not produce
electromagnetic showers or are not significantly subject to multiple Coulomb scattering. The
track seeding is to collect hits along with a straight line which is most likely to come from a
particle while rejecting random hits stemming from the dark noises. 42 Figure 55 demonstrates
an attained result in the track seeding.

42We applied the same assumption of particle trajectory being straight in this clustering step although the
BabyMIND is magnetized. We confirmed that this assumption is valid by loosing tolerance to connect hits in the
algorithm.
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Figure 55: An illustrative example of a result of track seeding, showing hit maps before the track
seeding (left) and classified hit collections after the track seeding (right). Collective hits in red
and yellow represent clusters that are supposed to be different particle trajectories. Hits in blue
are dissociated from the ones in red and yellow. They are most likely to come from dark noise
hits.

We use the concept of the cellular automaton for the track seeding. The game of "life" [166] is
one of the examples using this method. The concept of the game of "life" is to let a simple object
such as a "dots pattern" in a matrix evolve spontaneously by imposing generic laws governing the
game. Each dot has its own "state" at a given step. For example, the state is defined by the color
(white or black) of each dot. The state is changed according to generic laws, for instance, when
a dot in white is sandwiched by two black dots, the state of the dot in the middle is changed,
white to black. The iteration continues until all dots are unchanged.

In order to apply this concept to the track seeding, we substitute hit patterns for dot patterns
and construct generic laws to classify hits into a cluster. A unit of this algorithm is a line
connecting two hits on corresponding two tracking planes in a distance of one or two planes. The
unit is called "Cell". This algorithm allocates a unique "state" to each Cell. The state is an
integer and initialized to 0. The state is changed according to a rule. The rule is if a chi-squared
value in a linear fitting of three hits included in two Cells sharing one common hit is less than a
threshold, then the state of the downstream Cell is increased by 1. This rule allows the algorithm
to search for hits in a straight line. This iteration continues until the state of any Cell stays
constant. Consequently, the more downstream the Cell is in a straight line, the higher state it
has. In this case, picking up those hits in the order from the highest state to the lowest state ends
up providing a track. After all possible pairs are chosen, the algorithm gives the result shown
in Figure 55. Relevant variables such as thresholds in a linear fitting are optimized considering
detector specifications. 43

10.2 Track Matching

The previous step provides tracks in each sub-detector. Since we have six sub-detectors, con-
necting tracks between different sub-detectors is necessary to find a full track of a particle. The

43See Appendix H for details.
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track matching step proceeds based on the tracks in a two-dimensional space. Key variables to
determine whether two tracks come from the same particle are positional and angular differences.
The positional difference refers to the difference between an expected position in the downstream
detector extrapolated from the upstream detector and the upstream end position in a track in
the downstream detector. With respect to the angular difference, we check a difference in angles
obtained by the linear fitting to a pair of tracks. When both differences do not exceed thresholds
defined for each combination of detectors, they are regarded as "matching tracks". The simple
illustrations of the track matching step are shown in Figure 56.

10.3 Vertex Reconstruction

In this analysis, we use only events where at least one matching track is reconstructed assuming
it is considered as a muon candidate. The majority of protons from the neutrino interactions
in the T2K flux are fully contained. Pions should interact with particles in the iron material
before reaching the tracking threshold in the step of the track seeding. Therefore, requiring one
matching track, in particular with MRD, can enhance the purity of the muon candidate. An
interaction vertex in each event is then determined based on the matching track. The vertex
is defined as the upstream end position of the matching track. Once the vertex is found, the
algorithm searches for tracks that are considered to share the vertex. This is done by comparing
the vertex Z position and the upstream end position of each track in the Z axis. If the difference
in the Z position is less than two planes, the track is considered to be the one starting from the
same vertex as the matching track. Finding a vertex and collecting other tracks are referred to
as vertexing, which is illustrated in Figure 57. It should be noted that the vertex position at
this stage is in two dimensions (X, Z or Y, Z). The three-dimensional position is reconstructed
in the next step.
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Detector A Detector B

ΔD

Δθ

Figure 56: An illustrative example of the track matching process before (top) and after (bottom).
In the bottom figure, ∆θ and ∆D show the differences in angle and position between the two
tracks. The change in colour from orange to red in Detector B between the top and bottom
demonstrates the track is matched with the track in red in Detector A. On the other hand, the
track in green in Detector B remains as it is because it does not satisfy the requirement.

Detector A Detector B

Figure 57: An illustrative example of finding an interaction vertex based on the result of track
matching. A vertex indicated by a star is defined as the starting point of the matching track.
Other tracks in the detector are collected if it is considered as sharing the vertex.
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10.4 Three-dimensional track reconstruction

Now, we have two-dimensional vertices in the XZ view and YZ view that are associated with
corresponding matching tracks. In this three-dimensional track reconstruction, the algorithm
looks for a probable pair of matching tracks both in the XZ and YZ views, ending up recon-
structing three-dimensional tracks and an interaction vertex. The pair-matching process relies
on differences in the upstream and downstream end Z positions between matching tracks in each
view. When the differences satisfy the requirement that the distance must be less than two
planes, both tracks are matched with one another as a three-dimensional track. In addition, a
three-dimensional vertex is also reconstructed using the upstream end positions of corresponding
matching clusters. For the vertex Z position, the smaller position of the two is chosen because
it is considered closer to the true vertex position. The process is illustrated in Figure 58.

XZ view

YZ view∆Start ∆Stop
Figure 58: An illustrative example of the three-dimensional track reconstruction process with key
variables (∆Start, ∆Stop) to match a pair of two matching tracks in XZ and YZ views. When
they satisfy the requirement, both clusters are matched with one another as a three-dimensional
track. In addition, a three-dimensional vertex is also reconstructed. With respect to the vertex
Z position, the smaller position of the two is chosen.
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10.5 Measurement of track properties

The obtained three-dimensional tracks in the previous step are further analyzed to measure their
properties. The longest three-dimensional track is considered to be a muon candidate. We apply
each algorithm to the muon candidates in order to obtain the angle, momentum, and charge.
Besides the muon tracks, other tracks are also reconstructed in the previous step. We then
identify the particle type of those tracks. Each algorithm is summarized in this section.

10.5.1 Angle reconstruction

The aforementioned reconstruction algorithm provides the three-dimensional track of a muon
candidate. We apply a linear fitting to the track to reconstruct the angle. In practice, the
hits in the track in the vertex detector are fitted in both XZ and YZ views. The two linear
fittings determine slopes of the track, denoted by tan θXZ , tan θY Z . These slopes represent two-
dimensional angles with respect to the detector coordination. We need a track angle with respect
to the neutrino direction 44 to extract a differential cross section as a function of angle. The
calculation formula is

reconstructed track angle = arccos

(
|dνx tan θXZ + dνy tan θY Z + dνz |√

1 + tan2 θXZ + tan2 θY Z

)
. (10.1)

The standard deviation of the reconstructed angle of the muon candidate with respect to the
true muon angle is calculated based on the Monte-Carlo simulation. For muons whose momentum
ranges from a few hundred MeV/c to a few GeV/c with a mean angle of 20 to 30 degrees, it
is estimated to be a few degrees. We take into account this information in defining kinematic
binnings for the cross section measurements.

10.5.2 Momentum reconstruction

The precise measurement of the cross section as a function of muon momentum requires a re-
liable method achieving a sufficient resolution, less than 10% for typical momentum of around
800 MeV/c without introducing a large reconstruction bias. The bias means the difference in the
mean value of residual distributions with respect to zero. We have so far established a way to use
a total track range for all segmented regions. 45 The total track range is converted to the mo-
mentum based on the relationship between CSDA (Continuous-Slowing-Down Approximation)
range and µ momentum [167]. The momentum resolution, defined as the standard deviation of
the residual momentum distribution, is calculated with the MC simulation. The result is shown
in Figure 59. The estimated resolution falls within the requirement.

44The neutrino direction is represented by (dνx, dνy , dνz). In the current location of the detector complex, they
are given as in

dνx = −0.019972, dνy = −0.079947, dνz = 0.996599

45Since the downstream MRD has a magnetic field, it is in principle possible to make use of it in calculating
the momentum by its curvature. The magnetic field of the MRD was optimized for charge identification but for
momentum measurement. Although there are many trials to utilize the magnetic field to calculate momentum,
none of them satisfies the requirement of both resolution and reconstruction bias.
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Figure 59: Resolution of reconstructed muon momentum as a function of true muon momentum.
The resolution is defined as the fraction of the standard deviation of the residual momentum
(reconstructed momentum - true momentum) distribution with respect to the mean momentum.
Each error bar represents the error of the standard deviation divided by the mean momentum.

10.5.3 Particle charge identification

The magnetized downstream MRD, BabyMIND is capable of identifying the charge of a particle.
A magnet plane has three divisions each of which has a uniform 1.5 T field in either a positive or
negative direction of X. We developed a custom-made fitter to estimate the charge of a particle.
The fitter predicts a true particle trajectory with varying several free parameters including the
particle charge. 46 When the trajectory is compared to the measured data, the fitter calculates
a chi-squared value for that trajectory. After all iterations of the free parameters, it obtains
minimum chi-squared values for the positive and negative charge hypotheses. Those two values
are then input to calculate a negative log-likelihood ratio for the discriminator of the particle
charge. All of the descriptions including derivation about this fitter are found in Appendix I.
According to the MC simulation, the selection efficiency of µ− exceeds 95% with the purity of
µ− being larger than 96%.

10.5.4 Particle type identification

A muon candidate is determined when a track originating from a vertex detector is matched
with other detectors. When there are several kinds of tracks, the longest track is assumed to be
a muon candidate. If it is matched with either MRD, the probability of that track being muon

46Free parameters are comprised of an incident angle from a vertex detector (ϕI), an incident Y position (YI), a
momentum (PI) and a charge (CI). Since this includes momentum as one of the free parameters, it can in principle
be used for momentum reconstruction. The performance test, however, showed a relatively large reconstruction
bias with an overall resolution of 20 to 30%. We have decided to apply this method only for charge identification.
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exceeds 95%. In this case, there are not many benefits from particle identification by using the
energy loss, dE/dx information. It is, however, important for other tracks originating from an
interaction vertex to identify their particle types by dE/dx. Particular attention is paid to the
discrimination between a MIP-like particle, typically muon and charged pion, and a proton-like
particle. One of the differences between these particles is the energy deposit per unit length in
each scintillator.

The discriminator is based on a dE/dx distribution for MIP-like particles for each vertex
detector. The reverse cumulative function of the dE/dx distribution (1− Φ(dE/dx)) is defined
as "Confidence Level (CL)" which is an indicator of the likelihood of a MIP-like particle. Provided
a track contains hits in N planes, it gives N ’s values for the confidence level. Using all the values,
the discriminator (MUon Confidence Level, MUCL) is given in

MUCL = P ×
N−1∑
i=0

(− lnP )i

i!
, P =

N∏
i=1

CLi, (10.2)

where N refers to the number of planes having a hit and CLi is each confidence level for a hit on
the i-th plane. The particle identification performance was studied by using MIP-like tracks in
the MC simulation. We confirmed that the purity of MIP-like particles is 85% (84%) with 95%
(78%) selection efficiency and the purity of proton-like particles is 59% (58%) with 74% (85%)
efficiency in WAGASCI modules (Proton Module).

10.5.5 Track-per-cluster ratio calculation

The track-per-cluster ratio is defined as the ratio of the number of hits in all the reconstructed
tracks starting from the same vertex to the number of hits in all the tracks obtained in the vertex
detector in the track seeding. Here, we check the tracks only in a vertex detector in each event.
When all reconstructed tracks in the track seeding end up with the reconstructed tracks in the
event, the ratio is 1.0. When some tracks coming from a neutrino interaction different from the
one in the vertex detector are reconstructed in the track seeding and not used in the event, the
ratio is lower than 1.0. Figure 60 shows the illustrative example where the track-per-cluster ratio
is 0.66. This parameter is used in the event selection, which is revisited in Chapter 11.

Reconstructed in the track seeding 
but not used in this event

Reconstructed in the track seeding 
and used in this event

Figure 60: An illustrative example of the track-per-cluster ratio parameter. The arrows in blue
represent the tracks used in the event and the arrows in red represent the reconstructed tracks
in the track seeding but not used in the event.
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11 Event selection and cross section analysis

This chapter is devoted to describing our analysis objects, event selection criteria, and method-
ology of cross section extraction. Section 11.1 introduces the definition of signal and control
samples. The event selection criteria are optimized such that they provide sufficient purity and
efficiency for each sample, which is discussed in Section 11.2. Outcomes of the selection crite-
ria based on the MC simulation give a nominal data set. Alternative simulation data sets are
used to validate the performances of our fitter. The simulated events include various sources of
systematic uncertainties. All possible error sources are scrutinized and the sizes of uncertainties
are estimated, whose results are summarized in Section 11.3. The selection outcomes and all
systematic errors are then incorporated into a cross section fitting framework to produce the
best-fit results of neutrino-nucleus cross sections and systematic parameters. The methodology
is explained in Section 11.4.

11.1 Signal definition and Sample classification

11.1.1 Signal definition

A whole analysis using WAGASCI-BabyMIND detectors has been motivated to enhance the
sensitivity of the oscillation analysis by T2K. Since the signal samples in the T2K oscillation
analysis consists of mainly CCQE-like interactions, they are also primary signals for our cross
section measurements. The signal is defined as a charged current muon neutrino interaction
without having any charged pion in the final state, denoted by CC0π±. As the detector complex
is not equipped with an electro-magnetic calorimeter, it is unable to detect gamma-rays from
neutral pion decays. Therefore, the signal is defined such that it can accept neutral pions in the
final state. This is interpreted as a "topology" instead of the individual interaction type before
FSI. Topology is defined based on the particles that each detector is able to measure in the final
state. It mitigates the potential bias that can be introduced by an interaction model to predict
initial neutrino interactions including the FSI effects. 47 Using the topology in the analysis is a
way to reduce the neutrino interaction model dependency. In addition to the topology selection,
the signal is also classified by the target material, H2O or CH. The primary target is H2O. The
WAGASCI detectors have plastic scintillators with the mass fraction of 20%, whose cross section
and its uncertainty are controlled by the CH measurement using the Proton Module. Each
signal has two observables, muon momentum (Pµ) and angle (θµ), corresponding to the single
differential cross section measurements.

11.1.2 Sample classification

The signal definition is based on "true" information provided by the simulation. The sample
classification, on the other hand, is based on the reconstructed variables. It is defined as a
combination of detectors through which the muon candidate passes. The classification is sum-
marized in Table 15. We do not have a sufficient number of events where interactions happen
in Downstream WAGASCI and produced muons go through WallMRDs. Therefore, we do not
include the "DWG to WMRD" sample in the classification. Each subdetector is abbreviated in

47Defining a signal in the way of interaction type relies on each physics model to predict FSI effects. When
the outcome of the particular interaction model is used as "true" information to be compared to reconstructed
information, it may introduce the bias that is associated with the interaction model.
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the following way; PM: Proton Module, Upstream WAGASCI: UWG, Downstream WAGASCI:
DWG, WMRD: WallMRD, BabyMIND: BM.

Table 15: The sample classification for both signal and control regions. MRDs include both
BabyMIND and WallMRDs.

Sample Target Material Detector Topology

Signal samples CC0π±

CH PM to WMRD
PM to BM

H2O or CH
UWG to WMRD

UWG to BM
DWG to BM

Control samples CC1π± CH PM to MRDs
H2O or CH WGs to MRDs

beam-induced background concrete UWG, PM, DWG to BM

Table 15 describes the classification of control samples as well. They are divided into CC1π±

and beam-induced background. CC1π± is a sample that has one charged pion in the final state
in addition to a muon. 48 The T2K neutrino flux at 1.5 degrees off-axis has its peak around
0.86 GeV. The CCQE interaction is dominant around this energy while the CC Single Pion
Production (CCSPP) is subdominant. The inclusion of CC1π± in the control sample is helpful
to understand the CC1π± background contaminating in CC0π± in a data-driven way. On the
other hand, the beam-induced background is motivated by a better understanding of interactions
with the wall in the experimental hall. The detector complex is located inside an underground
pit surrounded by a cylindrical wall. The thickness of the upstream wall made of concrete is
8 m. Consequently, more neutrino interactions could happen inside the wall than in the vertex
detectors. When the neutrino interactions produce neutral particles such as neutrons and gamma
from neutral pions, which travel into one of the vertex detectors, they could mimic a neutrino
interaction inside the vertex detector. In order to reduce the uncertainty of this beam-induced
external background, we have to rely on the MC simulation for the neutrino interactions in the
wall. This simulation uses an approximate density of concrete, which directly causes a difference
in the normalization of the wall background events. A solution to mitigate the difference is
to tune the density in accordance with beam data. The beam-induced background sample is
collected in both MC and data. The difference in the number of events between them is used to
tune the density of the concrete.

11.2 Event selection

For each sample defined in the previous section, dedicated selection criteria were determined
taking into account the balance between signal purity and efficiency. All of the selection criteria
begin with the outcomes of the reconstruction. The following discussions overview criteria for
all the samples.

48"One charged pion in the final state" means a pion exiting out of a nucleus. Even if it does not leave any hit
inside a detector due to its secondary interaction in an event, the event is categorized as the CC1π± sample.
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11.2.1 Selection criteria for the CC0π± sample

The diagram of the selection criteria for the CC0π± sample is shown in Figure 61. The following
descriptions are the summary of each selection criterion. Complementary plots and explanations
are found in Appendix J.

Pre-selection
The Pre-selection means all steps of reconstruction. In this analysis, we use events that
have at least one three-dimensional reconstructed muon track candidates based on the track
reconstruction methods described in Chaper 10.

Fiducial volume
We define a fiducial volume for each vertex detector to make sure of a neutrino interaction
in the detector. The fiducial volume cut plays an important role in suppressing the beam-
induced muon background produced in the wall. The fiducial mass of the Proton Module
is 313 kg for CH and that of the WAGASCI detectors is 229 kg for H2O and 62 kg for
CH per module. Figure 62 shows the comparisons of the vertex distributions after the
fiducial volume selections. We confirm the MC predictions and data distributions agree
well except for the vertex Z distribution for the WAGASCI detectors samples. Unlike
the other distributions, as vertex distributions should not reflect the neutrino interaction
models we can expect good data and MC consistency. We investigated the possible causes
of these differences and found no clear failure mode in our analysis. In addition, the possible
impacts on the cross section analysis were also examined. Then, we found no significant
impact. Since we did not find any deficit cause, we prepared one systematic parameter to
take into account this difference. The details are described in the Appendix K.2.9.

Number of tracks
In the CC0π± sample, we expect one muon and one or two protons for the final state
particles. The number of track distributions are shown in Figure 64. When the number
of tracks exceeds three, the purity of the CC0π± events ("numuCC0pi") in the legends is
small. We choose only one, two, and three tracks. The number of events coming from νµ
CC other interactions dominated by DIS interactions halves thanks to this selection.

Particle identification
If the number of tracks is one, the track is selected as the muon candidate in the event.
We do not apply the particle identification with MUCL that is explained in Section 10.5
to this kind of events. When the number of tracks is two or three, we apply the particle
identification with MUCL to the second and third tracks and require both tracks not
to be µ-like tracks. Here, the first track is the muon candidate selected in the track
reconstruction. The MUCL distributions are shown in Figure 64. In this plot, the first
tracks are not included because they are not used for the particle identification by MUCL.
When MUCL exceeds 0.6 (0.7) for Proton Module (WAGASCI detectors) samples, the
track is selected as the µ-like particle, and when it is under 0.6 (0.7), it is selected as the
proton-like track. This selection is important to reject events where there is at least one
charged pion in the final state.

Charge of muon
Since the signal comes from the νµ interaction, the muon candidate should be negatively
charged. Therefore, charge identification is applied if the muon candidate passes through
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BabyMIND. When the reconstructed charge is identified to be negative, the event is ac-
cepted. The discriminator for this selection is the log-likelihood ratio explained in Sec-
tion 10.5. The distribution of the log-likelihood ratio is shown in Figure 65. When the
log-likelihood ratio is less than 4, the track is selected as a negatively charged particle. This
selection is useful to reject background that comes from wrong-sign neutrino interactions.

Track-per-cluster ratio
The track-per-cluster ratio parameter is explained in Section 10.5. This selection is used to
reduce background that comes from the interactions outside the fiducial volume called Out
Of Fiducial Volume (OOFV), in particular the interactions in the wall. For the CC0π±

samples, the track-per-cluster ratio tends to be large and for the OOFV events, the ratio
tends to be small. When the track-per-cluster ratio is larger than 0.6, it is selected as the
signal sample. This is applied to only the WAGASCI events because the wall background is
around 20% with respect to the total number of WAGASCI events without this selection.
After this selection is applied, the contamination of the wall background is reduced to
around 10%, which is a similar level to the Proton Module case. Figure 66 shows the
track/cluster ratio distribution for the WAGASCI events. The difference is mostly due to
the differences in the number of events between data and MC by 10%. We checked that
the shape in distributions were consistent with each other.

Michel electron tagging
We search for Michel electron hits originating from a pion track in each event in order to
detect a pion under the tracking thresholds. The Michel electron tagging for each neutrino
event proceeds in the following way.

• Create hit clusters whose timings are outside the beam bunch and time differences
between the hits are within 100 ns.

• Check the position of the hit whose timing is earliest in each cluster. Check if the
positional difference between the hit and the vertex of the neutrino event is less than
150 mm in each X, Y, Z direction.

• Check the number of events for the cluster satisfying the above criteria. When the
number of events exceeds three, the Michel electron is tagged in the event.

Figure 67 shows the distributions of the number of hits in hit clusters containing the
Michel electron candidates. Here, we collect muon-enriched samples and require the muon
candidates to stop inside the vertex detectors. The number of hits in each cluster tends
to be larger for the WAGASCI detectors than that for the Proton Module. One of the
strengths of the WAGASCI detectors is 4π acceptance thanks to the grid-like structure to
capture a Michel electron. No dead time in a time window for the Michel electron tagging,
up to 1 µ second after the beam bunch timing is another strength in the WAGASCI
detectors. On the other hand, Proton Module introduces a periodic 100 ns dead time per
580 ns trigger cycle, which can affect the efficiency of the Michel electron tagging. This
results in the higher power of rejecting the CC1π± background in the WAGASCI samples.

Stop inside the MRD detectors for the momentum measurement
When we analyze the differential cross section as a function of momentum, we add a
selection to require the track to stop inside MRDs in order to calculate the track momentum
by range.
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Figure 61: The diagram of the selection criteria for the CC0π± sample. "Pre-selection" means the
three-dimensional reconstruction described in Chapter 10. "FV" is fiducial volume and "MUCL"
is the parameter called MUon Confidence Level to be used for the particle identification. The
thresholds for MUCL are different between Proton Module and the WAGASCI detectors. The
parenthesis indicates the WAGASCI detectors case.
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(b) Proton Module, vertex Y
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(c) Proton Module, vertex Z
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(d) WAGASCI detectors, vertex X
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(e) WAGASCI detectors, vertex Y
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(f) WAGASCI detectors, vertex Z

Figure 62: Vertex X (top left), Y (top right), Z (middle left) distributions for the Proton Module
samples, and Vertex X (middle right), Y (bottom left), Z (bottom right) distributions for the
WAGASCI detectors samples inside the fiducial volumes. The red-shaded histogram shows the
CC0π± distribution. The others are the background distributions. Data points are overlaid on
the stacked histograms. The MC events are normalized by the data POT.
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Figure 63: The number of track distributions for the events after the fiducial volume selection.
The left plot shows the Upstream WAGASCI and Downstream WAGASCI events and the right
plot shows the Proton Module events. The red-shaded histogram shows the CC0π± distribution.
The others are the background distributions. The red arrows indicate the threshold on the
number of tracks in the event selections. Data points are overlaid on the stacked histograms.
The MC events are normalized by the data POT.
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Figure 64: The MUCL distributions for the events after the fiducial volume selection. The left
plot shows the Upstream WAGASCI and Downstream WAGASCI events and the right plot shows
the Proton Module events. The histograms are stacked by the interaction topologies. The red
arrows indicate the threshold on MUCL for proton-like in the event selections. Data points are
overlaid on the stacked histograms. The MC events are normalized by the data POT.
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Figure 65: The log-likelihood ratio distribution for the muon-enriched sample in both MC and
data. The simulated νµ and νµ events are represented in the shaded histograms in blue and
red, respectively, The dotted points represent the data distribution. The MC distributions are
normalized by the number of tracks in data.
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Figure 66: The distribution of the track-per-cluster ratio for the WAGASCI events after the
fiducial volume selection. The red-shaded histogram shows the CC0π± distribution. The others
are the background distributions. The red arrows indicate the threshold on the track/cluster ratio
in the event selections. Note that the vertical axis is a log scale to emphasize the background
contributions under the threshold. Data points are overlaid on the stacked histograms. The MC
events are normalized by the data POT.
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(a) WAGASCI detectors
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(b) Proton Module

Figure 67: The distribution of the number of hits in hit clusters containing Michel electron
candidates. The left plot shows the WAGASCI events and the right plot shows the Proton
Module events. The green-shaded histogram is the simulation results and the errors are shown
by the orange bars. The dotted points represent the data distributions. The MC distributions
are normalized by the number of events in data.

Table 16 shows the transition of the number of selected events with each selection criterion
applied sequentially. The number of selected events in MC is normalized by the data POT. The
number of events in data is 10-20% larger than that in MC after all the selections are applied.

Table 16: The transition of the number of selected events with each selection criterion applied
sequentially. The table is divided into WAGASCI and Proton Module samples, each of which
is further divided into the measurements for cos θµ and Pµ. The contained cut is applied before
the "Pre-selection" only for the Pµ cases. The variables, NMC, NData represent the number of
events in MC and Data, respectively.

Selection
WAGASCI samples Proton Module samples

cos θµ Pµ cos θµ Pµ

NMC NData NMC NData NMC NData NMC NData

Pre-selection 141841 152510 90028 99285 58956 59778 35561 37375
Fiducial Volume 4455 4673 3043 3177 4030 4027 2564 2617

Ntrack 3861 4007 2657 2763 3814 3672 2441 2408
MUCL 2516 2789 1753 1941 3129 2920 2017 1925

log-Likelihood ratio 2274 2528 1576 1772 2867 2742 1838 1806
Track-per-cluster ratio 2223 2458 1532 1725 2867 2742 1838 1806
Michel Electron tagging 2097 2335 1442 1636 2631 2554 1673 1671

11.2.2 Selection criteria for CC1π± sample

A motivation to introduce a control sample is to understand the background in the CC0π± sample
for the same phase space as that of the signal. We prepared two kinds of selection criteria where
we changed (reversed) one specific cut in the CC0π± sample to for the CC1π± sample. One
selection criterion requires two MIP-like particles without Michel electron candidates. Since the
CCSPP interaction is expected to have two MIP-like particles (muon and pion), the number
of MIP-like particles must be two accordingly. When there is more than one Michel electron
candidate, it means there is more than one pion that is not reconstructed. As we already have
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one muon and one pion candidate by the cut of the number of MIP-like particles, no other pion
candidate is allowed. The other selection criteria have the same selection cuts as the one used
for the CC0π± sample except for the Michel electron cut. This makes sure that the event has
one muon candidate and one pion under the tracking thresholds. This way provides the control
sample to enrich CCSPP with a similar phase space as the CC0π± sample. 49

11.2.3 Selection criteria for beam-induced background sample

The beam-induced background sample is dominated by events where neutrino interactions hap-
pen outside any of the vertex detectors. In addition, this sample should contain only a muon in
each event. We reverse the fiducial volume cut and require the muon candidate to pass through
Upstream WAGASCI, Proton Module, Downstream WAGASCI and BabyMIND to purify the
beam-induced muons from outside in this sample.

11.2.4 Summary of event selection

The performance of the event selections was evaluated with two mutually correlating variables,
signal purity and efficiency. The signal purity is defined as the fraction of the true signal events
to the total number of selected events. On the other hand, the signal efficiency is defined as the
fraction of the selected number of events to the total number of true signal events in the true
fiducial volume. The optimization of each selection criteria was done based on the figure of merit
defined as Nsignal/

√
Nsignal +Nbackground, where Nsignal and Nbackground are the number of signal

events and background events, respectively.
The results of the event selections are summarized in Table 17. The selection results indicate

that the total number of selected events in the Proton Module samples surpasses that in the
WAGASCI samples although the fiducial mass is less in the Proton Module. This originates
in the difference in acceptance of MRDs with respect to each vertex detector. The acceptance
of BabyMIND is limited for the Upstream WAGASCI samples while that of the WallMRDs is
limited to the Downstream WAGASCI. Both MRDs have balanced acceptance to both vertex
detectors. On the other hand, the difference in the purity between the WAGASCI samples
and the Proton Module samples is visible. It is due in large part to the WAGASCI detectors’
superiority in the performance of the Michel electron tagging to the Proton Module. The total
number of events for the momentum measurements in the left table of Table 17 is smaller than
that for the angle measurement in the right table of Table 17.

49See Appendix J for details.
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Table 17: Results of the selection criteria for the CC0π± samples to show signal purity and
efficiency along with interaction topology compositions. The left column presents numbers for
cross section for muon momentum and cross section for muon angle on the right. Each number
refers to WAGASCI (WG) samples and one with parenthesis does to Proton Module (PM)
samples. The selected number of events is normalized by the expected statistics (2.96 × 1020

protons on target).

Topology WG(PM) samples (Pµ) WG(PM) samples (θµ)
Selected events Fraction (%) Selected events Fraction (%)

CC0π± 1080 (1160) 74.9 (69.3) 1614 (1884) 77.0 (71.6)
CC1π± 130.5 (207.6) 9.05 (12.4) 185.8 (344.5) 8.86 (13.1)

CC Multi-π 10.50 (28.80) 0.73 (1.72) 18.16 (51.18) 0.87 (1.95)
NC 41.80 (40.74) 2.00 (2.44) 47.73 (48.71) 2.28 (1.85)

OOFV 163.5 (221.4) 11.3 (13.2) 197.3 (261.7) 9.41 (9.95)
Wrong sign 15.41 (14.68) 1.07 (0.88) 34.58 (40.77) 1.65 (1.55)

Total 1442 (1673) 100 (100) 2097 (2631) 100 (100)
Purity (%) 74.9 (69.3) 77.0 (71.6)

Efficiency (%) 19.4 (18.5) 29.1 (30.3)

The corresponding plots to Table 17 including the control samples are shown in Figures 68, 69.
The MC distributions are broken down by the interaction topology, CC0π±, CC1π±, CCMulti-π
production, CCOther, Neutral Current, Out of Fiducial Volume and anti-muon neutrino inter-
actions. From the comparison plots, we can find the following things.

CC0π±, WAGASCI detectors samples
Discrepancies in the shape of the distributions are seen. In the momentum distribution,
relatively large data-MC differences are visible in the low momentum regions (0.3 GeV/c to
0.7 GeV/c) and in the high momentum region (more than 1.5 GeV/c). On the other hand,
in the angle distribution, the shape is mostly consistent. The difference in the normalization
by around 10% is seen.

CC0π±, Proton Module samples
The data and the MC prediction are consistent with each other.

CC1π±, WAGASCI detectors samples
The total number of events in data is smaller than that in MC by approximately 20%. In
particular, the difference in the shape is large in the momentum distribution.

CC1π±, Proton Module samples
The total number of events in data is larger than that in MC by approximately 10%. The
difference in the number of events in the momentum distribution can be attributed to the
difference in the normalization. In the angle distribution, the number of events in data
in the high angle region is smaller than that in MC, and the number of events in the low
angle region is larger.

We find the difference in the number of the OOFV events in data between Figures 68a, 68b
in the low momentum region. The sources of the OOFV events are different between these sam-
ples. The dominant contribution to the OOFV events in the Proton Module CC0π± samples
comes from the neutrino interactions in either WallMRD north or south. These backgrounds
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are suppressed by the Michel electron tagging. Due to the relatively low Michel electron tagging
efficiency for the Proton Module, a relatively large amount of the OOFV events remain in the
low energy region. On the other hand, the dominant source of the OOFV events for WAGASCI
detectors comes from the wall upstream to the detector complex. These backgrounds are sup-
pressed by the track-per-cluster ratio selection. Then the number of the OOFV background is
reduced in the WAGASCI detectors. Considering the difference in the source of the OOFV back-
grounds, it is reasonable to see the large fractions of the OOFV events in the high angle region
in Figures 69b, 69d and to see the OOFV events almost evenly distributed in Figures 69a, 69c.
When the muon produced in the WallMRD detectors stops inside the Proton Module and the
event is mis-reconstructed as the neutrino interaction in the Proton Module, the reconstructed
muon angle should be large. In this analysis, due to electronics problems, we cannot use the
TDC information to identify the muon angle. When the problem is solved, we can reduce these
OOFV backgrounds for the Proton Module in future analysis.

141



500 1000 1500 2000 2500 3000

 (MeV/c)µP

0

200

400

600

800

1000

1200

 P
O

T
)

20
 1

0
×

N
um

be
r 

of
 e

ve
nt

s 
(/

2.
96

 

±πCC0

±πCC1

πCCMulti

CCOther

NC

Out of FV

anti-muon neutrino

Data

T2K preliminary

(a) CC0π±, WAGASCI detectors samples
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(b) CC0π±, Proton Module samples
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(c) CC1π±, WAGASCI detectors samples
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(d) CC1π±, Proton Module samples

Figure 68: Comparisons of the momentum distributions for the WAGASCI detectors (left) and
Proton Module (right) samples (68a to 68d) between data and MC in the signal (top) and control
regions of CC1π± (bottom). The event distribution from MC is broken down by its interaction
topology (CC0π±, CC1π±, CCMulti-π production, CCOther, Neutral Current, Out of Fiducial
Volume, and anti-muon neutrino interactions), while the total number of signal events from the
data is plotted as red dotted points. Error bars represent Poisson statistical fluctuation for 1σ.
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(a) CC0π±, WAGASCI detectors samples
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(b) CC0π±, Proton Module samples
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(c) CC1π±, WAGASCI detectors samples

0.4 0.5 0.6 0.7 0.8 0.9 1

µθcos

0

100

200

300

400

500

 P
O

T
)

20
 1

0
×

N
um

be
r 

of
 e

ve
nt

s 
(/

2.
96

 

±πCC0

±πCC1

πCCMulti

CCOther

NC

Out of FV

anti-muon neutrino

Data

T2K preliminary

(d) CC1π±, Proton Module samples

Figure 69: Comparisons of cosine of muon angle distributions for the WAGASCI detectors (left)
and Proton Module (right) samples (69a to 69d) between data and MC in the signal region (top)
and control region of CC1π± (bottom). The event distributions from MC are broken down by
its interaction topology (CC0π±, CC1π±, CCMulti-π production, CCOther, Neutral Current,
Out of Fiducial Volume, and anti-muon neutrino interactions), while the total number of signal
events from the data is plotted as red dotted points. Error bars represent Poisson statistical
fluctuation for 1σ.
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11.3 Systematic parameters

The effect of systematic errors on the number of events is parametrized depending on the source.
The parameters are mainly categorized into three sources, neutrino flux, neutrino interaction,
and detector systematics. They are treated as nuisance parameters in our cross section fitting.
Dedicated studies were conducted to understand the effects of each parameter on the number of
selected events, which is overviewed in this section 50. The way of propagating these errors into
the cross section analysis is explained in the next section.

11.3.1 Neutrino flux parameters

The neutrino flux is simulated based on the JNUBEAM software. This analysis utilizes the
same method as in the oscillation analysis to estimate the flux uncertainties (see Section 6.2).
Although the neutrino flux is different due to the detector complex being located at the different
off-axis angle, the uncertainties are similar to those for 2.5 degrees off-axis. We introduced twenty
parameters in total each of which has a response to a specific range of neutrino energy spectra
from 0 to 30 GeV. The uncertainty from the neutrino flux is approximately 5% in the main
energy region, around 1 GeV.

11.3.2 Neutrino interaction parameters

This analysis in principle follows the interaction models that we established in the oscillation
analysis. We reduced parameters to 26 as other parameters are expected to have a negligible
impact considering the background compositions in this cross section measurement. The total
prior uncertainty amounts to 10 ∼ 15% on the number of selected events.

As this analysis is capable of measurements for both H2O and CH target, optical potential
parameters for carbon and oxygen remain. The most powerful parameter to control the CCQE
interaction, MQE

A , also remains.
For the 2p2h interaction and the CCSPP interaction, the prior uncertainties are inflated to

make these parameters more sensitive to a change in the number of events with respect to the
nominal simulation based on the underlying models.

Other sub-dominant interactions such as charged-current multi-pion production and deep
inelastic scattering are simplified. The only normalization parameters in response to each inter-
action are introduced. This is because their contribution is small enough according to Table 17.
In order to make the normalization parameters more flexible to cover other shape-altering pa-
rameters in these interactions, we inflate the uncertainties from 5% to 50% level.

11.3.3 Detector parameters

We can in principle reproduce the detector complex in the Geant4-based Monte Carlo simulation
only within measurement precisions. The difference in the implementation of detector parameters
may potentially end up with uncertainties on the number of selected events. The detector
parameters cover geometrical alignments, scintillator/MPPC/electronics responses, the magnetic
field in BabyMIND and the physics models to control pion FSI interactions. They are the most
fundamental parameters to provoke the data/MC differences in the end. In order to estimate the
effect, we perform a lot of simulations with a specific parameter being varied and then calculate
the differences in the number of selected events between the nominal value and the altered value.

50See Appendix K for detailed calculations.
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These detector parameters are practically not sufficient to take into account data/MC differ-
ences given there might be missing error sources that are not implemented in the MC simulation.
The different actions of the thresholds used in the track reconstruction and event selections may
not be covered only by these parameters. Therefore, we introduced additional systematic errors
on the data-MC differences in the variation of the number of events when the nominal thresh-
old is altered. An illustrative example of how to calculate these additional statistics is shown
in Table 18. First, we calculate the number of events with the nominal threshold and varying
thresholds using MC and data. Second, we calculate the difference in the number of events be-
tween the setup of the nominal threshold and varying thresholds. Third, the data-MC differences
are calculated by subtracting the differences in data from the one in MC. Finally, the mean value
of the data-MC differences is allocated to one of the additional systematic uncertainties. In the
analysis, this calculation is done for each bin instead of the total number of events.

Table 18: An illustrative example to calculate the additional systematics about the positional
differences in the track matching taking into account the data-MC differences stemming from
the thresholds defined in the track reconstruction and event selections. "Value nom" represents
the nominal threshold in the track reconstruction or event selection. "Value minus" and "Value
plus" mean the thresholds shifted in negative and positive directions.

Value minus Value nom Value plus
Threshold (mm) 80 100 120

MC Nominal number of events 990 1000 1010
Difference w.r.t. nominal -0.01 0.00 0.01

Data Nominal number of events 880 900 920
Difference w.r.t. nominal -0.022 0.00 0.022

Data-MC difference 0.012 0.00 0.012
Systematic value (0.012 + 0.012)/2 = 0.012 (1.2%)

The total number of detector systematic parameters is 27, and the contribution to the total
uncertainties on the number of events is around 5% for the total cross section analysis. Compared
to the other systematics parameters, the total uncertainty of detector parameters is not dominant.
Not only the size of total uncertainties in each bin but also the covariances between bins are
calculated and stored in the covariance matrices.

11.4 Cross section analysis

We perform the cross section measurements by incorporating the outcomes of the event selections
and prior constraints of the systematic parameters into a fitting framework that finds the most
probable values to describe data. The outcomes of the event selections are binned in reconstructed
momentum or angle for each sample. The binning scheme was determined to give a sufficient
number of events in every bin. We made use of the same fitting method, Barlow-Beeston modified
by J.S. Conway as the ND fitting (see Section 6.4). The fitter searches for the best-fit values for
signal and background events and all fitting parameters by minimizing the defined chi-squared.
In addition, the fitter gives a covariance matrix to contain the uncertainties on the cross section
as well as the correlation. The obtained best-fit parameters give the cross section results and the
covariance matrix provides posterior uncertainties on each differential cross section along with
the covariances. This section provides information on the analysis binning scheme, the fitting
framework and the calculation formula for cross sections.
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11.4.1 Analysis binning

Corresponding to true signal events and reconstructed signal samples, we defined their analysis
binning as in Figures 19, 20.

Table 19: Binning edges for true and reconstructed Pµ. The lower edge of the momentum, 300
MeV/c represents the phase space restriction used in this analysis.

topology Pµ (MeV/c)
True CC0π± 300, 500, 700, 900, 1100, 1500, 30000

Reco

CC0π± PM-BM 300, 600, 700, 900, 1100, 1500, 30000
CC0π± PM-WMRD 300, 400, 500, 600, 30000

CC1π± PM 300, 1100, 3000
CC0π± UWG-WMRD 300, 500, 600, 3000

CC0π± UWG-BM 300, 900, 1500, 30000
CC0π± DWG-BM 300, 500, 600, 700, 900, 1100, 30000

CC1π± WG 300, 1100, 30000

Table 20: Binning edges for true and reconstructed cos θµ. The lower edge of the cosine of the
angle, 0.34 represents the phase space restriction used in this analysis.

topology cos θµ
True CC0π± 0.34, 0.71, 0.77, 0.91, 0.94, 0.97, 1.0

Reco

CC0π± PM-BM 0.34, 0.819, 0.906, 0.94, 0.966, 0.985, 1.0
CC0π± PM-WMRD 0.34, 0.50, 0.643, 0.766, 1.0

CC1π± PM 0.34, 0.94, 1.0
CC0π± UWG-WMRD 0.34, 0.643, 0.766, 1.0

CC0π± UWG-BM 0.34, 0.966, 0.985, 1.0
CC0π± DWG-BM 0.34, 0.643, 0.819, 0.906, 0.940, 0.966, 0.985, 1.0

CC1π± WG 0.34, 0.94, 1.0

The true binning scheme is used when the corresponding differential cross section is shown.
The binning for reconstructed variables depends on the detector topology, in particular the MRD
detector. Each bin width was determined such that each bin should have a sufficient number of
selected events, typically 50 to 100 events at least. The lower edge of muon kinematics represents
the phase space restrictions used in this analysis. The MC simulation predicts significantly small
statistics outside the certain phase space with the current data. We decided to restrict the signal
region above 300 MeV/c for Pµ and above 0.34 for cos θµ.

11.5 Cross section fitter

The outcomes of the selection criteria are stored in histograms according to the defined binning
scheme for both MC and data. We then explore the most probable parameter values to describe
data. We make use of a binned likelihood approach practically using a negative log-likelihood to
realize it. The likelihood is expressed as

−2 lnL(−→y ;
−→
θ ) = −2 lnLstat(

−→y ;
−→
θ )− 2 lnLsyst(

−→y ;
−→
θ ), (11.1)
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where −→y is the given data and
−→
θ is a set of parameter values.

The statistical part of the likelihood is given by

−2 lnLstat(
−→y ;

−→
θ ) =

reco bins∑
j

2

(
βjN

exp
j −Nobs

j +Nobs
j ln

Nobs
j

βjN
exp
j

+
(βj − 1)2

2σ2
j

)
, (11.2)

where j runs over each reconstructed bin for all samples and N exp is the number of selected
events predicted by MC and Nobs is the observed number of selected events in data, β is the
Barlow-Beeston scaling parameter and σ is the relative Monte Carlo statistical uncertainty. 51

The expected number of events in each bin (N exp
j ) consists of contributions from the signal

(N exp,sig
j ) and background (N exp,bg

j ). The signal contribution is calculated with the true signal
events based on a detector smearing matrix or transferring matrix, denoted by tij to provide a
conversion factor from the true kinematic variables to reconstructed variables. The number of
events, N exp,sig

j is then given by

N exp,sig
j =

true∑
i

N exp,sig
i tij . (11.3)

We then introduce additional parameters to apply multiplicative event weights as a function
of true bins to the number of selected events in MC (NMC,sig

i ), called "template parameters"
denoted by ci. N exp,sig

i is expressed using them in

N exp,sig
i = ciN

MC,sig
i . (11.4)

The template parameters are free parameters with no prior uncertainty. Therefore, they are more
sensitive to the shape of the input simulation than systematic parameters are. The template
parameters can mitigate the potential bias from underlying models. Equation 11.3 is written
using Equation 11.4 by

N exp,sig
j =

true∑
i

ciN
MC,sig
i tij . (11.5)

Inclusion of the background contribution in Equation 11.5 gives

N exp
j =

true∑
i

(
ciN

MC,sig
i +NMC,bg

i

)
tij . (11.6)

At this point, only weights from the template parameters are taken into account. In addition,
there are three systematic contributions such as neutrino flux, neutrino interaction and detector
systematics. The expected number of events is weighted by these parameters. The flux parame-
ters are binned in the true neutrino energy. The parameter values that are given in each MINUIT
iteration act as multiplicative event weights to change the predicted event distributions. The
neutrino interaction parameters (26 in total) have different responses, which are sensitive to spe-
cific neutrino interaction types. The relationship between interaction parameters and weights is
pre-calculated and stored in the format of spline functions for interaction type, target material,

51In addition to the fact that this refers to MC statistical uncertainty, σ could be interpreted as the statistical
uncertainty on the data.
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and kinematic bins. The weight of each interaction parameter is calculated using splines. The
detector systematic parameters (26 for Pµ, 27 for θµ in total) act as normalization parameters.
The covariances between these parameters can be described by the detector covariance matrix.
Inclusion of all systematic weights modifies Equation 11.5 to

N exp
j =

true∑
i

[
ci

(
NMC,sig

i

int∏
a

w(a)sigij

)
+

bg∑
k

NMC,bg
ik

int∏
a

w(a)bgij

]
tijrj

Eν∑
n

vinfn, (11.7)

where a runs over interaction parameters and w(a) refers to each weight. They affect the number
of selected events in the MC to change its shape or normalisation. The parameter rj represents
the weights from detector systematics. The integer n runs over the neutrino energy corresponding
to true bin i. The vin factors are weights from neutrino energy bin n and fn factors are the weights
from flux systematics.

The systematic part is given in

−2 lnLsyst =
∑
p

(−→p −−→p prior)(V
syst
cov )−1(−→p −−→p prior), (11.8)

where p runs over all systematic parameters and V syst
cov represents covariance matrices for flux,

interaction, and detector parameters, denoted by −→p prior. This acts as a penalty term for moving
the systematic parameters away from their nominal values. Using this method of describing all
the uncertainties with a covariance matrix and calculating the penalty term approximates the
uncertainties as Gaussian.

We performed various kinds of fits to verify the fitting framework and to check the sanity
of the outcomes of the selection criteria and systematic priors. In addition, we assessed the
potential weakness in the neutrino interaction model. In case the uncertainty of interaction
models cannot be covered by the underlying systematic parameters, the potential bias stemming
from the nominal model is checked by alternative simulated data sets. 52

11.6 Cross section extraction

The cross section fitter provides the best-fit values for the template parameters (ci) and the
systematic parameters. The expected signal events are then calculated with those parameters
and the inversed smearing matrix that can convert the observed number of events in the binning
of the reconstructed variables to the number of true signal events in the binning of the true
variables. The equation is

N̂ exp,sig
i =

recon∑
j

(
ĉiN

MC,sig
j

int∏
a

ŵ(a)sigij

)
(tij)

−1r̂j

Eν∑
n

vinf̂n, (11.9)

where the "hat" means the best fit. When we calculate a cross section, there are multiple ways
of treating neutrino flux. We took an approach of a flux-integrated cross section rather than a
flux-unfolded one to avoid model dependence (or at least reduce it) in terms of the shape of the
neutrino energy spectrum. The formula to calculate the differential flux-integrated cross section
as a function of muon kinematics, dσ/dxi, where σ is the total flux-integrated cross section and
x is muon kinematics is

52See Appendix N,O for details.
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dσ

dxi
=

N̂ exp,sig
i

ϵiΦNFV
nucleons

× 1

∆xi
, (11.10)

where ϵ,Φ, NFV
nucleons, and ∆xi are the signal detection efficiency, integrated muon neutrino flux,

the number of target nucleons in the fiducial volume and the bin width of true bin i, respec-
tively. The detailed calculation of the number of nucleons and the integrated flux are shown in
Appendix M. Since we report the single differential cross section as a function of muon kinematics,
x refers to either muon momentum Pµ or muon angle θµ.

The errors on the cross section results are estimated by throwing a lot of toy experiments
based on a covariance matrix with the Cholesky decomposition [168]. The method is explained
in Appendix L.
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12 Results of neutrino-nucleus cross sections

The results of the data fit for the neutrino cross sections of the CC0π± signal are shown in this
section. We perform the cross section fit to obtain the constraints on the template parameters
and the nuisance parameters. With the best fit parameters and the constraints, we extract
the integrated and differential cross sections for the muon-neutrino charged-current interactions
without a charged pion in the final state on H2O and CH targets. The interpretation of those
results is discussed. Then, the importance of these results and future prospects are also described.

12.1 Data Set

We present the analysis results of the differential cross section for the muon-neutrino charged-
current interactions without a charged pion in the final state on H2O and CH targets at 1 GeV
energy region with the data set corresponding to 2.96× 1020 POT taken in the neutrino mode.
The data set is divided into three periods from November 2019 to April 2021, shown in Table 21.
The installation of our detectors was done in 2019. The commissioning of the detectors revealed
some failures in the WallMRD electronics. We found that the random noises which remain even
after the 2.5 p.e. cut inside the electronics. As the electronics have limited buffers in each
trigger, signal hits are sometimes lost due to the random noises. After thorough investigations,
we concluded the circuits in the electronics needed to be modified during the data taking in 2019.
The modification works were done after the data taking in the middle of January 2020. Since the
end of January 2020, we have succeeded in operating all the detectors in good condition. Thus,
the good-quality data are limited to 2.96 × 1020 POT, which are used in the data fit. The MC
distributions to be compared to data are normalized by this data POT.

Table 21: The data set used in this analysis

T2K Run Period Delivered POT [/1020] Good-quality POT [/1020]
Run10 Nov. and Dec. in 2019 2.65 0.00
Run10 Jan. and Feb. in 2020 2.12 1.38
Run11 Mar. and Apr. in 2021 1.78 1.58
Total 6.55 2.96

12.2 Results of the flux-integrated cross section

We report the flux integrated total cross section (σtot) on both targets using the samples for the
angle distribution in the limited phase space. The impact of the low statistics in this analysis is
small for the integrated cross section compared to the differential cross section because all data
are merged in one bin. The total cross sections are calculated by the summation of the differential
cross section as a function of the angle because it has higher statistics than the statistics for the
differential cross section as a function of the momentum. The comparison of the integrated cross
section between data and MC can be achieved with higher precision. The extracted integrated
cross sections are

σtot,H2O = 1.636± 0.370 (10−39 cm2/nucleon) (12.1)

σtot,CH = 1.432± 0.355 (10−39 cm2/nucleon). (12.2)
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On the other hand, the predicted cross sections by the neutrino interaction models in NEUT are
1.165 for H2O and 1.197 for CH in the same unit. The size of the cross section in data is larger
than that in MC but does not deviate from the MC predictions by 2σ significance.

12.3 Results of the differential cross section

The fitting method described in the previous chapter is used to extract the differential cross
sections using the selected events in data and MC. The results of the differential cross section
in the momentum distribution are shown in Table 22. The results in the angle distribution are
shown in Table 23. The corresponding plots are also shown in Figures 70, 71. The errors on
these differential cross section results include both statistical and systematic contributions. The
measured differential cross section on the H2O target is mostly consistent with our MC prediction
except for the first bin in the momentum distribution (0.3 GeV/c - 0.5 GeV/c) and the fourth
bin in the angle distribution (cos θµ range of 0.91 - 0.94). On the other hand, the measured
differential cross section on the CH target is consistent with the MC prediction within the errors
in all bins. These data-MC differences including the differences in the integrated cross sections
are discussed in Section 12.4.1.
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Table 22: Results of the differential cross sections in the momentum distribution. The unit of
each differential cross section is (cm2)/(nucleon ·GeV/c).

Target Material Range (GeV/c) Postfit value (10−39) Postfit error (10−39) MC (10−39)

H2O

0.3 - 0.5 2.367 0.675 1.225
0.5 - 0.7 1.825 0.458 1.553
0.7 - 0.9 1.063 0.320 1.010
0.9 - 1.1 0.437 0.194 0.513
1.1 - 1.5 0.099 0.127 0.259
1.5 - 5.0 0.012 0.003 0.007

CH

0.3 - 0.5 1.274 0.402 1.227
0.5 - 0.7 1.391 0.352 1.570
0.7 - 0.9 0.879 0.235 1.034
0.9 - 1.1 0.514 0.155 0.536
1.1 - 1.5 0.227 0.076 0.266
1.5 - 5.0 0.008 0.002 0.008

Table 23: Results of the differential cross sections in the angle distribution. The unit of each
differential cross section is (cm2)/(nucleon).

Target Material Range (cos θµ) Postfit value (10−39) Postfit error (10−39) MC (10−39)

H2O

0.34 - 0.71 1.489 0.539 0.884
0.71 - 0.77 1.892 1.066 1.613
0.77 - 0.91 2.815 0.652 2.329
0.91 - 0.94 6.374 1.614 3.491
0.94 - 0.97 5.087 1.494 4.080
0.97 - 1.00 7.779 1.772 6.269

CH

0.34 - 0.71 1.114 0.365 0.895
0.71 - 0.77 2.750 1.120 1.615
0.77 - 0.91 2.845 0.721 2.357
0.91 - 0.94 4.089 1.118 3.509
0.94 - 0.97 5.012 1.322 4.392
0.97 - 1.00 6.123 1.511 6.739
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Figure 70: The differential cross section results as a function of Pµ on H2O target (top) and CH
target (bottom).
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Figure 71: The differential cross section results as a function of cos θµ on H2O target (top) and
CH target (bottom).
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12.4 Discussions

12.4.1 Interpretation of the cross section results

We obtained the integrated cross sections larger than around 20% - 30% than the MC predictions.
These are not so significant difference with respect to the size of the uncertainties. However,
according to Table 16, we see the number of events in MC be almost comparable to the number
of events in data for the Proton Module samples. Even for the WAGASCI samples, the difference
is around 10%. We discuss how the extracted cross sections are pulled up.

In this analysis, we perform the fits to get the best-fit parameters, template, cross section,
detector, and flux parameters as well as their constraints. Then, we calculate the best-fit cross
sections using the parameters, signal detection efficiency, integrated flux, and the number of
target nucleons. The cross section parameters have two roles; to change the expected number
of events via their weights and to change the signal detection efficiency. We check the fitting
formula again.

N exp
j =

true∑
i

[
ci

(
NMC,sig

i

int∏
a

w(a)sigij

)
+

bg∑
k

NMC,bg
ik

int∏
a

w(a)bgij

]
tijrj

Eν∑
n

vinfn. (12.3)

The cross section parameters are denoted by w(a)ij , which multiply the number of signal
and background events. The change in the number of events by the cross section parameters
will be canceled in the calculation of the cross section by the template parameters denoted by
ci in Equation 12.3. The first role of the cross section parameters is not reflected in the end.
The efficiency change, however, can affect the extracted cross sections. Before discussing the
efficiency change, we compare the event distributions in MC before the fit with the distributions
multiplied by the best-fit parameters.
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(a) WAGASCI detectors samples
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Figure 72: Comparison between the prior and post-fit cos θµ distributions only for the signal
samples. The horizontal axis is cos θµ in the reconstruction space.

The WAGASCI events are pulled up by around 11% with respect to the prior distribution,
while the Proton Module events are comparable to the prior distributions except for the last bin.
The post-fit distributions are multiplied by all the parameters but without recon-true conversion.
In the actual calculation, after the recon-true conversion, the cross sections are extracted. We
compare the signal efficiencies using the best-fit parameters to the prior efficiencies. For the
integrated cross section on the H2O target, the overall efficiency is changed from 0.425 to 0.384
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and on the CH target, it is changed from 0.357 to 0.301. They correspond to around 10.6% and
18.6% increases in the cross sections. The behaviors of the differential cross section shown in
Figure 71 can be understood by taking into account these efficiency changes. The differential
cross sections on the CH target are larger than the MC true cross sections except for the last
bin, which corresponds to the distributions in Figure 72 multiplied by the increasing efficiency.
In addition, the discrepancy in the 4th bin on H2O target can be also explained by the shape in
the post-fit distributions and increasing efficiency.
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Figure 73: The best-fit and errors of the cross section parameters in the angle measurement.
Orange rectangles indicate the prior constraints on the cross section parameters, and the blue
dots and bars are the best-fit values and their errors. The nominal value is 1.0, and the relative
value with respect to the nominal is calculated for each cross section parameter.

We assume the changes in the efficiency are caused by the post-fit cross section parameters.
The constraints on the parameters are shown in Figure 73. The constraints on the other parame-
ters are described in Appendix P. We focus on the "MaRES" and "MaCCQE" parameters which
are the main parameters of CCRES and CCQE respectively. They are both decreasing, which
means that the number of events for CCRES and CCQE is pulled down by these parameters.
This causes the signal efficiency to decrease because those interactions are the main signal com-
ponents. In order to check which reconstructed samples drive these changes, we list the χ2 values
for each likelihood contributor during the fit in Table 24. It shows the cross section parameters
move so that the difference in PM CC1π± is reduced during the fit. The cos θµ distributions
for CC1π± samples are shown in Figure 74. The shape in the PM CC1π± sample is different
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between data and MC. In order to reduce the difference, the fitter pulls down the CCRES and
CCQE components by changing the MaRES and MaCCQE parameters while pulling up the
CCDIS and CCMulti-pi (CCMPI) parameters. This reduction of the MaRES is also seen even
in the fit without the control samples. Figure 75 shows the comparisons of cos θµ distributions
for the signal samples between data and MC. We see relatively large differences in shape for the
UWG-WM (Upstream WAGASCI to WallMRDs) sample. In fact, χ2 for this sample is reduced
most in the fit without the control samples. We find CCRES events in the 1st and 3rd bins
significantly larger than those in the 2nd bin. The main contributions in the CCRES events in
the 1st and 3rd bins come from the Wall background events with large weights (10 15, typically
less than 0.1). Therefore, these events have relatively large uncertainties. On the other hand, in
the 2nd bin, the signal contribution is high without any events having this larger weight. It is
reasonable for the fit to find the best fit by reducing the MaRES parameter and increasing the
template parameters corresponding to the 2nd bin. By taking into account this fact, a reduction
in the MaRES parameter would be the right direction considering the signal samples as well as
the background samples.

Table 24: Comparison of the χ2 for each likelihood contributor between fits with and without
the cross section parameters.

Likelihood contributor fit with the cross section parameters fit without the cross section parameters
flux 0.006 0.112

cross section 2.27 0
detector 5.23 7.25
PM-WM 2.59 2.35
PM-BM 1.10 1.36

PM CC1π± 2.82 1.09
UWG-WM 3.67 3.45
UWG-BM 1.48 0.92
DWG-BM 2.31 3.15

WG CC1π± 0.146 0.33
Total 19.33 22.30
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Figure 74: Comparison of CC1π± cos θµ distributions between data and MC. The histograms
are stacked by the interaction types; CCQE (charged current quasi elastic), CCMEC (charged
current meson exchange), CCSPPC (charged current single charged pion production), CCSPP0
(charged current single neutral pion), CCDIS (charged current deep inelastic scattering), CCMPI
(charged current multi-pion production), NC (neutral current). Data points are overlaid on the
histograms.

158



CCQE

CCMEC

CCSPPC

CCSPP0

CCDIS

CCMPI

CCOTHER

NC

OTHER

Data

0.4 0.5 0.6 0.7 0.8 0.9 1

µθcos

0

50

100

150

200

250 P
O

T
)

20
10×

ev
en

ts
 (

/2
.9

6

stack_D2_sample_PM-WM

0.4 0.5 0.6 0.7 0.8 0.9 1

µθcos

0

50

100

150

200

250

300

350

400

450

 P
O

T
)

20
10×

ev
en

ts
 (

/2
.9

6

stack_D2_sample_PM-BM

0.4 0.5 0.6 0.7 0.8 0.9 1

µθcos

0

20

40

60

80

100

120

140
 P

O
T

)
20

10×
ev

en
ts

 (
/2

.9
6

stack_D2_sample_UWG-WM

0.4 0.5 0.6 0.7 0.8 0.9 1

µθcos

0

20

40

60

80

100

120

140

160

180

200

 P
O

T
)

20
10×

ev
en

ts
 (

/2
.9

6

stack_D2_sample_UWG-BM

0.4 0.5 0.6 0.7 0.8 0.9 1

µθcos

0

50

100

150

200

250

300

350

 P
O

T
)

20
10×

ev
en

ts
 (

/2
.9

6

stack_D2_sample_DWG-BM

Figure 75: Comparison of CC0π± cos θµ distributions between data and MC. The histograms
are stacked by the interaction types, same as in Figure 74. Data points are overlaid on the
histograms.
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We have discussed so far the integrated cross sections using the angle distributions. We can in
principle extract the integrated cross sections using the momentum distributions. The extracted
integrated cross sections by the summation of the differential cross sections as a function of muon
momentum are

σtot,H2O = 1.22± 0.320 (10−39 cm2/nucleon) (12.4)

σtot,CH = 0.93± 0.226 (10−39 cm2/nucleon). (12.5)

The true cross sections on the H2O and CH targets are 0.989 × 10−39 and 1.008 × 10−39

respectively. The data are consistent with the MC predictions within 1σ errors. It should be
mentioned that the integrated cross sections using angle distributions are 1.636 × 10−39 on the
H2O target and 1.432 × 10−39 on the CH target. As we use the different samples between the
momentum and angle distributions, some differences should be expected. In particular, the
parameter MaCCQE is not so much changed with the fit using muon momentum distributions
(Appendix P), while the parameter is decreased with the fit using the cosine of the muon angle
distributions. This can lead to differences in signal detection efficiencies. In fact, the efficiency
for the momentum distributions is increased by about 10% on the CH target, while the efficiency
for the angle distributions is almost unchanged on the H2O target. As a result, we see relatively
large differences between the integrated results using momentum and angle distributions. The
level of differences is still 1σ considering both measurement errors. As the statistics are higher
by about 40-50% in the angle distributions, we quote the integrated cross section results using
the angle distributions as the final results in this paper.

12.4.2 Importance of the measurements

We presented the differential cross sections for the muon-neutrino charged current interactions
without a charged pion in the final state at a mean energy of 0.97 GeV. In the T2K publications,
we have only one paper for the cross section measurement at this mean energy for the anti-muon
neutrino interactions [160]. Therefore, this is the first measurement result by T2K at this energy
region for muon-neutrino interactions. This will provide a new perspective to assess our neutrino
interaction models. As described in Chapter 6, in the ND280 measurements, the number of
events for the CC0π samples in data is larger than that in the MC. Similar yet milder differences
can be seen in the data-MC comparisons of the event distributions in Figures 68a, 69a on the
H2O target. On the other hand, we can see good consistency between data and MC on the CH
target. Neutrino interactions depend on neutrino energy. As the mean energy of the WAGASCI-
BabyMIND measurements is different from the one in the ND280 measurements, the ratios of
each interaction type in both measurements are different from each other. The measurements
by WAGASCI-BabyMIND with more statistics comparable to the ND280 measurements are
desirable to confirm if the observed difference between WAGASCI-BabyMIND and ND280 results
is caused by the ratio of interaction types in the mean energy of neutrinos. The contribution
from statistical parameters and systematic parameters is discussed in the next section.

The neutrino-nucleus interaction on the H2O in T2K is important as described in Chapter 9.
The detector with the CH target has been upgraded for ND280 whereas the H2O target detector
is not. In fact, one-third of the FGD2 water target in the ND280 is lost. Thus, the cross
section measurements on the H2O target by WAGASCI-BabyMIND are expected to cover and
provide meaningful insights into the oxygen-carbon differences in neutrino interactions by the
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standalone measurements and combined measurements with ND280. Our measurements are the
starting point. In the future, a finer binning or two-dimensional binning scheme will be analyzed
with more statistics.

12.4.3 Separation of statistical and systematic uncertainties

We evaluate the statistical and systematic uncertainties as follows.

• Perform the cross section fit using the simulated data with each event weight increased by a
thousand times. When the event weights are increased by a thousand times, the statistical
effect is negligible.

• Do the quadrature subtraction of the cross section errors obtained in the fit using simu-
lated data with increasing event weights from the cross section errors obtained in the data
fit. This will provide the estimated statistical uncertainty in the data fit assuming the
systematic uncertainty affects both MC and data in the same manner.

The calculated statistical and systematic uncertainties are summarized in Tables 25, 26. This
analysis is statistically limited. The relative statistical errors to the best fit values in the angle
distribution are smaller than those in the momentum distributions. As we do not require the
contained cut for the muon candidate in the angle distributions, the statistics for the differential
cross section as a function of angle is almost 50% larger than as a function of momentum.

The systematic uncertainty is not negligible to the statistical uncertainty for the momentum
distributions. A large contribution comes from the detector parameters. The detailed calcula-
tions of the detector parameters are described in Appendix K. For the momentum distributions,
the dominant error source comes from the effect of the parameter of signal lost to take into
account the potential differences between data and MC in vertex Z distributions. 53 In addition,
the fiducial volume and muon contained cut in the MRDs are other large error sources. We need
the muon contained cut to measure the muon momentum by range. We can reduce this error
when we establish the method to reconstruct the momentum by curvature in BabyMIND. The
size of the detector systematics is related to the total number of events in data because we use
the data to estimate the effect of the data-MC differences. We expect the detector systematics
to be reduced by increasing the statistics as well as the statistical uncertainties.

On the other hand, the systematic uncertainty is not significant to the statistical uncertainty
for the angle distributions. One of the reasons is that the statistics for the angle distributions
are larger by about 40% than the statistics for the momentum distributions because we do
not need the muon contained cut. Besides, we do not need the detector error stemming from
this cut. However, the parameter to take into account the WAGASCI vertex Z differences has
relatively large contributions in this case as well. Confirming that they are accidental differences
or identifying the causes of the differences would be a primary matter to deal with to achieve
more precise measurements.

53We found the differences in WAGASCI vertex Z distributions between data and MC, which are described in
Appendix K.2.9. After thorough investigations, we did not find any failure mode to cause these differences or
significant impact on the cross section analysis. As we did not specify the cause of the differences, we added a
conservative systematic parameter to take into account the potential difference.
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Table 25: The impact of statistical (stat.) and systematic (syst.) uncertainties in momentum
distributions. The unit of each differential cross section is (cm2)/(nucleon ·GeV/c). The fraction
of the statistical uncertainty to each best fit value is also shown in the parenthesis.

Target Material Range (GeV/c) Best fit value (10−39) Stat. (10−39) Syst. (10−39)

H2O

0.3 - 0.5 2.367 0.675 (28.5%) 0.261
0.5 - 0.7 1.825 0.458 (25.1%) 0.236
0.7 - 0.9 1.063 0.320 (30.1%) 0.173
0.9 - 1.1 0.437 0.194 (44.4%) 0.104
1.1 - 1.5 0.099 0.127 (128.3%) 0.067
1.5 - 5.0 0.012 0.003 (25%) 0.001

CH

0.3 - 0.5 1.274 0.402 (31.6%) 0.282
0.5 - 0.7 1.391 0.352 (25.3%) 0.205
0.7 - 0.9 0.879 0.235 (26.7%) 0.225
0.9 - 1.1 0.514 0.155 (30.2%) 0.082
1.1 - 1.5 0.227 0.076 (33.5%) 0.045
1.5 - 5.0 0.008 0.002 (25%) 0.001

Table 26: The impact of statistical (stat.) and systematic (syst.) uncertainties in angle dis-
tributions. The unit of each differential cross section is (cm2)/(nucleon). The fraction of the
statistical uncertainty to each best fit value is also shown in the parenthesis.

Target Material Range (cos θµ) Best fit value (10−39) Stat. (10−39) Syst. (10−39)

H2O

0.34 - 0.71 1.489 0.539 (36.2%) 0.027
0.71 - 0.77 1.892 1.066 (56.3%) 0.104
0.77 - 0.91 2.815 0.652 (23.2%) 0.064
0.91 - 0.94 6.374 1.614 (25.3%) 0.165
0.94 - 0.97 5.087 1.494 (29.4%) 0.158
0.97 - 1.00 7.779 1.772 (22.8%) 0.165

CH

0.34 - 0.71 1.114 0.365 (32.8%) 0.021
0.71 - 0.77 2.750 1.120 (40.7%) 0.079
0.77 - 0.91 2.845 0.721 (25.3%) 0.057
0.91 - 0.94 4.089 1.118 (27.3%) 0.127
0.94 - 0.97 5.012 1.322 (26.4%) 0.12
0.97 - 1.00 6.123 1.511 (24.7%) 0.124
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12.4.4 Data and MC model comparisons

The data fit results are compared to several kinds of alternative interaction models to see which
models describe the results best. The agreement between the measurement and models is quali-
fied by the χ2 defined by

χ2 =
N∑
ij

((
dσ

dx

)
i,data

−
(
dσ

dx

)
i,model

)
Vij

−1

((
dσ

dx

)
j,data

−
(
dσ

dx

)
j,model

)
(12.6)

where N is the number of cross section bins, i, j are the ith and jth kinematic bin, respectively.
The parameter V is the cross section covariance matrix. The models compared to this analysis
result are briefly described as follows.

NEUT alternative version
We use another model implemented in NEUT. One difference exists in the treatments for
the nuclear ground state. The alternative model does not introduce Spectral Function (SF)
but treats the ground state in the Global Fermi Gas (GFG) model as shown in Figure 76.
The CCQE model is the Nieves 1p1h model without the RPA correction, with MQE

A being
set to 1.05 GeV/c2, compared to 1.21 GeV/c2 in the original NEUT model. This MQE

A value
reflects the theoretical calculation using 2p2h excitations (MA = 1.049 GeV/c2 [100]). The
expected number of CCQE events would decrease by about 15% in this model, which is
the outcome of the smaller cross section.

GENIE
GENIE is a neutrino interaction simulator allowing various combinations of interaction
models. 54 The CCQE model is the same as NEUT but with a different MQE

A (0.99 GeV/c2).
The treatment of the ground state of a nucleus is also different. Our NEUT model utilizes
the Benhar spectral function model, whereas the GENIE adopts a Relativistic Fermi Gas
(RFG) model. Another difference is in the missing energy and missing momentum distri-
butions. The relationship between the missing energy and missing momentum is described
by a unique curve in the GFG while it is described with several bands corresponding to
the nuclear shell states in the Benhar spectral function model.

54We used the version "G18-02".
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Figure 76: The reconstructed missing energy and momentum distributions for the three initial-
state nuclear models implemented for the CCQE interaction in NEUT (Benhar Spectral Function
in red, Local Fermi Gas model in blue, and Global Relativistic Fermi Gas model in green) [122].

Post fit by the ND fit
The best-fit interaction parameters obtained from the near detector fit in the oscillation
analysis are used to weight the event distributions in the base model. CCQE-related
parameters and 2p2h parameters are increased with respect to the pre-fit values whilst
resonant parameters (C5

A, MRES
A ) are decreased so that the best fit parameters pull up the

CC0π events and pull down the CC1π events.

The comparisons of χ2 for each model are shown in Table 27. Each model prediction on
the differential cross sections is compared in Figure 77 against the data result. The degree of
freedom is 12 for both momentum and angle distributions. No particular model is rejected or
favored based on the fit results according to the χ2 in this analysis due in large part to the large
statistical uncertainty.

Table 27: Agreement between the data fit and the simulation based on various models as mea-
sured by the χ2.

Model χ2 in momentum binning χ2 in angle binning
CH H2O total CH H2O total

NEUT nominal 1.138 10.46 11.9 2.894 4.074 6.519
NEUT alternative version 1.245 10.35 11.65 2.783 5.114 7.237

GENIE 2.066 10.7 13.11 1.66 3.773 5.197
Post fit by the ND fit 1.473 10.13 12.01 2.406 4.146 5.958
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Figure 77: Extracted differential cross section compared to nominal MC and alternative MC
models as a function of momentum (left) and angle (right). The bin indices from 0 to 5 are the
CH results and the bin indices from 6 to 11 are the H2O results. The color corresponds to each
model; black: the nominal NEUT version, green: the alternative version of NEUT with MQE

A is
set to 1.03 GeV/c2, blue: GENIE, cyan: post-fit ND tune.

12.4.5 Future prospects

This analysis is statistically limited as was already discussed. The accelerator power supplies
in the Main-Ring have been upgraded and the T2K experiment has upgraded the horn current
to increase the statistics for the cross section measurements and the oscillation measurements.
Assuming the beam upgrade plan proposed in [68], T2K is going to accumulate 1.5× 1021 POT
in a one-year operation on average until 2027. The expected statistics until 2027 correspond to
about five times larger than what we used for the first result. When the statistics reach about 10
times larger than the current statistics for WAGASCI-BabyMIND, we will be able to measure the
double differential cross sections in a similar binning scheme used in the ND280 measurements.
It will be possible to compare the results with those from ND280 and discuss the cause of
differences that we have seen between data and MC as shown in Figure 46 in Chapter 9. The
update of the statistics and the binning scheme will increase the precision of the measurements
to constrain the neutrino flux and interaction parameters, which are eventually used in the
oscillation analysis by T2K. In order to apply the WAGASCI-BabyMIND measurements, we can
perform the ND280 and WAGASCI-BabyMIND joint fit analysis to provide better constraints
on the flux and interaction parameters. This is further discussed in the next chapter.
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13 Application of cross section results to the oscillation analysis

This chapter shows a way to apply cross section results by WAGASCI-BabyMIND detectors to
the oscillation analysis. Quantitative studies in terms of an expected increase in T2K’s sensitivity
are also shown.

13.1 A joint fit of ND280 and WAGASCI-BabyMIND measurements to give
better constraints on systematic parameters

The frequentist far detector fit makes use of the near detector constraints on the nuisance param-
eters. Tighter constraints on the nuisance parameters will give the far detector fit a higher poten-
tial to constrain the oscillation parameters. We expect the WAGASCI-BabyMIND measurements
will provide additional constraints on the current near detector fit, which may eventually reduce
the systematic uncertainties at the far detector analysis. So far we have not utilized the joint fit
of ND280 and WAGASCI-BabyMIND in the data analysis because the WAGASCI-BabyMIND
measurements are statistically limited. The joint fit analysis is then performed using the sim-
ulated SK data instead of the physics data to check the impact of the WAGASCI-BabyMIND
samples on the constraints.

The future sensitivity of the joint fit analysis is discussed in this section assuming the statis-
tics currently available for the ND280 measurements and future statistics for the WAGASCI-
BabyMIND measurements. The assumed statistics are shown in Table 28. For the WAGASCI-
BabyMIND samples, we introduced only muon neutrino samples because we have not established
the event selection for anti-muon neutrino samples. In the current T2K’s proposal, the accumu-
lated POT will be 7.3×1021 at the end of 2027 [68]. The binnings for the WAGASCI-BabyMIND
samples are changed to two-dimensional binnings that are different from what was used for the
data fit. The two-dimensional binning scheme was determined so that the number of events in
each bin is at least around 100 events. The sample classification for the WAGASCI-BabyMIND
samples is the same as that in the data fit (Table 15). The ND280 samples and binnings are
exactly the same as that used in the oscillation analysis (Figures 23, 24).

To evaluate an improved sensitivity in the oscillation analysis, first, we perform the joint
fit to constrain the nuisance parameters. Then, we utilize the resulting central values and the
covariance matrix to perform the far detector fit. We use simulated data for both near and far
detector fits.

Table 28: The statistics assumed in the sensitivity study for the ND280 and WAGASCI-
BabyMIND joint fit analysis. The statistics for the WAGASCI-BabyMIND samples are the
expected amount of data assuming T2K continues to take data until 2027.

Detectors neutrino mode Statistics (POT [/1021])

ND280 neutrino 1.9867
anti-neutrino 1.1531

WAGASCI-BabyMIND neutrino 7.3
anti-neutrino 0

The nuisance parameters for the near detector fit are divided into flux parameters at 1.5 and
2.5 degrees off-axis, neutrino interaction parameters, and the detector systematic parameters.
For the priors of the flux parameters, the same covariance matrix as the WAGASCI-BabyMIND
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data fit is used for the flux parameters at 1.5 degrees off-axis, and the same matrix as the updated
oscillation analysis is used for those at 2.5 degrees off-axis without modifying them or adding
another matrix. We do not take into account the correlation between neutrino flux at 1.5 and
2.5 degrees off-axis although they have strong correlations. Regarding the priors of the neutrino
interaction parameters and the detector systematic parameters for ND280, the same covariance
matrix in the updated oscillation analysis is used. With respect to the detector systematic
parameters for the WAGASCI-BabyMIND samples, we adopt the same priors as that used in
the cross section measurement with the WAGASCI-BabyMIND detectors.

Figure 78 shows comparisons of the nuisance parameter constraints for the flux at 2.5 degrees
off-axis and neutrino interactions with and without the WAGASCI-BabyMIND samples in the
near detector fit. For most of the parameters, the impact of the ND280 samples on those
constraints is dominant. The constraints on the neutrino flux parameters for muon neutrinos
and electron neutrinos are improved by at most 10% thanks to the addition of the WAGASCI-
BabyMIND samples. In addition, the constraints on the normalization parameters and the Pion
FSI parameters in the neutrino interaction models are improved by around 10 - 30%. The T2K
FD cannot measure the final state interactions. We minimize the effect of the mis-reconstruction
in the FD by using the Pion FSI parameters. The stronger constraints of these parameters
can reduce the systematic uncertainty of the FSI interactions and increase the sensitivity of the
oscillation analysis. In addition, as the T2K oscillation analysis includes the CC1π± samples in
both µ and e ring samples, the understanding of the Pion FSI interactions is more and more
important.

There are several factors that make these improvements. The dominant effect should come
from the increasing statistics used in the near detector fit by combining the both ND280 and the
WAGASCI-BabyMIND samples. As the WAGASCI-BabyMIND samples include both CC0π±

and CC1π± samples, CC0π and CC1π samples in the ND280 measurements are similar to those
samples in the WAGASCI-BabyMIND measurements. There is an effect of the increasing statis-
tics for those samples. According to Figure 78, the impact on the oxygen parameters is larger
than that on the carbon parameters. This indicates that the carbon parameters are already
constrained by the ND280 samples well whereas there is room to improve the constraints on
the oxygen parameters. Thanks to the addition of the WAGASCI-BabyMIND H2O samples,
the sensitivity to the oxygen parameters is increased. The better constraints on the Pion FSI
parameters should be explained by the addition of both CC0π± and CC1π± samples that are
affected by these parameters.

The sensitivity to muon-neutrino flux parameters and an intrinsic nue parameter are increased.
This might be due to the strong correlation between flux and interaction parameters. As some of
the interaction parameters for neutrinos are better constrained, neutrino flux parameters are also
affected. Reducing the errors on the oxygen parameters, in particular the CCQE normalization
and 2p2h norm parameters, is important because their 1σ errors are relatively large. The joint
fit is promising to improve this situation.
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Figure 78: Comparisons of the constraints on the flux parameters (top) and the neutrino interac-
tion parameters (bottom) between with and without the WAGASCI-BabyMIND samples. The
abbreviation of "O", "QE", "ABS", and "CX" means "Oxygen", "Quasi Elastic", "Absorption",
and "Charge eXchange" respectively. "CC MISC" refers to the charged current diffractive pion
production. The plot below the comparison plots shows the fraction of the uncertainties from
the joint fit to those from the standalone ND fit.
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13.2 A potential improvement in constraints on the oscillation parameters
using the updated near detector constraints

In this analysis, we perform the far detector fits by using the ND fit with only the ND280 samples
and both ND280 and WAGASCI-BabyMIND samples. Both constraints on the δCP are compared
with each other to see the potential improvement in the oscillation parameters constraints. The
MC integrated marginalization method (Section 6.6) is used in the far detector fit. The statistics
for the far detector event samples are the same in the oscillation analysis shown in this thesis
(Chapter 7). The prior values of the oscillation parameters are shown in Table 29. Here in this
study, we only present the results with the reactor constraint on sin2 θ13.

Figure 79 shows the comparison of 1σ errors for the reconstructed neutrino energy distribu-
tions in the far detector with and without adding the WAGASCI samples in the near detector
fit. Overall improvement in 1σ error is very limited, but slight improvements are visible for the
samples in the neutrino mode.

Table 29: Prior values for the far detector fit

Parameters Prior
∆m2

21 7.53× 10−5 eV2/c4

∆m2
32 (NH) / |∆m2

31| (IH) 2.494× 10−3 eV2/c4

sin2 θ23 0.561
sin2 θ12 (sin2 2θ12) 0.307 (0.851)
sin2 θ13 (sin2 2θ13) 0.0220 (0.0861)

δCP −1.601

Mass ordering Normal
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Figure 79: Comparisons of 1σ errors for the reconstructed neutrino energy distributions in the
far detector with (red band) or without (blue band) using the WAGASCI samples in the near
detector fit. The error bands represent 1σ error from flux parameters and neutrino interaction
parameters.
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The results of the one-dimensional contours on δCP with the reactor constraint on sin2 θ13
are shown in Figure 80. There is no visible improvement in the constraints on the oscillation
parameter as expected from the error band plots shown in Figure 79.

One of the possible causes of the weak impact on the far detector fit is that the correlations
between flux parameters at 1.5 degrees off-axis and 2.5 degrees off-axis were not taken into
account in the sensitivity study. The flux and cross section parameters have strong correlations
in T2K, which was clearly visible in the oscillation analysis. Once the correlations in the flux
parameters are fully treated in the near and far detector fit, the sensitivity is expected to be
improved. In addition, we assume the statistical update only for the WAGASCI-BabyMIND
muon-neutrino samples in the near detector fit. There are several neutrino interaction parameters
in the ND fit that are sensitive to only anti-muon neutrino samples, such as Pauli Blocking oxygen
νµ and 2p2h norm oxygen νµ parameters. The current result did not have any improvement on
these parameters. When the constraints on those parameters are improved after adding anti-
muon neutrino samples, the constraints of the oscillation parameters are expected to be improved.
On the one hand, we added both WAGASCI CC0π± and CC1π± samples to the near detector fit.
When other samples such as the charged current multi-pion samples are added, the constraints
on the nuisance parameters will be improved.

It is imperative for the T2K experiment to continue to take data in order to get closed to
the discovery of the CP-violation. At the same time, it is important to reduce the systematic
uncertainty to achieve the discovery earlier. In the current T2K analysis, the systematic error
from the uncertainty of the neutrino interactions has a large contribution. In this thesis, a new
way of improving the constraints on the neutrino interaction parameters was introduced. The
expected improvement is not large. Nevertheless, we have opened a path towards incorporating
results from the new detector complex into the oscillation analysis, leveraging a different mean
neutrino energy from that seen at the conventional near detectors. There is a possibility that it
will help T2K to discover the CP violation, determine the neutrino mass ordering, and solve the
octant problem.
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Part IV

Summary

14 Conclusion

One of the unresolved problems in physics is the matter-antimatter asymmetry in the universe.
There has been no solid answer to this question. One promising solution called the leptogenesis
scenario was proposed, where the baryon asymmetry has been generated originally by lepton
asymmetry. One of the leptogenesis scenarios assumes the effect of CP violation is visible in
neutrino oscillations. We have not confirmed this CP violation though we have already verified
the neutrino oscillations. Observing CP violation in the neutrino oscillations has an important
role in verifying this leptogenesis scenario. We need precise measurements of neutrino oscillation
parameters to discover CP violation. In this thesis, we tackled the CP violation. We also
considered the neutrino mass ordering and the octant problem.

We measured the neutrino oscillations in the T2K experiment, which is a long-baseline neu-
trino oscillation experiment. T2K is sensitive to the CP-violating phase (δCP) and other neutrino
oscillation parameters such as ∆m2

32, sin
2 θ23, and sin2 θ13.

The analysis has a statistical update, which corresponds to 4.726×1020 POT (approximately
30% increase) in the neutrino mode. We maintain the neutrino beam directed to the T2K far
detector with the muon monitor (MUMON). The profile measurements with MUMON confirmed
the good quality of the neutrino beam for 99.996% of all the spills collected in the period. For
updates on the analysis, we split samples in the near-detector fit using the proton multiplicity
and photon detection in addition to updates on the neutrino flux and interaction models. In
addition, a new sample (νµ CC1π+) in the far detector fit was added. Adding the new sample
increased the statistics of neutrino events in the neutrino mode by 30%.

CP conservation was rejected at the 90% confidence level. The 2σ confidence interval for
δCP was [-π, -0.29] ∪ [3.04, π] in the normal ordering case. The constraint on δCP was stronger
than our sensitivity, but consistent within the statistical fluctuation. The 1σ confidence inter-
val on sin2 θ23 was [0.460, 0.491] ∪ [0.526, 0.578] for the normal ordering. Both octants were
allowed within the 1σ confidence intervals in this analysis. The upper octant is weakly pre-
ferred with a Bayes factor of 3.0. The result of ∆m2

32 using constraints on sin2 2θ13 from the
reactor experiments is 2.506+0.047

−0.059× 10−3 eV2/c4 assuming the normal ordering and |∆m2
31| was

2.474+0.050
−0.056 × 10−3 eV2/c4 assuming the inverted ordering. The normal ordering was preferred

with a Bayes factor of 2.8, which was a weak preference. The large impact on the constraints
on the oscillation parameters was the combination of the updates on the neutrino interaction
models and new samples in the near detector fits.

We do not discover CP violation in the leptonic sector in this analysis. To discover the
CP violation, we primarily need more statistics on neutrino oscillations because the current
analysis is statistically limited. When the statistical uncertainty is comparable to the systematic
uncertainty, the reduction in systematic uncertainties is also important to achieve T2K’s goal.
The reduction in the systematic uncertainty coming from the uncertainty of neutrino interaction
models is important for T2K.

We performed cross section measurements to provide inputs to understand interaction mod-
els more precisely with the newly installed detector complex at J-PARC, called WAGASCI-
BabyMIND. We defined the signal as charged current muon neutrino interactions with no charged
pions in the final state. We extracted the integrated cross section and differential cross section
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as a function of muon momentum and cosine of muon angle on the CH and H2O targets with
a peak neutrino energy of 0.86 GeV. Both integrated and differential cross section results were
mostly consistent with our MC model. The integrated cross section in limited phase space
(Pµ > 300 MeV/c, cos θµ > 0.34) were measured to be

σtot,H2O = 1.636± 0.370 (10−39 cm2/nucleon) (14.1)

σtot,CH = 1.432± 0.355 (10−39 cm2/nucleon). (14.2)

The MC predicted cross sections were 1.165 for H2O and 1.197 for CH with the same units.
The pulled up integrated cross sections are due to the changes in the signal detection efficiency
on both targets, which are driven by the decreasing parameters of MaRES and MaCCQE pa-
rameters. The differential cross section on the H2O target in the momentum range of (0.3 - 0.5
GeV/c) and that in the range of the cosine of the angle (0.91 - 0.94) deviated from the MC
prediction by more than 1 sigma but less than 2 sigma. We then compared the results with the
predictions of other neutrino interaction models. Due to the limited statistics of the neutrino
interaction samples, this analysis was unable to discern between these models. We continue the
operation of WAGASCI-BabyMIND detectors, which is expected to provide more statistics to
pin down a proper interaction model describing data.

Finally, we considered the application of measurements by the WAGASCI-BabyMIND detec-
tors to the T2K oscillation analysis. A joint fit of the ND280 and the WAGASCI-BabyMIND
detectors was performed assuming future statistics with simulated data. We aimed for additional
constraints on the flux and neutrino interaction parameters. According to the joint fit results,
better constraints on these parameters were visible. The size of the improvements was at most
30% with respect to the fit without adding WAGASCI-BabyMIND samples. The fit results were
then utilized in the far detector analysis. The impact of the joint fit on the oscillation parameter
constraints was modest in the current fit configuration. Nevertheless we have opened a path to-
wards incorporating results from the new detector complex to the oscillation analysis, leveraging
a different mean neutrino energy from that seen at the conventional near detectors.

In this thesis we have searched for leptonic CP violation using measurements of neutrino
oscillations with the T2K experiment and the results indicate that CP is violated at the 90%
confidence level. To achieve more precise measurements, this thesis also proposed a novel ap-
proach to reducing systematic uncertainties in the neutrino interaction and flux models using
measurements of neutrino interactions from T2K’s new detector complex. We have established
a method to apply these results to T2K neutrino oscillation analysis which may offer a valuable
method to enhance T2K’s potential to discover leptonic CP violation in future.
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Appendices

A PartII: The definition of fitting parameters in the ND fit

A.1 Neutrino flux parameters

The neutrino flux parameters are divided into ND and FD parts, each of which consists of 25 ×
2 (FHC and RHC) parameters. The followings are the bin edges for the neutrino mode.

FHC νµ + RHC νµ
Etrue

ν (GeV): 0, 0.4, 0.5, 0.6, 0.7, 1, 1.5, 2.5, 3.5, 5, 7, 30

FHC νµ + RHC νµ
Etrue

ν (GeV): 0, 0.7, 1, 1.5, 2.5, 30

FHC νe + RHC νe
Etrue

ν (GeV): 0, 0.5, 0.7, 0.8, 1.5, 2.5, 4.0, 30

FHC νe + RHC νe
Etrue

ν (GeV): 0, 2.5, 30

The total flux parameters consist of "FHC ND", "RHC ND", "FHC FD", and "RHC FD".
The total number of parameters is 100.

A.2 Neutrino interaction parameters

The neutrino interaction parameters in the ND fit are divided into 75 parameters in total, which
are summarized in Table 30.

Table 30: The neutrino interaction parameters used in the ND fit. MF: Mean Field, SPP: Single
Pion Production.

Number Parameter name Interaction Comment
0 FEFQE Any π PionFSI QE, low momentum
1 FEFQEH Any π PionFSI QE, high momentum
2 FEFINEL Any π PionFSI pion production
3 FEFABS Any π PionFSI pion absorption
4 FEFCX Any π PionFSI charge exchange, low momentum
5 FEFCXH Any π PionFSI charge exchange, high momentum
6 Nucleon FSI Any π Nucelon FSI
7 MAQE CCQE Axial vector mass in the CCQE interactions
8 Q2 norm 5 CCQE Q2 normalization (0.25 to 0.5 GeV2/c2)
9 Q2 norm 6 CCQE Q2 normalization (0.5 to 1.0 GeV2/c2)
10 Q2 norm 7 CCQE Q2 normalization (above 1.0 GeV2/c2)
11 PShell MF Norm C CCQE Normalization for P shell MF contributions
12 SShell MF Norm C CCQE Normalization for S shell MF contributions
13 SRC Norm C SPP Normalization for the Short-Range Correlated nucleons (SRC) on the carbon target
14 PShell MF PMissShape C CCQE Change kinematics for P shell MF contributions
15 SShell MF PMissShape C CCQE Change kinematics for S shell MF contributions
16 P1 2Shell MF Norm O CCQE Normalization for P1/2 shell MF contributions
17 P3 2Shell MF Norm O CCQE Normalization for P3/2 shell MF contributions
18 SShell MF Norm O CCQE Normalization for S Shell MF contributions
19 SRC Norm O SPP Normalization for the Short-Range Correlated nucleons (SRC) on the oxygen target
20 P1 2Shell MF PMissShape O CCQE Change shape of missing momentum distribution for P1/2 shell MF contributions
21 P3 2Shell MF PMissShape O CCQE Change shape of missing momentum distribution for P3/2 shell MF contributions
22 SShell MF PMissShape O CCQE Change shape of missing momentum distribution for S shell MF contributions
23 Pauli Blocking C nu CCQE Change the Fermi momentum, kF on the carbon target for ν interactions
24 Pauli Blocking O nu CCQE Change the Fermi momentum, kF on the oxygen target for ν interactions
25 Pauli Blocking C nubar CCQE Change the Fermi momentum, kF on the carbon target for ν interactions
26 Pauli Blocking O nubar CCQE Change the Fermi momentum, kF on the oxygen target for ν interactions
27 Optical Potential C CCQE Normalization for q0, q3 parameters for the carbon target
28 Optical Potential O CCQE Normalization for q0, q3 parameters for the oxygen target
29 2p2h norm nu 2p2h Normalization for 2p2h ν interaction
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30 2p2h norm nubar 2p2h Normalization for 2p2h ν interaction
31 2p2h norm CtoO 2p2h Normalization for 2p2h ν interaction covering difference between carbon and oxygen
32 2p2h Edep lowEnu 2p2h Neutrino energy-dependent difference in the region of Eν < 600 MeV for ν
33 2p2h Edep highEnu 2p2h Neutrino energy-dependent difference in the region of Eν > 600 MeV for ν
34 2p2h Edep lowEnubar 2p2h Neutrino energy-dependent difference in the region of Eν < 600 MeV for ν
35 2p2h Edep highEnubar 2p2h Neutrino energy-dependent difference in the region of Eν > 600 MeV for ν
36 PNNN Shape 2p2h Change in ratio of "pn" to "nn" pairs
37 2p2h shape C np 2p2h Changing 2p2h kinematics on the carbon target from np contributions
38 2p2h shape C NN 2p2h Changing 2p2h kinematics on the carbon target from NN contributions
39 2p2h shape O np 2p2h Changing 2p2h kinematics on the oxygen target from np contributions
40 2p2h shape O NN 2p2h Changing 2p2h kinematics on the oxygen target from NN contributions
41 CA5 SPP Form factor to parametrize MARES
42 MARES SPP Axial vector mass in the resonance interactions
43 ISO BKG LowPPi SPP The iso-spin 1/2 backgrounds, low momentum pion
44 ISO BKG SPP The iso-spin 1/2 backgrounds,
45 RES Eb C numu SPP Binding energy in resonance interactions on the carbon target for ν interactions
46 RES Eb O numu SPP Binding energy in resonance interactions on the oxygen target for ν interactions
47 RES Eb C numubar SPP Binding energy in resonance interactions on the carbon target for ν interactions
48 RES Eb O numubar SPP Binding energy in resonance interactions on the oxygen target for ν interactions
49 RS Delta Decay SPP Rein-Sehgal (RS), delta resonance decay
50 SPP Pi0Norm numu SPP Normalization for SPP (neutral pion) in ν interactions
51 SPP Pi0Norm numubar SPP Normalization for SPP (neutral pion) in ν interactions
52 CC Coh C CCCoherent Normalization for CC coherent interaction on the carbon target
53 CC Coh O CCCoherent Normalization for CC coherent interaction on the oxygen target
54 MPi Multi TotXSec Multipi Multi-pion total cross section (TotXSec)
55 Mpi BY Vector Multipi Bodek-Yang (BY) corrections for vector part contributions
56 Mpi BY Axial Multipi Bodek-Yang (BY) corrections for axial part contributions
57 Mpi Multi Shape Multipi Change kinematics for Multi pion interactions
58 CC BY DIS DIS Bodek-Yang (BY) corrections for CC DIS
59 CC DIS MultiPi Norm Nu DIS Normalization for CCDIS and CCMultiPi in ν interactions
60 CC DIS MultiPi Norm Nubar DIS Normalization for CCDIS and CCMultiPi in ν interactions
61 CC Misc Misc Normalization for CC diffractive pion production
62 NC Coh NCCoherent Normalization for NC coherent interactions
63 NC 1gamma NC 1gamma Normalization for NC 1gamma interactions
64 NC other near NC other Normalization for NC other interactions for ND
65 NC other far NC other Normalization for NC other interactions for FD
66 CC norm nu CC Normalization for all the νµ CC interactions
67 CC norm nubar CC Normalization for all the νµ CC interactions
68 nue numu – Normalization between νe and νµ cross sections
69 nuebar numubar – Normalization between νe and νµ cross sections
70 Eb bin C nu – Binding energy (Eb) for carbon in ν interactions
71 Eb bin C nubar – Binding energy (Eb) for carbon in ν interactions
72 Eb bin O nu – Binding energy (Eb) for oxygen in ν interactions
73 Eb bin O nubar – Binding energy (Eb) for oxygen in ν interactions
74 Eb alpha – ∆Ermv = δ + α(mq3 + c), where ∆Ermv is the removal energy
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B PartII: Fitting method for Bayesian Markov Chain Monte Carlo

B.1 Fitting algorithm

Bayesian analysis is one of the statistical approaches to exploring the most probable parameter
spaces to describe data with a set of prior knowledge. The probability density after the fit
(so-called posterior probability, P (θ|D)) is expressed by

P (θ|D) ∝ L(D|θ)× π(θ), (B.1)

where θ is a vector consisting of both systematic and oscillation parameters, π(θ) is a likelihood,
D is data and L(D|θ) stands for the likelihood. The analysis addresses about 750 parameters
from each sample at ND and FD, systematic and oscillation parameters. An analytical calculation
would not be feasible. Instead, this analysis introduced Markov Chain Monte Carlo to evaluate
the posterior probability. The algorithm is the Metropolis-Hastings one [169] to generate a set of
parameters. 55 The key part of the MCMC method is the acceptance function, which is expressed
in the Metropolis-Hastings algorithm by

α = min

[
1,

p(θt+1)

p(θt)

]
, (B.2)

where t is the step number and the function p refers to the target probability function. A
parameter θt, except θ0, is selected by a proposal function (q(θt+1|θt)). One of the features of
the Metropolis-Hastings algorithm is the acceptance function does not depend on the proposal
function explicitly. Therefore, almost any proposal function can be chosen. The basic procedure
of the MCMC is to propose a parameter, calculate the acceptance function, decide on a parameter
set 56 and repeat this round of steps. In order to make the parameter sets obtained by these
iterations follow the posterior distribution, we defined the probability function as

p(θt) ≡ L(D|θt)× π(θt). (B.3)

Although this analysis has to cope with about 750 parameters in the fit, one-dimensional or two-
dimensional posterior distributions on oscillation parameters would be important to see their
constraints. We then use a marginalization method by integrating all the nuisance parameters.
The marginal likelihood is

Lm(D|ϕ) =
∫

L(D|ϕ,ψ)× π(ψ)dψ, (B.4)

where ϕ (ψ) is a set of parameters of interest (nuisance parameters). The output of the MCMC
is the plenty number of sets of parameters to follow the most probable posterior distributions
to describe the data. They in turn can be used to determine the regions that will have a given
probability of containing the true value of a parameter. The credible regions are given by solving

1− α =

∫ ϕupper bound

ϕlower bound

p(ϕ|D)dϕ. (B.5)

55The orthodox algorithm would be the accept-rejection algorithm. This is not suitable for this analysis because
of the low efficiency to accept a proposed parameter, which originates from a large number of dimensions.

56θt if the proposed parameter is rejected, otherwise, θt+1
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Equation B.5 assumes the case of one-dimension as the parameter of interest. The credible
region is then defined by "(ϕlower bound, ϕupper bound)" given the credibility, α. The best-fit values
are naturally transcended by this marginalization of likelihood. The most probable value of
each oscillation parameter in two-dimensional parameter spaces (∆m2

32-sin
2 θ23 or sin2 θ13-δCP)

is assigned to the best fit.

B.2 Comparison of two methods

Both analyses share a few common parts in their fitting procedures. Firstly, they limit target
neutrino flavors. The neutrino oscillations involving ντ and ντ are negligible under the T2K
neutrino flux because most of them cannot undergo CC interactions due to the small contribution
of the high-energy tail. In addition, νe → νµ and the corresponding anti-neutrino oscillation are
also ignorable because of the combination of small oscillation probability and tiny contribution
from νe in the flux. Otherwise, all combinations of neutrino oscillations are considered. Secondly,
they share the common prior values for oscillation parameters. Both sin2 2θ13 and sin2 2θ23 have
a uniform distribution of (0, 1). The prior value of δCP is the uniform distribution of (−π,
π). Both mass difference parameters are uniformly distributed from 0 to ∞. The prior value
of sin2 2θ13 is based on the way of reporting the results. When the T2K experiment reports
its standalone analysis, the flat prior (0, 1) is used. When the T2K results are combined with
the reactor experiment, the prior is assumed to be the gaussian distribution whose mean and
error correspond to the world-average constraints of sin2 2θ13. This analysis uses the PDG2019
result [170] (the best-fit value is 0.0853 and the 1σ error is 0.0027).

Besides each algorithm, a few differences are acknowledged between the two analysis ap-
proaches. The MCMC analysis is capable of simultaneous fits using both ND and FD analysis
samples, whilst the grid-scan approach relies on the ND fit for the constraints on systematic
parameters. It results in a difference in the treatment of systematic parameters. On top of that,
the binning scheme depends on each framework. The MCMC analysis uses the reconstructed
energy of neutrino for µ-like samples while e-like samples are binned by the neutrino energy
and lepton angle. On the other hand, the grid-scan method uses the reconstructed energy of
neutrino and lepton angle for µ-like samples while e-like samples are binned by the lepton angle
and momentum.

The difference in systematic parameter constraints is not expected to end up with a significant
difference in the constraints on oscillation parameters because the two fit results from Minuite2
and the MCMC methods are mostly consistent with each other. The binning differences might
result in a difference in parameter constraints. However, we have not seen a significant difference
in the constraints of oscillation parameters (See Appendix D for details.).
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C PartII: Bias studies for the neutrino oscillation analysis

In order to test the robustness of the fits, we extract oscillation contours using alternative simu-
lated data sets and check the potential biases stemming from our interaction models. These bias
studies investigate the potential impact of alternative interaction models and data-driven tunes
at both ND and FD.

We determine the size of the bias, and criteria for adding additional smearing to data contours
based on the result, as follows:

1. A bias to the center of the 2σ confidence interval is calculated. We set the threshold of the
shift to 50% relative to the size of the 1σ interval.

2. A new requirement on the change in size (total integrated area) of the confidence intervals
including both the statistical and systematic uncertainties is included. We set the threshold
of the change to 10%.

3. For δCP, the bias in the contours is used to assess the impact on the Nσ CP violation
boundaries from the data fit.

Criteria 1 and 2 are applied to sin2 θ23 and ∆m2
23. We used a similar suite of data sets

used in the published results [67]. We added several data sets associated with the new FD
sample, νµ CC1π+. The new data sets that alter the pion-production modes, such as using
the Martini 1π model [125, 171] are included to validate the analysis with the new FD sample.
Additional data sets to investigate nuclear modeling effects, such as Hartree-Fock Continuum
Random Phase Approximation (HF CRPA) [172, 173], are included to validate the new proton-
tagged ND samples.

In total 19 alternative data sets were analyzed and the new HF CRPA alteration showed the
most significant impact as presented in Table 31. Since the bias on ∆m2

23 for the HF CRPA
and non-CCQE data sets is found to be larger than our criteria, we smeared the ∆m2

23 contour,
which has a near-parabolic likelihood, after the data fit using the quadrature sum of all data sets
(∆m2

32 = 3.1 × 10−5 eV2). No other actions are taken since criteria 2 and 3 are satisfied by all
alternative data sets. The results of 2 and 3 are shown in Table 31 and Table 32, respectively.
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Table 31: Differences in the oscillation parameter constraints observed in the five alternative
data sets with the largest effect. The bias is calculated as the shift to the center of the 2σ
confidence interval relative to their total and systematic uncertainties. The simulated datasets
are produced based on the nominal oscillation parameters (∆m2

21 = 7.53× 10−5eV2/c4, ∆m2
32 =

2.494× 10−3eV2/c4, sin2 θ12 = 0.307, sin2 θ13 = 0.0220, sin2 θ23 = 0.561, δCP = −1.601).

Simulated data set Type sin θ23 ∆m2
32 δCP Ref.

CCQE z-exp high
Total −0.5% −9.5% −0.5%
Syst. −1.0% −24.1% −2.2%
Size −1.8% −5.4% −1.9%

HF CRPA*
Total −11.7% 33.8% −2.8%

[172,173]Syst. −25.1% 84.9% −11.2%
Size 2.0% −5.4% 1.0%

Martini 1π
Total −1.5% −7.3% −0.4%

[125,171]Syst. −3.2% −18.5% −1.7%
Size −0.2% −1.0% 2.0%

Non-CCQE
Total 4.9% −30.0% −0.1%
Syst. 10.4% −76.3% −0.5%
Size 3.0% −0.1% −3.0%

Pion SI
Total −4.83% 20.3% 0.47%
Syst. −10.1% 51.6% 2.13%
Size < 1% −0.6% 3%

Table 32: Shifts of 90% confidence interval boundaries of δCP in radians derived in each data set.
The values in the top row are the lower and upper boundaries of the 90% allowed interval derived
from the data fit. The values for the simulated studies are the difference in the boundaries when
the effects of the simulated datasets are taken into account.

Alternative data sets Change to 90% C.L. of δCP
-3.10 -0.45

CCQE z-exp high 0.01 -0.01
HF CRPA -0.03 -0.03
Martini 1π -0.02 0.01
Non-CCQE 0.05 -0.05
Pion SI -0.03 0.05
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D PartII: Impacts of the binning variables on the oscillation anal-
ysis

It should be worth noting here our primary binning scheme is pl–θ for the 1 Ring e samples,
Erec–θ for the 1Ring µ samples, and Erec for the νµ CC1π+. We present data-fit results with
different sets of the binning scheme from the nominal one. One of the reasons why we show the
data-fit results with the different binning from the primary one is to disentangle the two main
differences to the Bayesian results. The fits with the different binning schemes are not to be
considered the final results but alternative fits to study the impact of binning differences for the
cross check with the other fitter.

D.1 Best-fit results with Erec–θ binning for the e samples, Erec binning for the
µ samples

Table 33 shows the best fit results with this alternative binning. Compared to the main results
from our fitter shown in Table 33, there are no major differences seen except δCP best fit values
for the normal ordering being slightly shifted to lower.

Table 33: Results of the fit to the T2K run 1–10 data using Erec–θ for the e-like samples, Erec

for the µ-like samples. They are not considered to be the main results in this analysis.

Parameter Best fit
Data T2K only T2K + reactor
Mass ordering Normal Inverted Normal Inverted
sin2(2θ13) 0.101 0.109 0.0861 0.0864
sin2(θ13) 25.9× 10−3 28.0× 10−3 22.0× 10−3 22.1× 10−3

δCP −2.37 −1.57 −2.31 −1.30
∆m2

32 (NH)/|∆m2
31| (IH) [eV2/c4] 2.450× 10−3 2.463× 10−3 2.500× 10−3 2.468× 10−3

sin2(θ23) 0.473 0.472 0.552 0.553
−2 lnL 570.459 571.042 570.54 571.158
−2∆ lnL 0 0.583 0 0.618

D.2 Comparisons of ∆χ2 distributions and fixed ∆χ2 confidence regions with
Erec–θ binning for the e-like samples, Erec binning for the µ-like samples

Comparisons of the 1D and 2D data-fit contours with Erec binning for the µ-like samples and
Erec–θ binning for the e-like samples are shown in Figs. 81–88.

As expected, no large change is observed for sin2 θ13 and δCP. However, the Erec–θ binning for
the µ-like samples have relatively large effects on sin2 θ23 that are to move away from maximal
mixing and give less preference on the inverted mass ordering.
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Figure 81: Comparisons of data-fit 2D confidence level contours in ∆m2
32 vs. sin2 θ23 in normal

ordering between (pl–θ (e samples) + Erec–θ (µ samples)) and (Erec–θ (e samples) + Erec (µ
samples)) binning variables. A smearing factor (3.100 × 10−5 [eV2]) on ∆m2

32 is applied based
on the bias studies. For the results without the reactor constraint, the contours were produced
with 1M throws instead of 100k throws to reduce the errors coming from the number of throws.

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

23θ2sin

2.2

2.3

2.4

2.5

2.6

2.7

2.8

3−10×]2
| (

IO
) 

[e
V

312
m∆

 (
N

O
) 

/ |
322

m∆

Best fit 68% C.L.

90% C.L. 99.7% C.L.

PTheta ETheta

ETheta Erec

10, 2022 preliminary−T2K Run 1

(a) without the reactor constraint

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

23θ2sin

2.2

2.3

2.4

2.5

2.6

2.7

2.8

3−10×]2
| (

IO
) 

[e
V

312
m∆

 (
N

O
) 

/ |
322

m∆

Best fit 68% C.L.

90% C.L. 99.7% C.L.

PTheta ETheta

ETheta Erec

10, 2022 preliminary−T2K Run 1

(b) with the reactor constraint

Figure 82: Comparisons of data-fit 2D confidence level contours in |∆m2
31| vs. sin2 θ23 in inverted

ordering between (pl–θ (e samples) + Erec–θ (µ samples)) and (Erec–θ (e samples) + Erec (µ
samples)) binning variables. A smearing factor (3.100 × 10−5 [eV2]) on ∆m2

32 is applied based
on the bias studies. For the results without the reactor constraint, the contours were produced
with 1M throws instead of 100k throws to reduce the errors coming from the number of throws.
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Figure 83: Comparisons of data-fit 1D ∆χ2 in sin2 θ23 between (pl–θ (e samples) + Erec–θ (µ
samples)) and (Erec–θ (e samples) + Erec (µ samples)) binning variables. For the results without
the reactor constraint, the contours were produced with 1M throws instead of 100k throws to
reduce the errors coming from the number of throws.
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Figure 84: Comparisons of data-fit 1D ∆χ2 in ∆m2
32 (|∆m2

31| for inverted between (pl–θ (e
samples) + Erec–θ (µ samples)) and (Erec–θ (e samples) + Erec (µ samples)) binning variables.
A smearing factor (3.100 × 10−5 [eV2]) on ∆m2

32 is applied based on the bias studies. For the
results without the reactor constraint, the contours were produced with 1M throws instead of
100k throws to reduce the errors coming from the throws.

183



0.01− 0 0.01 0.02 0.03 0.04 0.05

13θ2sin

3−

2−

1−

0

1

2

3

4

5

C
P

δ

Best fit 68% C.L.

90% C.L. 99.7% C.L.

PTheta ETheta

ETheta Erec

10, 2022 preliminary−T2K Run 1

(a) without the reactor constraint

0.016 0.017 0.018 0.019 0.02 0.0210.022 0.023 0.024

13θ2sin

3−

2−

1−

0

1

2

3

4

5

C
P

δ

Best fit 68% C.L.

90% C.L. 99.7% C.L.

PTheta ETheta

ETheta Erec

10, 2022 preliminary−T2K Run 1

(b) with the reactor constraint

Figure 85: Comparisons of data-fit 2D confidence level contours in δCP vs. sin2 θ13 in normal
ordering between (pl–θ (e samples) + Erec–θ (µ samples)) and (Erec–θ (e samples) + Erec (µ
samples)) binning variables. For the results without the reactor constraint, the contours were
produced with 1M throws instead of 100k throws to reduce the errors coming from the number
of throws.
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Figure 86: Comparisons of data-fit 2D confidence level contours in δCP vs. sin2 θ13 in inverted
ordering between (pl–θ (e samples) + Erec–θ (µ samples)) and (Erec–θ (e samples) + Erec (µ
samples)) binning variables. For the results without the reactor constraint, the contours were
produced with 1M throws instead of 100k throws to reduce the errors coming from the number
of throws.
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Figure 87: Comparisons of data-fit 1D ∆χ2 in sin2 θ13 between (pl–θ (e samples) + Erec–θ (µ
samples)) and (Erec–θ (e samples) + Erec (µ samples)) binning variables. For the results without
the reactor constraint, the contours were produced with 1M throws instead of 100k throws to
reduce the errors coming from the number of throws.
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Figure 88: Comparisons of data-fit 1D ∆χ2 in δCP between (pl–θ (e samples) + Erec–θ (µ
samples)) and (Erec–θ (e samples) + Erec (µ samples)) binning variables. For the results without
the reactor constraint, the contours were produced with 1M throws instead of 100k throws to
reduce the errors coming from the number of throws.
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E PartII: Cross fitter validation for the oscillation analysis results

The fitter differences between the MCMC and the frequentist grid-scan methods are summarized
below 57.

• The algorithm; the MCMC method uses a Bayesian Markov Chain Monte-Carlo method,
and the grid-scan method uses the MC marginalization.

• The constraints on the nuisance parameters; the grid-scan method uses the near detector
fit whereas the MCMC method uses the simultaneous fit to the data from the near and far
detectors.

• The far detector one-ring samples binned in different kinematic parameters; shown in
Table 34.

Table 34: Variables used in the distributions for the far detector samples. The variables Erec,
θlepton, Plepton represent reconstructed neutrino energy, an outgoing lepton angle, and a outgoing
lepton momentum, respectively.

Sample variables for the grid-scan method variables for the MCMC method
νe 1-Ring Plepton and θlepton Erec and θlepton
νµ 1-Ring Erec and θlepton Erec

νe 1-Ring Plepton and θlepton Erec and θlepton
νµ 1-Ring Erec and θlepton Erec

νe CC1π+1-Ring Plepton and θlepton Erec and θlepton
νµ CC1π+ Erec Erec

For the purpose of the fitter comparisons, we perform three types of fits; the MCMC nominal
fit, the grid-scan nominal fit, and the grid-scan MCMC-like fit. To perform the grid-scan MCMC-
like fit, we use the constraints on the systematic parameters from the MCMC fit instead of the
near detector fit. In addition, the grid-scan method changes its nominal kinematic variables
for the MCMC-like fit to the same one as the MCMC kinematic variables. Figure 89 shows
the results of two-dimensional ∆χ2 contours for the appearance and disappearance parameters.
The constraints on the appearance parameters agree well between the MCMC method and the
grid-scan method for all of the fits, whereas the constraints on the disappearance parameters
by the grid-scan method are weaker than those by the MCMC method. On the other hand,
changing the constraints on the systematic parameters and the kinematic parameters used in
the distributions in the grid-scan approach makes the agreement better. The difference in the
kinematic parameters is less likely to cause this difference in contours 58. The difference in the
contours for the disappearance parameters, therefore, is likely to be due to the differences in
the constraints on the systematic parameters. Nevertheless, the size of the difference is not
significant with respect to the size of uncertainty on sin2 θ23, which confirms the sanity of both
fitters’ analyses.

57See Appendix B.2 for the details.
58See Appendix D for the details.
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T2K preliminaryT2K preliminary

(a) Appearance parameters (δCP, sin2 θ13)

T2K preliminary
T2K preliminary

(b) Disappearance parameters (∆m2
32, sin

2 θ23)

Figure 89: Cross fitter comparisons between the MCMC method and the grid-scan method for
the two-dimensional contours for the appearance and disappearance parameters for the normal
ordering (left) and the inverted ordering scenarios (right). Three kinds of fits are performed.
MaCh3: the MCMC nominal fit. P-Theta: the grid-scan approach. P-Theta, MaCh3-like: the
grid-scan MCMC-like fit. The reactor constraint is not applied to all of the fits. The normal
ordering is assumed in those fits.

187



F PartII: Impacts of the new FD sample

Comparisons of the 1D and 2D data-fit contours with the 6 samples including the new sample,
νµ CC1π+, and conventional 5 samples are shown in Figs. 92–99 to check the impact of the multi-
ring sample on the constraints of oscillation parameters. As expected, sin2 θ13 and δCP contours
are not affected by this change so much. A slight improvement on sin2 θ23 contours is seen in
the comparison of the nominal sensitivities. In particular for ∆m2

32 contours, the improvement
is estimated to be 5% with respect to the size of the 1σ error.
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Figure 90: Comparisons of data-fit 2D confidence level contours in ∆m2
32 v.s. sin2 θ23 in the

normal ordering between with the νµ CC1π+ sample (6 samples) and without the νµ CC1π+

sample. A smearing factor (3.100×10−5 [eV2]) on ∆m2
32 is applied based on the bias studies. For

the results without the reactor constraint, the contours were produced with 1M throws instead
of 100k throws to reduce the errors coming from the number of throws.
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Figure 91: Comparisons of data-fit 2D confidence level contours in |∆m2
31| v.s. sin2 θ23 in the

inverted ordering between with the νµ CC1π+ sample (6 samples) and without the νµ CC1π+

sample. A smearing factor (3.100×10−5 [eV2]) on ∆m2
32 is applied based on the bias studies. For

the results without the reactor constraint, the contours were produced with 1M throws instead
of 100k throws to reduce the errors coming from the number of throws.

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

23θ2sin

2.2

2.3

2.4

2.5

2.6

2.7

2.8

3−10×]2
| (

IO
) 

[e
V

312
m∆

 (
N

O
) 

/ |
322

m∆

Best fit 68% C.L.

90% C.L. 99.7% C.L.

6 samples
5 samples

10, 2022 preliminary−T2K Run 1

(a) without the reactor constraint

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

23θ2sin

2.2

2.3

2.4

2.5

2.6

2.7

2.8

3−10×]2
| (

IO
) 

[e
V

312
m∆

 (
N

O
) 

/ |
322

m∆

Best fit 68% C.L.

90% C.L. 99.7% C.L.

6 samples
5 samples

10, 2022 preliminary−T2K Run 1

(b) with the reactor constraint

Figure 92: Comparisons of data-fit 2D confidence level contours in ∆m2
32 v.s. sin2 θ23 in the

normal ordering between with the νµ CC1π+ sample (6 samples) and without the νµ CC1π+

sample. A smearing factor (3.100×10−5 [eV2]) on ∆m2
32 is applied based on the bias studies. For

the results without the reactor constraint, the contours were produced with 1M throws instead
of 100k throws to reduce the errors coming from the number of throws.
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Figure 93: Comparisons of data-fit 2D confidence level contours in |∆m2
31| v.s. sin2 θ23 in the

inverted ordering between with the νµ CC1π+ sample (6 samples) and without the νµ CC1π+

sample. A smearing factor (3.100×10−5 [eV2]) on ∆m2
32 is applied based on the bias studies. For

the results without the reactor constraint, the contours were produced with 1M throws instead
of 100k throws to reduce the errors coming from the number of throws.
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Figure 94: Comparisons of data-fit 1D ∆χ2 in sin2 θ23 between with the νµ CC1π+ sample (6
samples) and without the νµ CC1π+ sample. For the results without the reactor constraint, the
contours were produced with 1M throws instead of 100k throws to reduce the errors coming from
the number of throws.
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Figure 95: Comparisons of data-fit 1D ∆χ2 in ∆m2
32 (|∆m2

31| for inverted) between with the
νµ CC1π+ sample (6 samples) and without the νµ CC1π+ sample. For the results without the
reactor constraint, the contours were produced with 1M throws instead of 100k throws to reduce
the errors coming from the number of throws.
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Figure 96: Comparisons of data-fit 1D ∆χ2 in ∆m2
32 (|∆m2

31| for inverted) between with the
νµ CC1π+ sample (6 samples) and without the νµ CC1π+ sample. A smearing factor (3.100×10−5

[eV2]) on ∆m2
32 is applied based on the bias studies. For the results without the reactor constraint,

the contours were produced with 1M throws instead of 100k throws to reduce the errors coming
from the throws.
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Figure 97: Comparisons of data-fit 2D confidence level contours in δCP v.s. sin2 θ13 in the normal
ordering between with the νµ CC1π+ sample (6 samples) and without the νµ CC1π+ sample. For
the results without the reactor constraint, the contours were produced with 1M throws instead
of 100k throws to reduce the errors coming from the number of throws.
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Figure 98: Comparisons of data-fit 2D confidence level contours in δCP v.s. sin2 θ13 in the
inverted ordering between with the νµ CC1π+ sample (6 samples) and without the νµ CC1π+

sample. For the results without the reactor constraint, the contours were produced with 1M
throws instead of 100k throws to reduce the errors coming from the number of throws.
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Figure 99: Comparisons of data-fit 1D ∆χ2 in δCP between with the νµ CC1π+ sample (6
samples) and without the νµ CC1π+ sample. For the results without the reactor constraint, the
contours were produced with 1M throws instead of 100k throws to reduce the errors coming from
the number of throws.
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G PartII: P-value calculations at FD

The data distributions for the FD samples are compared to the MC predictions with the best-fit
oscillation parameters in Figure 31. The data is apparently consistent with the MC predictions.
On the other hand, we see a small deficit in data for the νµ 1-Ring sample and a small excess
in data for the νe CC1π+ 1-Ring sample as shown in Table 6. Here, we discuss the data-MC
consistency for each sample in a quantitative way.

G.1 Rate-only p-value

In this simplest case, we compare the number of events observed in the νµ 1-Ring sample to the
expectations for the different sets of true values of the oscillation parameters at the nominal MC.
Those sets of parameters are shown in Table 35.

Table 35: Reference values of the neutrino oscillation parameters for two oscillation parameter
sets and earth matter density.

Parameters nominal MC BestFit
∆m2

21 7.53× 10−5 eV2

∆m2
32 (NH) / |∆m2

31| (IH) 2.494× 10−3 eV2 2.506× 10−3 eV2

sin2 θ23 0.561 0.559
sin2 θ12 (sin2 2θ12) 0.307 (0.851)
sin2 θ13 (sin2 2θ13) 0.0220 (0.08604)
δCP −1.601 -2.18
Mass ordering Normal

The expectations in each case are evaluated by generating 100k toy experiments with the
oscillation parameters fixed to their values in the set considered, and the systematic parameters
varied according to their prior probabilities using the results of the near detector fit for the
parameters constrained by this fit. The expectations are compared to the number of events in
data in Figure 100, and the obtained p-value for the νµ 1-Ring sample, in this case, is 0.00514.

There are six samples in the T2K analysis, and we should consider a trial factor by evaluating
the probability of having such a low p-value in at least one of the 6 samples. This probability
is not necessarily equal to 6 times the p-value obtained for the νµ 1-Ring sample as there are
correlated systematics between the samples. To evaluate it, we determined for each sample the
number of events corresponding to the p-value for the νµ 1-Ring sample and then counted the
fraction of toy experiments for which at least one of the samples has a number of observed events
above or equal to this threshold. The results are 4.7 ×10−2 and 5.3 ×10−2 for the nominal MC
and best-fit parameters, respectively. Both p-values indicate no significant deficit in data.

Tables 36, 37 show p-values for each sample with the oscillation parameters either at the
nominal MC or the best fit. Both have quite consistent results. These numbers indicate no
clear deficit or excess in data regarding our predictions although the νµ 1-Ring sample has a
relatively small p-value. In addition to the p-values for the individual samples, merged samples
are also studied to check the event migration effects between samples. Here we show two cases,
"νµ 1-Ring + νµ CC1π+ " and "νe 1-Ring + νe CC1π+ 1-Ring ". Results are summarized in
Table 38. Both p-values are modest compared to individual ones.
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Figure 100: Expected distributions of the number of events in the νµ 1-Ring sample for the nom-
inal set of the oscillation parameters. A red line is shown in the middle of the bin corresponding
to the 318 events observed in data.

Table 36: Rate only p-values obtained for each sample without considering a look elsewhere
effect with the nominal oscillation parameters. Conversion to sigmas is done using the formula
for the Gaussian case.

νµ 1-Ring νµ 1-Ring νe 1-Ring νe 1-Ring νe CC1π+ 1-Ring νµ CC1π+

P-value 5.14 ×10−3 2.50 ×10−1 2.23 ×10−1 3.97 ×10−1 1.69 ×10−1 9.53 ×10−2

z-score (σ) 2.56 0.67 0.84 0.75 0.96 1.31

Table 37: Rate only p-values obtained for each sample without considering a look elsewhere
effect at the best fit. Conversion to sigmas is done using the formula for the Gaussian case.

νµ 1-Ring νµ 1-Ring νe 1-Ring νe 1-Ring νe CC1π+ 1-Ring νµ CC1π+

P-value 5.71 ×10−3 2.59 ×10−1 3.09 ×10−1 3.73 ×10−1 1.42 ×10−1 9.15 ×10−2

z-score (σ) 2.52 0.64 0.50 0.32 1.03 1.33

Table 38: Rate only p-values obtained for the combined samples without considering a look
elsewhere effect. Conversion to sigmas is done using the formula for the Gaussian case.

νµ 1-Ring + νµ CC1π+ νe 1-Ring + νe CC1π+ 1-Ring
P-value 6.01 ×10−2 3.52 ×10−1

z-score (σ) 1.55 0.379
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G.2 Rate+Shape p-value

For a more robust analysis of p-values, shape information will be taken into account. The nominal
binning scheme in the grid-scan method for this sample is Erec–θ, but other binning schemes like
1D-Erec and 1D-θ are also tested. A test statistic used here is defined as follows.

L =

nbins∏
i=1

Poisson(N i
obs, N

i
pred)

Poisson(N i
pred, N

i
pred)

, (G.1)

where the predictions for bin i, N i
pred, are given by our usual model for the set of values of

the oscillation parameters considered, and the default values of the systematic uncertainties.
According to the rate-only analysis, both results with the oscillation parameters at the nominal
MC point and with the oscillation parameters at the best fit are consistent. Therefore, we use
only the oscillation parameters at the best fit in this section. The predicted distributions of
the test statistics are obtained using 20k toy experiments in each case. Those values and the
p-values are shown in Table 39. The results show there is a relatively large difference between
binning choices, in particular p-value for νµ 1-Ring sample in θ is small. It might indicate there
is a possibility that the 1D-θ shape in νµ 1-Ring sample has the largest discrepancy with the
prediction compared to other binning schemes.

For the comparison of p-values from the grid-scan and MCMC methods, Figure 40 summarizes
each p-value taken from the MCMC analysis. It should be noted that the p-values from the grid-
scan method were calculated with the systematic parameters at pre-fit but at post-fit for the
MCMC method. Even though we have a known difference in the systematic parameters between
the grid-scan method and the MCMC method, the p-values from the grid-scan method in Erec

binning are more or less consistent with the MCMC p-values for all samples.

Table 39: Rate+shape p-values obtained for each sample without considering a look elsewhere
effect at the best fit. Conversion to sigmas is done using the formula for the Gaussian case.

Binning νµ 1-Ring νµ 1-Ring νe 1-Ring νe 1-Ring νe CC1π+ 1-Ring νµ CC1π+

P-value θ 3.20 ×10−2 6.14 ×10−1 8.95 ×10−1 3.27 ×10−1 1.09 ×10−1 –
z-score (σ) 1.85 -0.290 -1.25 0.448 1.23 –

P-value Erec (µ-like), P (e-like) 3.16 ×10−1 8.50 ×10−1 1.96 ×10−1 2.37 ×10−1 1.65 ×10−1 9.55 ×10−1

z-score (σ) 0.479 -1.04 0.856 0.716 0.974 -1.70
P-value Erec (e-like) – – 8.05 ×10−2 8.68 ×10−1 8.36 ×10−1 –

z-score (σ) – – 1.40 -1.12 -0.98 –
P-value Erec–θ (µ-like), pl–θ (e-like) 6.79 ×10−1 9.80 ×10−1 8.20 ×10−1 7.60 ×10−1 1.28 ×10−1 –

z-score (σ) -0.464 -2.05 -0.915 -0.706 1.14 –

Table 40: P-values from the MCMC data analysis

Binning νµ 1-Ring νµ 1-Ring νe 1-Ring νe 1-Ring νe CC1π+ 1-Ring νµ CC1π+

P-value Erec 3.5 ×10−1 8.4 ×10−1 1.3 ×10−1 6.3 ×10−1 8.9 ×10−1 9.6 ×10−1
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H PartIII: Details of the track reconstruction algorithm

The track reconstruction algorithm was already overviewed in Section 10. More detailed descrip-
tions are written in this Appendix.

H.1 Two-dimensional track reconstruction (Track seeding)

We have the same format to contain data for our simulation and data. By using the common
format having fundamental information associated with detector responses such as light yield,
TDC, hit position, and so on, hits are categorized into groups called "clusters". As particle tracks
are supposed to be straight or slightly curved lines due to the magnetic field in BabyMIND,
clusters shape a similar line. The hit positions are key components to constructing a cluster. We
chose Celluler automaton tracking (CAT) as an algorithm to do this cluster reconstruction. We
call this reconstruction "Track seeding".

H.1.1 Celluler automaton tracking (CAT)

This algorithm, CAT, was originally invented to analyze a liquid motion by considering a liquid
as a group of discrete units and calculating the motion of each based on its neighbors’ behaviors.
It has been widely known since an article named "Game of Life" [174] was published in 1970.
Settings in this algorithm are simple, just requiring grid spaces having a finite state that could be
evolved in time spent under the specific rules. Considering the structure of scintillator trackers,
each hit can be considered to be on each two-dimensional grid point defined by scintillator
positions. If we choose an appropriate definition of "time" and "rules" for evolving "state", it
can be applied to track seeding. To make each definition clear, several kinds of terms are also
defined here.

Cell
A line connecting a hit to another hit. Cell is a unit of this algorithm.

Neighbourhood
A pair of two cells having one common hit.

Time
An iteration to check each state of cells. The initial time is set to 0.

State
A number incremented based on a certain rule. The initial state is set to 0.

In this analysis, a state is evolved based on the following rules.

1. Check if there is at least one Neighbourhood having the same State. If yes, proceed with
this iteration. Otherwise, this iteration is ended.

2. Check χ2 values obtained by a linear fitting to three hits included in the Neighbourhoods.

3. If the χ2 is lower than a threshold (depending on a combination of scintillator bars, typ-
ically 500 for scintillator bars in Proton Module), we call those Neighbourhoods "True"
Neighbourhoods otherwise "False" Neighbourhoods.
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4. States of upstream cells of True Neighbourhoods are incremented by 1. Also, Time is
incremented by 1.

5. Steps 1 to 4 continue until none of the Cells change their states.

Figure 101 shows a schematic view to illustrate each definition by drawings.
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Figure 101: An illustration of the overview of the CAT algorithm. A simple setting is shown in
Figure 101a. Each hit is denoted by a capital alphabet. Two cells are indicated by red arrows in
Figure 101b denoted by small alphabets (a, b). Figure 101c shows a True Neighbourhood (a, b)
and a False Neighbourhood (a, c).

In addition, the following rules are applied in constructing cells.

• Plane differences between two hits are less than 3. For the WAGASCI detectors, the
minimum allowed plane differences is 0, otherwise 1,

• Position X, Y differences between two hits are less than 300 mm.

The reason why different thresholds for minimum plane differences are defined between the
WAGASCI detectors and Proton Module is that WAGASCI detectors have three-dimensional
grid structures which were designed to detect a particle going in the perpendicular direction to
the detector coordinates while Proton Module has scintillator tracking planes aligned in parallel
which are insensitive to those particles. When this method is applied to hit data, two additional
steps are added to make clustering more robust.

Time clustering
All the hits are placed in the order of TDC and a hit is put into a time cluster one by one.
If the difference in the TDC time between two neighboring hits is more than 100 ns, a hit
is put into another cluster from the other hit.

Hit clustering
There can be two neighboring hits in the X or Y direction mainly due to cross-talks be-
tween scintillators. To make an algorithm simpler, those hits are put into a hit cluster.
For the WAGASCI detectors, this hit clustering is disabled considering the more compli-
cated scintillator structure compared to other detectors. WAGASCI tracking planes are
combinations of plane and grid scintillators and it is not obvious which hits to be merged.

Figure 102 shows how each cell evolved based on these rules.
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(a) Hit clusters on scintillators

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Plane

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Y
 p

os
iti

on
 (

/5
0 

m
m

)

(b) Cell construction
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(d) After all the iterations
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(f) Result of track seeding

Figure 102: Illistrations of how the track seeding is processed with CAT. Figure 102a shows
an example hit cluster map typically found in neutrino events. Then each cell is constructed
(Figure 102b). For simplicity of the illustration, each cell is drawn only in the case the plane
differences equal 1. Otherwise, cells are dismissed in these drawings. Once all cells are con-
structed, each state of a cell is automatically updated based on the rules until all the iterations
are ended. Figure 102c is the result of the first iteration and Figure 102d is the result of all the
iterations. Each track candidate can be reconstructed by tracking cells from a higher state to
a lower state. In this example, three candidates are recovered (Figure 102e). Each candidate
is prioritized based on the track-likeliness which is defined by the number of hits included in
each candidate. As the number of hits is larger, it is considered to be more highly likely to be
a particle track. After selecting track candidates, check how many isolated hits (not shared by
more than one track candidate) it has. If the isolated hits are less than shared hits, it is not
considered to be a particle track anymore. The track candidate 2 in this example have 1 isolated
hits and 2 shared hits, therefore, it fs dismissed in the final step of this algorithm. Finally, we
have two track candidates from this example as shown in Figure 102f.
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H.2 Three dimensional track reconstruction

Now that all the hits in each event are reconstructed into clusters in two-dimensional space, pairs
of two-dimensional clusters in XZ and YZ views have to be converted into three-dimensional
tracks. After all three-dimensional tracks are reconstructed, the neutrino interaction vertex is
reconstructed. Track reconstruction process here proceeds in the following steps.

1. Track matching in two-dimensional space and in three-dimentional space

2. Vertexing

3. Track reconstruction in three-dimensional space for other tracks

4. Check hits in YASU trackers

H.2.1 Track matching in two-dimensional space and in three-dimensional space

Track seeding in two-dimensional space gives reconstructed clusters in the YZ view and XZ
view. All analyses ongoing in the WAGASCI-BabyMIND group aim to extract the cross section
for charged current interactions. And most of the physics targets of our measurements are the
differential cross section with respect to µ kinematics. Thus, the first priority in the three-
dimensional reconstruction is to reconstruct a 3D track for µ candidate. In this analysis, events
where neutrino interaction happens in a detector and none of the tracks are matched with another
subdetector will not be used because a fraction of backgrounds in that kind of event overweighs
the signal. A track matching algorithm has been developed based on this philosophy.

Figure 103 shows the overview of the track matching algorithm. As our main analysis samples
include a muon candidate whose track is matched with a muon range detector, the algorithm
starts from clusters in BabyMIND or WallMRD. If there is at least one cluster in either Baby-
MIND or WallMRD, then the algorithm looks at clusters in the vertex detectors. If there are
clusters in at least one vertex detector, it tries to check if there is a combination of clusters
satisfying matching conditions. The algorithm follows the same manner in the case where there
is at least one cluster in a vertex detector while there is no cluster in BabyMIND and WallMRD.
Matching conditions are mainly divided into two parts, angle differences of the two clusters and
position differences of an extrapolated position of a cluster from an upstream detector and a
starting position of a cluster from a downstream detector. Both conditions depend on the com-
bination of two detectors because each detector has different position and angle resolutions. Also,
those conditions are determined by taking distances between two detectors into account.

Conditions for the angle differences are summarized in Table 41 and in Table 42 for the
position differences. In this analysis, no requirement for TDC within each bunch is applied.
After the iteration of both views, If there is no candidate of a matching cluster in an event,
the event is dismissed. Otherwise, it proceeds with the three-dimensional track matching. The
algorithm ensures that there is at least one pair of matched tracks in both views. The algorithm
tries to check if both upstream edge position differences and downstream edge position differences
satisfy a three-dimensional matching condition, which is shown in Table 43.
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Figure 103: An algorithm for a track matching between subdetectors. In the selection of "Any
cluster in Vertex detectors", clusters in all kinds of vertex detectors (Proton Module and WA-
GASCI upstream and WAGASCI downstream) are covered. If there are clusters in more than 1
vertex detector in this selection, it tries to check if all clusters are matched with each other in
the next "Matching" selection.
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Table 41: Matching conditions for the angle differences. WMRD: WallMRD, BM: BabyMIND

Upstream detector Downstream detector view Threshold (angle)
a vertex detector BM YZ 25
a vertex detector BM XZ 30
a vertex detector WMRD XZ 25
a vertex detector a vertex detector both 25

Table 42: Matching conditions for the position differences. WMRD: WallMRD, BM: BabyMIND,
PM: ProtonModule, UWG: Upstream WAGASCI, DWG: Downstream WAGASCI

Upstream detector Downstream detector view Threshold (mm)
PM or DWG BM YZ 250

UWG BM YZ 300
PM or DWG BM XZ 300

UWG BM XZ 300
a vertex detecor WMRD XZ 500

PM DWG both 200
UWG DWG both 300
UWG PM both 200

Table 43: Conditions of three-dimensional track matching

Detector at upstream edge Threshold on position differences (mm)
Any vertex detector 150

Detector at downstream edge Threshold on position differences (mm)
WallMRD 200
BabyMIND 350

H.2.2 Vertexing

The next step after the three-dimensional track matching is to reconstruct a neutrino interaction
vertex because the matched track is supposed to be a µ candidate whose starting position in a
vertex detector is expected to give a vertex position. Vertex X and Y positions are taken from
the start positions from the three-dimensional matching track. Vertex Z position is defined as
the more upstream position of matched tracks in both views. As planes in both views are aligned
in parallel on the Z-axis, the upstream position is more likely to be an interaction point. Then
the algorithm tries to look for other clusters that are expected to start from the vertex point.
Suppose differences in the start Z position and start X/Y position are ∆Z, ∆X/Y , the following
conditions are required for clusters in both vertex detectors.

∆Z ≤ 80 mm,∆XY ≤ 80 mm (H.1)

If the cluster does not satisfy the conditions above, it can be simply ignored while the event
is not rejected. It should be noted that if some of the clusters are found to be matched with
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clusters in another detector in the first step and they satisfy this condition, then clusters will
be treated as a matching track (but not a µ candidate). This process is conducted in each view
separately and a three-dimensional track reconstruction for those clusters will be performed in
the next step.

H.2.3 Track reconstruction in three-dimensional space for other tracks

The final step is to reconstruct a three-dimensional track for the clusters having the same vertex
of a µ candidate. The algorithm checks if differences in the starting positions and differences
in the stopping positions satisfy thresholds which are the same as shown in Figure 43. There
are often cases where a track in either view cannot match any track satisfying the conditions
in the other view. For example, when we assume two tracks are produced in a vertex position,
there is a possibility that two tracks are visible in the YZ view but in the XZ view both tracks
are overlapped as if it was one track. In order to take the effect into account, the cluster is
reconstructed in the event as a two-dimensional track sharing the same vertex point as a µ
candidate even if it has no candidate in the other view. The number of tracks in an event can
be defined by the maximum number of tracks in both views.

H.2.4 Check hits in YASU trackers

Two scintillator planes (YASU trackers) were installed between three successive iron planes in
the first block of BabyMIND to detect relatively low-energy muons, otherwise, they could stop
inside the iron modules and then cannot be detected. In order to take advantage of these trackers
in the sense of increasing efficiency, we check track matching between BabyMIND and another
subdetector by comparing extrapolated position from a vertex detector and each hit in a YASU
tracker plane. The threshold of the Y position difference is set to 300 mm. Then we check if a
track from a vertex detector does not match a hit in the 2nd and 3rd planes located downstream
of the YASU trackers to make sure that the event is not double-counted. It can be considered
that either a track is a matching track with more than one detector or a track in one vertex
detector. If it is a matching track, vertexing can be done in the same way that was described
in the previous sections. If it is a track in one vertex detector, it is necessary to reconstruct a
three-dimensional track and decide the vertex position.
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I PartIII: Details of the analysis on the track properties

This research aims to extract the single differential cross section of neutrino-nucleus scattering
with respect to muon angle and muon momentum. As this analysis focuses on a CC0π sample
in the neutrino mode, particle identification, and charge identification are also essential. Each
analysis method to reconstruct those four kinds of track variables is described in this Appendix.

I.1 muon angle

X

Y

Z

ν

Figure 104: The definition of each axis in the detector coordinate system. The Z-axis is stretched
along with the tracking planes. The Y-axis is perpendicular to the ground. The X-axis is
perpendicular to both Y and Z axis.

Here we use a detector coordinate for each X, Y, and Z-axis as shown in Figure 104. The three-
dimensional track reconstruction ensures there is at least one matching track which is a muon
candidate if a neutrino vertex is reconstructed. Some events also have another three-dimensional
track, but this analysis only needs an angle for the muon candidate. We can choose either hits
in all subdetectors or hits in only vertex detectors to reconstruct an angle. The reconstruction
performance of the angle is not so much improved even if hits inside WallMRD or BabyMIND are
used because the position resolution in WallMRDs is worse than the one of each target detector
and a little difficult to do the angle reconstruction for BabyMIND due to the magnetic field.
We decided to use hits in only vertex detectors. If a neutrino interaction happens in Upstream
WAGASCI or Proton Module and the matching track goes through one or two vertex detectors,
all of those hits information is used. As there is no magnetic field in the vertex detectors, the
angle reconstruction is simply performed by a two-dimensional linear fitting in both XZ and YZ
views. Assuming each slope is tan θXZ , tan θY Z (where θ is an angle with respect to the neutrino
beam direction), a reconstructed angle of the matching track is given by the following formula
in the unit of degree.
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reconstructed angle = arccos

(
|dνx tan θXZ + dνy tan θY Z + dνz |√

1 + tan2 θXZ + tan2 θY Z

)
× 180

π
, (I.1)

where dνx = −0.019972, dνy = −0.079947, dνz = 0.996599.
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Figure 105: A residual plot of µ candidate.

We used simulated charged current inclusive events with one reconstructed track that has
tracks in Upstream WAGASCI and BabyMIND to make sure this method works well for the
neutrino interactions. The selection is described below.

• Three-dimensional track reconstruction

• Vertexing

• Fiducial Volume cut

• Event includes only one track which is matched with one of the MRD detectors

Figure 105 shows the residual plot of the angle.

I.2 muon momentum

WAGASCI-BabyMIND detectors are potentially capable of momentum measurements either by
track curvature in BabyMIND or by track range in all subdetectors. Although there have been
several trials to reconstruct momentum by curvature, none of them is validated in this analysis.
We decided to use the range method for this purpose. In that case, it is required to reconstruct
momentum in a reasonable way that the particle should stop inside either muon range detector.
It implies statistics is essentially decreased compared to the angle measurement. For future
improvement, developing a sophisticated method to reconstruct momentum by curvature will
be important not to reduce the statistics for the differential cross section as a function of muon
momentum.
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We have six kinds of subdetectors introduced in this measurement and one set of detectors
that comes from the NINJA experiment. As one of the NINJA detectors has a few cm of iron
planes in total length, the energy loss there is not negligible. Thus, this energy deposit is also
considered as well as the ones in our subdetectors. Dominant materials to be concerned to
calculate a total energy loss are iron (ρ = 7.874 g/cm3), scintillator (ρ = 1.032 g/cm3) and
water (ρ = 1.002 g/cm3), and the energy loss is normalized by iron taking corresponding density
ratio. A reconstructed momentum value is calculated using a spline (Figure 106) having the
relationship between CSDA (Continuous-Slowing-Down Approximation) range and momentum
for muons. The spline is produced based on a table [175] provided by Particle Data Group. The
performance of this method is checked with the MC simulation for CC inclusive events where
there is only a muon candidate going from Downstream WAGASCI and BabyMIND. We checked
the momentum resolution in the regions separated every 100 MeV/c. A resolution is defined by
the standard deviation of the Gaussian fitting in each momentum range and its error is calculated
simply by dividing by the mean momentum in each region.
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Figure 106: A spline of relationship between CSDA range in iron and µ momentum
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Figure 107: Momentum resolution by range in each momentum region. A resolution is defined by
the standard deviation of the Gaussian fitting in each momentum range and its error is calculated
simply by dividing by the mean momentum in each region.

Figure 107 shows the momentum resolution for the BabyMIND case. The resolution is more
or less about 10% or less in the regions of interest which is expected from the brief calculation
of the ideal resolution of BabyMIND.

I.2.1 Particle identification

For the CC0π analysis, it would be better to identify each particle, especially for muons, pions,
and protons. However, even the full set of detectors in WAGASCI-BabyMIND is not capable
of fully separating those particles. The most prominent thing about particle identification in
terms of CC0π measurements is to separate µ-like particles (typically muons and pions) from
p-like particles because the most significant background comes from single pion production where
two µ-like particles are likely to be found. We use the following variable named "MUCL (muon
confidence level)" for the discriminator of the particle identification.

MUCL = P ×
n−1∑
i=0

(− lnP )i

i!
, P =

n∏
i=1

CLi, (I.2)

where n refers to the number of planes having a hit and CLi are the confidence levels for hits on
the ith plane, which are defined by a cumulative function of dE/dx distribution for each detector.
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(a) INGRID scintillators in Proton Module
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(b) Scibar scintillators in Proton Module
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(c) Plane scintillators in Upstream WAGASCI
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(d) Grid scintillators in Upstream WAGASCI
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(e) Plane scintillators in Downstream WAGASCI
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(f) Grid scintillators in Downstream WAGASCI

Figure 108: Splines for the muon confidence level functions. Figure 108a, Figure 108b show the
splines for two kinds of scintillators (INGRID and Scibar scintillators) used in Proton Module.
Figure 108c, Figure 108d show the splines for two kinds of scintillators (plane scintillators and grid
scintillators) used in Upstream WAGASCI. The rest of the two figures (Figure 108e, Figure 108f)
are the splines for Downstream WAGASCI.
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Figure 108 shows splines to calculate each confidence level (CLi) for MC and Data. The
differences between data and MC in these splines are taken into account as one of the systematic
uncertainties in the late stage of this analysis.

We check the performance of the particle identification for both µ-like particles and p-like
particles. The µ-like particles can be easily collected by taking a sand muon sample which is
appropriate to validate this method. On the other hand, it would be difficult to obtain a p-like
particles enriched sample because there is no other way to identify protons in this analysis. So
we decided to use a CC inclusive sample to validate the performance for p-like particles because
the sample is supposed to have a sufficient amount of p-like particles even though the purity is
not nearly 100%. This inclusive sample was chosen by requiring the following conditions.

• Three-dimensional track reconstruction

• Vertexing

• Fiducial Volume cut

• At least one track matched with one of MRD detectors (supposed to be µ track)

In this validation, only the Run11 data set was used because this data set has the highest quality
which is most appropriate to check performances of the method.

The validation results of µ-like particles are summarized in Figure 109 and p-like particles
in Figure 110. The agreement level is good and we decided to use this method to select µ-like
particles in the event selections.
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Figure 109: Comparisons of muon confidence level distibutions for µ-like particles.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

 MUCL

0

100

200

300

400

500

600

700

800

900

 #
 o

f 
tr

ac
k

Muon Confidence Level ProtonModule

MC

MC Weighted Sum2 Error

Real

Muon Confidence Level ProtonModule

(a) p-like particles for Proton
Module

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

 MUCL

10

20

30

40

50

60

70

80

90

 #
 o

f 
tr

ac
k

Muon Confidence Level WagasciUpstream

MC

MC Weighted Sum2 Error

Real

Muon Confidence Level WagasciUpstream

(b) p-like particles for Upstream
WAGASCI

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

 MUCL

20

40

60

80

100

120

140

160

180

200

 #
 o

f 
tr

ac
k

Muon Confidence Level WagasciDownstream

MC

MC Weighted Sum2 Error

Real

Muon Confidence Level WagasciDownstream

(c) p-like particles for Down-
stream WAGASCI

Figure 110: Comparisons of muon confidence level distibutions for p-like particles.
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I.3 Charge identification

As we aim for the measurements of νµ interactions, νµ interactions are among the backgrounds
that can be suppressed by imposing a charge identification of muons. We need to identify the
charge of only the matching track which is a muon candidate. In this section, the method of
charge identification is explained in detail.

One of the muon range detectors, BabyMIND, has a magnetic field whose directions are
different depending on Y positions as shown in Figure 111. There are two different kinds of
regions where the magnetic field has different orientations on the X-axis.
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Figure 111: The orientations of the magnetic fields inside the iron planes of BabyMIND. These
schematic views are seen from the neutrino beam eye. Each axis is on the detector coordinate
shown in Figure 104. The geometry of BabyMIND iron planes is approximately 4 m × 2 m in
the XY view. Charged particles are mostly affected by the X component of the magnetic field.

Due to the magnetic field, charged particles bend downward or upward depending on the
region where they are. The method used in this analysis focuses on the track curvature only
in the YZ view because it is the most sensitive to charge identification based on this structure
of magnetic fields. We introduced a sequential fitter in order to reconstruct a charge with the
curved tracks in the YZ view by a negative log-likelihood approach. The fitter needs to know the
values of at least four parameters to get a reference track by this fitting, an incident angle from a
vertex detector (ϕI)59, an incident Y position (YI), a momentum (PI), and a charge (CI). These
four parameters are set to free parameters in the fitting. Once these parameters are given, a
reference track is obtained by taking into account the Lorenz force and energy deposit. Then, χ2

is calculated with data points both in this reference track and in a reconstructed track assuming
both hypotheses that the particle charge is negative (µ− hypothesis) and that the particle charge
is positive (µ+ hypothesis). This calculation gives two sets of minimum χ2 values that are fed
into the calculation of the log-likelihood ratio. Table 44 shows how four free parameters are
binned in a fit.

In each iteration in the fit, a particle position in each scintillator is estimated in the following
way.

1. Calculate a Y position difference between the next scintillator and the current scintillator.

2. Estimate a Y position in the next scintillator.
59As a muon candidate always have a track in a vertex detector, it can be extrapolated from the detector to

BabyMIND, therefore, the incident angle is roughly estimated. However, it is left as one of the free parameters
because it can be estimated more accurately.
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Table 44: The number of bins and width for four free parameters

Parameter The number of bins bin width
ϕI 40 0.01
YI 20 2 (mm)
PI 200 12.5 (MeV/c)
CI 2 +1 / -1

3. Calculate an energy deposit while passing to the next scintillator.

4. Calculate a momentum in the next scintillator

5. Repeat 1 to 4 until the algorithm reaches the last scintillator where there is a hit in data.

The Y position difference between the next scintillator and the current scintillator can be
calculated by the Lorenz force. Figure 112 shows the example case where there are three iron
planes between two successive scintillators. The Y position difference is determined by the Lorenz
force if the particle passes through the iron planes assuming the multiple scattering effects are
negligible. If the particle passes through the air, it feels no magnetic field.

We have another assumption that the change in the radius denoted by R1 between two
neighboring scintillators is negligible, namely R1 ≃ R2. On these assumptions, we can calculate
∆Yi, which is the Y position difference between the i-th scintillator plane and the (i+1)-th
scintillator plane, by the following formula.

∆Yi = li,0 tanϕi+
n∑

k=1

(
L tan

(
ϕi,k +

θi,k
2

)
+ li,k tanϕi,k

)
, θi,k = arcsin

(
L+R sinϕi,k

R

)
−ϕi,k,

(I.3)
where L is the length of an iron plane, li,k(0 ≤ k ≤ n) are the length of the air region between
two successive planes. The parameter ϕi,k are the incident angles in the current scintillator,
θi,k are the opening angles between the center point of the Lorenz force and each hit position
in scintillators and n is the number of pairs of an air region and an iron region between two
successive scintillator planes (n = 3 in the example shown in Figure 112).

As there are two kinds of orientations for the magnetic fields and two kinds of signs of the
particle angle, we need to consider four kinds of cases to calculate the ∆Yi positions. Figure 112
and Equation I.3 are valid just for the case where both directions oriented by Lorentz force and
incident angle are positive (upward). The following equations are corresponding to the other
three cases.

∆Yi = li,0 tanϕi +
n∑

k=1

(
L tan

(
ϕi,k −

θi,k
2

)
+ li,k tanϕi,k

)
, θi,k = arcsin

(
L−R sinϕi,k

R

)
+ ϕk,

(I.4)

∆Yi = (−1)×

(
li,0 tanϕi +

n∑
k=1

(
L tan

(
ϕi,k +

θi,k
2

)
+ li,k tanϕi,k

))
, θi,k = arcsin

(
L+R sinϕi,k

R

)
−ϕi,k,

(I.5)
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Figure 112: The example case charged particles (indicated by red circles) are on the region where
there are three iron planes (indicated by yellow rectangles) between two successive scintillators
(indicated by blue rectangles). The parameter zi are the Z position differences of those two
scintillators. The parameter Yi are the current Y positions of the particle and ∆Yi are the net
values between the next scintillator and the current scintillator. The parameter ϕ is the particle
angle. BabyMIND has a uniform magnetic field strength of 1.5 T in iron planes, denoted by "B"
in this figure. And the length of iron is 3 cm (L). The point, O is the center of the Lorentz force
generated by this magnetic field. The radius of the Lorentz force in each position is denoted by
R1, R2, respectively.

∆Yi = (−1)×

(
li,0 tanϕi +

n∑
k=1

(
L tan

(
ϕi,k −

θi,k
2

)
+ li,k tanϕi,k

))
, θi,k = arcsin

(
L−R sinϕi,k

R

)
+ϕi,k,

(I.6)
where Equation I.4 for the case the orientation of Lorentz force is positive (upward) and the
orientation of an incident angle is negative (downward), Equation I.5 is the inverted case to
Equation I.3 and Equation I.6 is the inverted case to Equation I.4. In that region where there
is no iron plane between two successive scintillators, the Y position in the next scintillator is
calculated by the extrapolation from the current position without the effect of the Lorentz force.

Now that the algorithm can calculate the ∆Yi in every case, a hit position in each scintillator
can be estimated in a sequential way.

Yi+1 = Yi +∆Yi, Pi+1 = Pi −∆Pi, Ri =
Pi

0.3[m/s]× 1.5[T]
, (I.7)
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Yi+1 = Yi + ϕi × zi, Pi+1 = Pi −∆Pi, Ri+1 =
Pi+1

0.3[m/s]× 1.5[T]
, (I.8)

where zi are the Z position differences between two successive scintillator planes. Equation I.7
is used if there is at least one iron plane in two successive scintillator planes and Equation I.8
for the case there is no iron plane. The parameter ϕi+1 are also calculated depending on the
configuration of the two successive scintillator planes.

ϕi+1 = ϕi,n +
θi,n
2

, (I.9)

where θi,n are the same ones defined in Equation I.3 to Equation I.6. Equation I.9 corresponds
to the case for Equation I.7, otherwise the angle ϕi+1 is the same as ϕi.

Once the four free parameters are specified iteratively following the binning scheme shown
in Figure 44, those sequential formulae given in Equation I.7, Equation I.8, and Equation I.9
provide an estimation of sets of a hit position in each scintillator. Each fitted point in the i-
th scintillator is written by fi(ϕI , YI , PI , CI). A likelihood function is defined with these fitted
points and data points (YD,i).

L(ϕI , YI , PI , CI |D) =

N∏
i

1

σi
exp

{(
−1

2

∑
i

(YD,i − fi(ϕI , YI , PI , CI))
2

σ2
i

)}
, (I.10)

where N is the last plane where there is a hit in data. To make a numerical calculation simple,
we use a log-likelihood approach.

−2 lnL(ϕI , YI , PI , CI |D) = 2
∑
i

lnσi +
∑
i

(YD,i − fi(ϕI , YI , PI , CI))
2

σ2
i

. (I.11)

The log-likelihood ratio is used to get a discriminator for a particle charge because a charge
parameter has only two discrete variables.

R =
∑
i

(YD,i − fi(ϕI , YI , PI , CI = −1))2

σ2
i

−
∑
i

(YD,i − fi(ϕI , YI , PI , CI = +1))2

σ2
i

. (I.12)

The parameter R will be used as a discriminator of a particle charge.
Sand muon sample from the Run11 data set is used to validate the charge identification

performance in the same way as the validation of the method of particle identification. The plot
is already shown in Figure 65.
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J PartIII: Supplemental materials for the event selections

This appendix provides supplemental materials that are not given in Section 11.2 on the event
selections.

J.1 Selection criteria for the signal samples

J.1.1 Track / Cluster ratio

Figure 113 shows the data-MC comparison of this parameter with the CC inclusive sample that
was also used in the validation of particle identification. The consistency between data and MC
was assessed by the standard χ2 metric, which is defined by

χ2 =
k∑

i=1

(Ndata −NMC)
2

NMC
(J.1)

where k is the number of bins, Ndata and NMC are the number of events in data and MC. As this
y-axis is log-scale, discrepancies in the Proton Module sample are rather obvious between data
and MC while the level of agreement in the WAGASCI detectors sample is better. The power
of rejecting the background from the wall is significant for the WAGASCI detectors sample. We
have decided to use this parameter only for the WAGASCI detectors sample to keep consistency
between data and MC.
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Figure 113: Data/MC comparisons of the track per cluster ratio for the Proton Module sample
(left) and WAGASCI detectors samples (right). The χ2 is defined in Equation J.1

J.1.2 Michel electron tagging

The method to tag the Michel electrons is explained in Section 11.2. Here, we show one of the
validation results for the Michel electron tagging by using partial data taken in 2021 which corre-
sponds to 1.5×1020 P.O.T. Sand muon samples were used in this validation. For the WAGASCI
detectors sample, each sand muon is supposed to go through the Upstream WAGASCI and
Proton Module before it stops inside the Downstream WAGASCI. For Proton Module sample,
track matching between Upstream WAGASCI and Proton Module is required and it should stop
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inside Proton Module. Contained volume for both Downstream WAGASCI and Proton Module
are summarized in Table 45.

Table 45: Contained volume for stopping muons

Sample X limit Y limit Z limit
downstream WAGASCI ±450 ±450 ±150

Proton Module ±450 ±450 ±250

The potential difference between MC and data related to the Michel electron tagging should
come from the existence of dead time in data. The current MC does not handle the dead time
in the same way as data acquisition although there is a 100 ns dead time between each trigger
cycle corresponding to each bunch width (580 ns) for Proton Module. In this validation, a
simple implementation is adapted by just masking hits in MC if their TDC time falls in the
corresponding dead time.

Table 46 show the number of Michel electron candidates with efficiency as well as the number
of selected events. The total number of events between MC and data does not correspond to the
ratio of statistics expected from POT, which is expected from the previous WAGASCI analysis.
It seems tagging efficiency between both MC and data agrees well with each other.

Table 46: Efficiency of Michel electron tagging for both WAGASCI and Proton Module

Detector MC (1.0×1021 POT) Data ( 0.15× 1021 POT)
Tagging efficiency selected events Tagging efficiency selected events

WAGASCI 30.3% 2913 32.8% 567
Proton Module 22.1% 23287 22.3% 4815

J.1.3 Contained Volume cut

As we use the range method to reconstruct a muon momentum, the contained volume cut in each
MRD was applied only for the cross section measurement in the momentum binning. Table 47
shows the defined contained volume regions.

Table 47: Range of the Contained Volume

Selection cut WallMRD BabyMIND
nominal nominal

Contained Volume (Lower) (mm) (-170, –, -750) (-1300, -900, 2nd pln)
Contained Volume (Upper) (mm) (170, –, 750) (1300, 900, 17th pln)

As WallMRD does not have YZ planes, any regions cannot be defined along with the Y axis.
As for the X and Z axis, the region was defined by excluding the outer layer of the scintillator
planes. For BabyMIND, the outer layer was excluded along with the X and Z axis in the same
way as the WallMRD. As for the Y axis, the distance between channels is rather short (20 mm),
we need to choose which range would be reasonable. The efficiency of choosing events where
muons stop at the true level was used to evaluate the boundary of the Y position. Figure 114
shows the efficiency transition for the boundary Y with other ranges defined in the way that is
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shown in Table 47. In order to make the range reasonable, we choose the range which gives 90%
efficiency based on the Figure 114.
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Figure 114: The efficiency of choosing events where muons stop at the true level to the selected
number of events for the Proton Module samples with other ranges defined in the same way that
is shown in Table 47.

J.1.4 Performance of the selection criteria

To check how each selection criterion has a positive impact on the selection performance, the
reconstructed angle distributions based on the selection criteria except for a specific selection,
are compared to the nominal angle distribution. Figures 115, 116 show WAGASCI and Proton
Module samples, respectively. Most of the selections work in terms of the reduction in background
contamination. The number of tracks cut has little effect on an increase in signal purity because
the number of events with more than three tracks is a small fraction of selected events.
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(a) all selection applied
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(b) without the fiducial volume cut.
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(c) without the number of track cut.
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(d) without the muon confidence level cut.
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(e) without the charge id cut.

0 20 40 60 80 100 120 140 160 180

 (degree)µθ

0

100

200

300

400

500

600

700

 P
.O

.T
)

20
 1

0
×

ev
en

ts
 (

/3
.3

numu CC0pi

BG numu CC1piCharge

BG numu CCother interactions

BG numu NeutralCurrent

BG from other TMs

BG from WMRD

BG from BM

BG from Wall

BG from numubar

(f) without the track/cluster ratio cut.
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(g) without the Michel electron cut.

Figure 115: The reconstructed µ angle distribution for the WAGASCI samples without a certain
selection (115b to 115g), otherwise unchanged. The signal purity is 77.0%, 4.07%, 52.5%, 57.5%,
67.5%, 71.6%, and 72.7% respectively.
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(b) without the fiducial volume cut.
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(c) without the number of track cut.
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(d) without the muon confidence level cut.
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(e) without the charge id cut.
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(f) without the Michel electron cut.

Figure 116: The reconstructed µ angle distribution for the Proton Module samples without a
certain selection (116b to 116f), otherwise unchanged. The signal purity is 71.6%, 5.73%, 54.8%,
57.0%, 64.0% ,and 65.9% respectively.
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J.2 Selection criteria for side-band samples

J.2.1 CC1π± sample

Figure 117 shows the whole CC1π± selection criteria. Each component has been already men-
tioned in the main section (Section 11.2) while some conditions are reversed for selecting this
sample efficiently. Selections are divided into two paths depending on whether a pion can be
reconstructed in a track or not. The first path is prepared to find the CC1π± sample when a
pion track is under the tracking threshold. The whole selection criteria in this path have the
same scheme to select the CC0π± sample except for reverting the final cut on Michel electron
tagging. If the Michel electron is found in an event, the event can be considered to have a pion
track and counted as the CC1π± event. The other path is introduced to find a pion track which
should be over the tracking threshold. A pion track can be considered to be more like a µ-like
track than a p-like track in terms of its MUCL value. So it would provide a pion selection to
reverse the MUCL cut applied to the CC0π± selection. Then charge cut is applied in order to
reduce wrong-sign backgrounds.

Pre-selection

Inside FV

# of tracks MUCL for 
2nd, 3rd tracksDismissed

Dismissed

Dismissed

True

False

False

True

3 < 2 or 3

1
MUCL of either

≧ 

Dismissed

False

Charge
of muon

Track / Cluster
ratio

Michel electron

Charge 
of muon

CC1pi sample

Negative Negative

0.6 <

Yes

Dismissed

Dismissed

Dismissed

Dismissed

Positive

Positive

0.6 ≧

No

 

2nd or 3rd track
 0.7 (0.8)

< 0.6 (0.7)

MUCL of both 2nd
and 3rd track

Figure 117: Event selection criteria for numu CC1π±. As for "MUCL for 2nd, 3rd tracks"
and "Track / Cluster ratio", thresholds are different between WAGASCI and Proton Module.
Parenthesis indicates WAGASCI detectors case.
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J.2.2 Sand muon sample

When neutrino interactions happen in the upstream wall to the experimental location, muons
from the charged current interactions go to the detector complex. These muons are called "sand
muon", which can be used to check the basic performance of the detector such as timing and
light yield measurements. Here, we use the sand muon sample to understand the background
from the neutrino interactions in the wall. Figure 118 shows the whole selection criteria for the
sand muon sample. Criteria are rather simple for this sample. For events passing Pre-selection,
it requires a vertex point to be outside the fiducial volume. As sand muon events are supposed
to have just one track from µ, the number of tracks cut is applied in order to make sure each
event has one track. The track has to come from outside all subdetectors, it would be sensible
to add a selection to require a hit in the 1st plane in upstream WAGASCI, which is the most
upstream detector. Finally, it checks if the track goes to one of the muon range detectors which
is expected to play a role in reducing pion contamination into this sample.
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Figure 118: Event selection criteria for sand muon sample.

220



K PartIII: Studies of neutrino flux and detector systematic un-
certainties

K.1 neutrino flux

The neutrino flux uncertainties are evaluated using the same method as that for the ND280 and
SK. The uncertainty of the neutrino flux has been given in the binning format summarized in
Table 48. This binning was chosen so that a fair amount of events are selected in each bin.
Figures 119, 120 show the covariance matrix and correlation matrix on the neutrino flux at the
position of the Downstream WAGASCI. Figures 121, 122 show the total systematic uncertainties
at the position of the Downstream WAGASCI.

Table 48: Energy binning for flux uncertainty evaluation

Energy range Number of bins Energy width per bin
0.0-3.0 GeV 15 0.2 GeV
3.0-4.0 GeV 1 1.0 GeV
4.0-10.0 GeV 3 2.0 GeV
10.0-30.0 GeV 1 20.0 GeV
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Figure 119: The covariance matrix for the total uncertainty due to neutrino beam flux on WA-
GASCI with the FHC mode. The bins 0-19 correspond to νµ fraction, and bins 20-39 correspond
to νµ fraction.
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Figure 120: The correlation matrix for the total uncertainty due to neutrino beam flux on WA-
GASCI with the FHC mode. The bins 0-19 correspond to νµ fraction, and bins 20-39 correspond
to νµ fraction.
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Figure 121: Total systematic uncertainties for νµ in FHC mode at the WAGASCI position.
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Figure 122: Total systematic uncertainties for νµ in FHC mode at the WAGASCI position.
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K.2 detector systematics

Our analysis framework consists of three bodies, Geant4-based Monte Carlo simulation, track
reconstruction and sample selections. All descriptions in our MC were relying on the nominal
settings that were measured in the experimental places and using physics data. As there is
measurement precision for each setting, each deviated value from the nominal setting was treated
as an error source. These error sources are categorized into detector-related parameters in this
section. In the track reconstruction, we have introduced many kinds of tracking thresholds in
each process as described in Section H. Each threshold was set to a certain value so that we make
sure it covers the sufficient range to get proper reconstruction done. In order to take a difference
between MC and data into account, we intentionally shifted these thresholds one by one. And the
difference in changes in the number of selected events between MC and data are considered error
sources (track-reconstruction-related parameters). For sample-selections-related parameters, the
data and MC differences are taken into account by shifting each nominal selection threshold.
The procedure to evaluate each systematic parameter is summarized in Figure 123.

Run MC

with a systematic turned on Run nominal track recon

Calculate predicted # of events

in each sample bin 


in nominal selections

Run track recon

with a systematic turned on

Calculate predicted # of events

in each sample bin 


in nominal selections
Create a covariance matrix Sum of covariance matrices


for all parametersRun nominal MC

Run nominal track recon
Calculate predicted # of events


in each sample bin 

with a systematic turned on

Run nominal MC

For detector related parameters

For track-recon related parameters

For selection related parameters

Figure 123: A diagram to show the procedure to calculate each covariance matrix. The red
colour indicates a process where a systematic parameter is turned on for each category. The blue
colour marked a process for nominal MC or reconstruction or event selection being used.

K.2.1 Magnetic field strength

BabyMIND detector has the magnetic field in iron planes, whose strength is supposed to be 1.5T
in any region. The design of the electric coil in BabyMIND is complicated so that it minimizes the
leak field outside. In order to estimate the field strength, we had a two-dimensional simulation
for the magnetic field, which was implemented in the MC framework. Figure 124 shows the
measurement result for a module in BabyMIND. We operated the magnet power supply at 140
A in our data taking. The fluctuation of the power supply is less than 0.1 A, which is negligible.
The estimated error of the field strength is about 0.4 T according to Figure 124 and the magnetic
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field is saturated at 1.57 T. We have chosen ±0.5 T for the systematic uncertainty of magnetic
field strength to take it into account the effect of magnetic-field modelling in the MC. The
covariance of the detector systematics is calculated as follows.

Vij =
1

2

(ϕi
nom − ϕi

+)(ϕ
j
nom − ϕj

+)

ϕi
nomϕ

j
nom

+
1

2

(ϕi
nom − ϕi

−)(ϕ
j
nom − ϕj

−)

ϕi
nomϕ

j
nom

(K.1)

where Vij is the (i, j) element of the covariance matrix, ϕi
nom is the number of selected events

in the nominal setting in the i-th bin while ϕi
+ and ϕi

i refer to the number of selected events in
the fluctuations in the i-th bin (for +0.5 T and -0.5 T respectively).

Figure 124: B-I curve of ARMCO (iron material) measured on one magnet module in Baby-
MIND [176]

Figs. 125, 126 show the fractional uncertainty along with the nominal predictions.
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Figure 125: Systematic uncertainty of magnetic field strength for the Proton Module samples
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Figure 126: Systematic uncertainty of magnetic field strength for the WAGASCI samples
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K.2.2 Pion SI in Monte-Carlo simulation

Final state interactions (FSI) and secondary interactions (SI) are the major nuclear medium
effects which potentially affect CC0π± topology if some pions are trapped inside nucleus and
cannot get out of the nucleus due to these effects. The underlying physics model used in the
Geant4 simulation is "QGSP Bertini" model, which has some discrepancies in the π±-A cross
section. Various kinds of models are compared with data to extract the best fit parameters along
with their uncertainties. Interaction channels are divided into five.

• Absorption (ABS): No pions in the final state

• Quasi-elastic Scattering (QE): Only one pion in the final state of the same charge as the
incident beam

• Single Charge Exchange (CX): Only one π0 in the final state

• Absorption + Single Charge Exchange (ABS + CX): Sum of ABS and CX

• Reactive: Sum of ABS + CX + QE, Double Charge Exchange and Hadron Production.
Double Charge Exchange is defined as final states with one pion in the final state with
opposite charge as the incident beam. Hadron production is defined as final states with
more than pion.

In this analysis, QE, ABS and CX are closely relevant channels to consider these effects. The
size of pion SI related effects are basically determined by the uncertainty of π±-A cross section.
The uncertainty matters in two kinds of context. The first will appear in somewhat interaction
probability function (P1 = exp{(−nσx)}, where n is the number of scattering center of nucleus
in mm3, σ is the cross section and x is the travelling length before the interaction) and another
is the uncertainty of its just cross section (P2). Considering the background components of
CC0π±, P2 will be dominant. Just in case this analysis considers these two factors following the
ND280 analysis. So the weight factor for this systematic is given by the product of both weights
wP1 × wP2 . Unlike ND280 analysis method, this analysis estimates the averaged weight factor
to the total number of selected pion background contaminating into the signal instead of taking
into account each weight on an event-by-event basis. In order to calculate the weight factor for
P1 in each background event, the following formula was used.

wP1 =

i=nπ∏
i=1

exp
{
(−σjxji )

}
= exp

{(
σjxji

)}
≃ exp{(nπ⟨σ⟩⟨x⟩)} (K.2)

where ⟨σ⟩ is the weighted cross section of QE+ABS+CX channels and ⟨x⟩ is the interaction
length of the pion in a certain nucleus (12C in this analysis). The same weighted cross section
was used for the factor P2, and then the weight factor can be calculated with these values. It
should be noted that the P1 weight is multiplied by the number of all pion backgrounds while
P2 weight is multiplied by the number of pion background having the interaction inside the
vertex detector. If the pion goes through the vertex detector, it wasn’t taken into account in this
calculation.

The weighted cross section was calculated with the digitized values of these plots and the true
momentum distribution of the pion background contaminating into this selection. Also, each 1
σ error on the corresponding best fit value of the cross section value is digitized and weighted
error is calculated for both QE and ABS+CX. The total uncertainty of this parameter was given
by the quadrature sum of the number of events obtained by two weight factors (P1, P2).
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Figure 127: Comparison of the available π+-C cross section external data with the FSIFitter
best fit and its 1σ band, and other models.
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K.2.3 MPPC noise

MPPC accidental noise hits sometimes result in misreconstruction of vertices or two-dimensional
tracks, which vary the selected number of events. MPPC noise rates for each detector were
measured using off-beam data. For conservative choices of this systematic uncertainty, both
twice higher noise rate and zero noise rate were chosen as the fluctuation from the measured
noise rate. The covariance of the detector systematics is calculated as follows.

Vij =
1

2

(ϕi
nom − ϕi

+)(ϕ
j
nom − ϕj

+)

ϕi
nomϕ

j
nom

+
1

2

(ϕi
nom − ϕi

−)(ϕ
j
nom − ϕj

−)

ϕi
nomϕ

j
nom

(K.3)

where "+" refers to twice higher noise rate and "-" refers to zero noise rate.
Figs. 128, 129 show the fractional uncertainty along with the nominal predictions.
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Figure 128: Systematic uncertainty of MPPC noise for the Proton Module samples
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Figure 129: Systematic uncertainty of MPPC noise for the WAGASCI samples
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K.2.4 scintillator cross talk

The effect of scintillator cross talk was taken into account only for WAGASCI modules because it
was confirmed to be negligible for Proton Module in the past analyses. Crosstalk occurs between
the grid scintillators in the x view and the y view through the cross point of the slits. Its
uncertainty should be estimated because the cross talk sometimes results in mis-vertexing and
track mis-reconstruction. As we have already measured the effect of crosstalk for both WAGASCI
modules which were done in the previous analysis [160], we can use the same results to show
the relation of the light yield between grid-x and grid-y scintillator (Figure 130, Figure 131). In
the MC framework, when a grid scintillator has a hit, crosstalk hits are generated on the grid
scintillator in the opposite view within 5 cm distance from the hit point. The size of the light
yield of the crosstalk hit is determined based on the Poisson distribution with a mean value
calculated as follows.

observed p.e. of the initial hit × crosstalk rate (K.4)

where the crosstalk rate was determined based on the slope of Figs. 130, 131. The variation of
the crosstalk effect is assumed to be 10%. (The previous analyses assume 1% variation, but we
used previous measurements on the crosstalk rate. Conservatively, the uncertainty is assumed
to be 10%) The covariance of the detector systematics is calculated as follows.

Vij =
(ϕi

nom − ϕi
+)(ϕ

j
nom − ϕj

+)

ϕi
nomϕ

j
nom

(K.5)

where "+" refers to the 1% variation of the measured values for both modules.
Figs. 132, 133 show the fractional uncertainty along with the nominal predictions.
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Figure 130: Relation of the light yield between grid-x and grid-y scintillator for Upstream WA-
GASCI

Figure 131: Relation of the light yield between grid-x and grid-y scintillator for Downstream
WAGASCI
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Figure 132: Systematic uncertainty of cross talk for the Proton Module samples
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Figure 133: Systematic uncertainty of cross tallk for the WAGASCI samples
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K.2.5 Light yield

Light yield is supposed to have an effect on the hit threshold, which is the cause of mis-
reconstruction in the two-dimensional clustering process. The light yield for each detector module
was measured with sand muon samples. And variation of parameters to determine the light yield
in the MC framework was decided to cover differences observed in light yield distribution be-
tween MC and data. Figure 134 shows the example cases for vertex modules, and Figure 135 for
MRDs.. Each variation is summarized in Table 49. The covariance of the detector systematics
is calculated as follows.

Vij =
1

2

(ϕi
nom − ϕi

+)(ϕ
j
nom − ϕj

+)

ϕi
nomϕ

j
nom

+
1

2

(ϕi
nom − ϕi

−)(ϕ
j
nom − ϕj

−)

ϕi
nomϕ

j
nom

(K.6)

where "+" refers to plus variation and "-" refers to minus variation.

Table 49: Variation of light yield

Detector "+" Variation "-" Variation
Proton Module +5% -5%

WAGASCI modules +5% -5%
WallMRDs +10% -10%
BabyMIND +5% -5%

Figs. 136, 137 show the fractional uncertainty along with the nominal predictions.
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Figure 134: Variation of light yield for vertex detectors.
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Figure 135: Variation of light yield for muon range detectors.
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Figure 136: Systematic uncertainty of Light yield for the Proton Module samples
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Figure 137: Systematic uncertainty of Light yield for the WAGASCI samples
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K.2.6 Hit efficiency

Related to the light yield systematics, the hit efficiency has to be considered to be one of the
systematic uncertainties because it is supposed to directly affect the result of track reconstruction
in particular two-dimensional clustering. In this analysis, the effect of hit efficiency was estimated
by varying the hit threshold in the two-dimensional track reconstruction process. Analogous to
the previous subsection, each variation of the hit threshold for the detector was decided based
on hit efficiency results with sand muon samples for lower angles and with CC inclusive samples
whose vertex is either in Proton Module or Upstream WAGASCI module for higher angles.
CC inclusive samples were collected by imposing the only fiducial volume cut for the events
passing the pre-selection. Figure 138 shows the variations covering measured data points. The
blue shaded area represents the errors estimated by varying the hit threshold according to its
variation. It should be noted that the errors were calculated by the sum of the square root of
statistical errors and these variational errors. Each variation is summarized in Table 50.

Table 50: Variation of hit efficiency

Detector "+" Variation "-" Variation
Proton Module +1.0 p.e. 0.0 p.e.

WAGASCI modules +1.5 p.e. 0.0 p.e.
WallMRDs +1.5 p.e. 0.0 p.e.

BabyMIND (XZ view) +1.0 p.e. -0.5 p.e.
BabyMIND (YZ view) +1.0 p.e. -0.5 p.e.

The covariance of the detector systematics is calculated as follows.

Vij =
1

2

(ϕi
nom − ϕi

+)(ϕ
j
nom − ϕj

+)

ϕi
nomϕ

j
nom

+
1

2

(ϕi
nom − ϕi

−)(ϕ
j
nom − ϕj

−)

ϕi
nomϕ

j
nom

(K.7)

where "+" refers to plus variation and "-" refers to minus variation.
Figs. 139, 140 show the fractional uncertainty along with the nominal predictions.
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Figure 138: Variation of hit efficiency for each detector.
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Figure 139: Systematic uncertainty of Hit threshold for the Proton Module samples
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(b) θµ binning

Figure 140: Systematic uncertainty of Hit threshold for the WAGASCI samples
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K.2.7 Scintillator distortion in BabyMIND

We found detector modules in BabyMIND have been distorted as illustrated in Figure 141.

Figure 141: Illustration of how a detector module in BabyMIND is distorted from the top (XZ)
view. The left one is the nominal configuration. The right one shows the distortion.

The maximum distortion is about 1.0 cm which should not be neglected because it would
cause a difference in reconstruction between MC and data. In order to reproduce this kind of
distortion in the MC framework, the displacement of each vertical module was applied depending
on the X position so that the maximum distortion was 1.0 cm in the middle. The covariance of
the detector systematics is calculated as follows.

Vij =
(ϕi

nom − ϕi
+)(ϕ

j
nom − ϕj

+)

ϕi
nomϕ

j
nom

(K.8)

where "+" refers to applying this distortion in the MC framework.
Figs. 142, 143 show the fractional uncertainty along with the nominal predictions.
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(a) Pµ binning
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(b) θµ binning

Figure 142: Systematic uncertainty of Scintillator distortion for the Proton Module samples
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(b) θµ binning

Figure 143: Systematic uncertainty of Scintillator distortion for the WAGASCI samples
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K.2.8 Scintillator alignment

Aside from the scintillator distortion in BabyMIND, each detector module has a few centimetre
alignment errors on the Y position. This could have an effect on the curvature of a reconstructed
track because the method relies on the Y position strongly. So this effect was taken into account
by assuming the worse scenario where the Y position is shifted to -0.5 cm for odd number planes
while the Y position is shifted to +0.5 cm for even number planes. This couldn’t be the worst
scenario but it would be a reasonably worse scenario compared to the ideal situation. The
covariance of the detector systematics is calculated as follows.

Vij =
(ϕi

nom − ϕi
+)(ϕ

j
nom − ϕj

+)

ϕi
nomϕ

j
nom

(K.9)

where "+" refers to applying this mis-alignment in the MC framework.
Figs. 144, 145 show the fractional uncertainty along with the nominal predictions.
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(a) Pµ binning
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(b) θµ binning

Figure 144: Systematic uncertainty of Local alignment for the Proton Module samples
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(a) Pµ binning
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Figure 145: Systematic uncertainty of Local alignment for the WAGASCI samples
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K.2.9 Signal Lost

On the way to unblinding data, we observed a non-negligible difference between data and MC
in the reconstructed vertex Z position for WAGASCI samples. Figure 146 shows the data-
MC comparison separated for each data-taking period. The discrepancy in the Downstream
WAGASCI case is moderate, however, we could see a data-MC difference in vertex Z position for
the Upstream WAGASCI samples. We tried to nail down the possible causes of the discrepancy by
scrutinizing the selection outputs and calibration results. We found no solid culprit contributing
to the observed difference.
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Figure 146: Comparison of the vertex distributions for WAGASCI samples (top: Upstream
WAGASCI samples, bottom: Downstream WAGASCI samples). The data points are separated
for the 2020 data set (red), 2021 data set (blue), and 2020 + 2021 merged data set (magenta). The
data error bars represent only statistical uncertainty while the MC error bars include both MC
statistic errors and detector systematic errors. The number of events in MC is area-normalized
by the statistics (2020 + 2021).
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Then ad-hoc systematic parameter is added in order to take into account the effect of the
observed differences. If there had been signal hits (in particular the 6th plane) lost before being
recorded in electronics, this kind of difference could have happened. In the simulation, the signal
hits (grid scintillators) in the sixth plane are lost at random by a certain probability. This
probability is taken as a systematic parameter. In this analysis, the probability is fixed at 50%.
The selection outputs from this modified MC give more consistent results with data in terms of
vertex Z distributions (Figure 147). It should be mentioned that this systematic parameter is
only applied for WAGASCI samples.

0 100 200 300 400 500 600 700 800 9001000

Position X (mm)

0

50

100

150

200

250

ev
en

ts

Vertex Position X in UWG

MC

2020 data

2021 data

2020+2021 data

Vertex Position X in UWG

0 100 200 300 400 500 600 700 800 9001000

Position Y (mm)

0

50

100

150

200

250

ev
en

ts

Vertex Position Y in UWG

MC

2020 data

2021 data

2020+2021 data

Vertex Position Y in UWG

50 100 150 200 250 300 350 400 450

Position Z (mm)

0

50

100

150

200

250

ev
en

ts

Vertex Position Z in UWG

MC

2020 data

2021 data

2020+2021 data

Vertex Position Z in UWG

(a) Upstream WAGASCI sample

0 100 200 300 400 500 600 700 800 9001000

Position X (mm)

0

100

200

300

400

500

600

ev
en

ts

Vertex Position X in DWG

MC

2020 data

2021 data

2020+2021 data

Vertex Position X in DWG

0 100 200 300 400 500 600 700 800 9001000

Position Y (mm)

0

100

200

300

400

500

ev
en

ts

Vertex Position Y in DWG

MC

2020 data

2021 data

2020+2021 data

Vertex Position Y in DWG

50 100 150 200 250 300 350 400 450

Position Z (mm)

0

100

200

300

400

500ev
en

ts
Vertex Position Z in DWG

MC

2020 data

2021 data

2020+2021 data

Vertex Position Z in DWG

(b) Downstream WAGASCI sample

Figure 147: Comparison of vertex distribution for WAGASCI samples (top: Upstream WAGASCI
samples, bottom: Downstream WAGASCI samples). The data points are separated for the 2020
data set (red), 2021 data set (blue), and modified MC with signal lost (magenta). The data error
bars represent only statistical uncertainty while the MC error bars include both MC statistic
errors and detector systematic errors. The number of events in MC is area-normalized by the
statistics (2020 + 2021).

Vij =
(ϕi

nom − ϕi
+)(ϕ

j
nom − ϕj

+)

ϕi
nomϕ

j
nom

(K.10)

where "+" refers to the simulation where the signal hits are lost.
Figure 148 shows the fractional uncertainty along with the nominal predictions.
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Figure 148: Systematic uncertainty of Signal Lost for the WAGASCI samples
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K.2.10 Target Mass

In the extraction of cross section, the target mass is one of the factors in the multiplications.
As the effect of the target mass for Proton Module and WAGASCI modules has been already
studied in past studies. Each effect on the number of selected events is summarized in Table 51.
In the covariance matrices, a full correlation between bins is assumed.

Table 51: Effect of target mass on the number of selected events

Effect to CH in PM Effect to CH in WAGASCI Effect to H2O in WAGASCI
Total 0.56% 1.09% 0.8%

K.2.11 Event pileup

No correlation is applied to the events on either WAGASCI or the Proton Module because of
the low statistics and small effect of the pileup due to the small mass. In order to estimate the
systematic errors due to this effect, however, the difference of the number of selected events in
the double bunched data (Nsel2) and the number of selected events with normal bunch structure
(Nsel1) is calculated. The difference between Nsel1 and Nsel2, 0.5% is taken as 1σ systematic
uncertainty conservatively for all reconstructed angle bins with full correlation.

K.2.12 Beam-related background

The uncertainty of the beam-related background is here specific to the background from the B2
wall in the experimental place. The normalization of the number of the generated background
from wall causes this uncertainty. This uncertainty was estimated with sand muon samples. The
selection criteria for this sample are the following.

1. Pre-selection

2. Reconstructed vertex is the out-of-fiducial volume in the upstream WAGASCI

3. Only one track in the event, which should be muon candidate

4. The muon candidate has a partial track in the Proton Module, WAGASCI downstream
and BabyMIND

The partial data set (1.5 × 1020 POT) were used. The difference in the number of selected
events between Data and MC was taken into account as this uncertainty, which is 13% (data:
39864 events, MC: 45632 events) with respect to data. Figure 149 shows the comparison of angle
distributions for this sample between data and MC. Before getting the error on this background,
the selected events from Wall interactions were scaled based on this difference, namely, divided
by 1.13 because the difference is expected to be caused by the density or composition of the wall.
Then errors were given by the product of the scaled number of selected binned events and the
data-MC difference (0.13).
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Figure 149: Comparison of three-dimensional angle distributions in XZ view (left) and in YZ view
(right) for the sand muon sample between data and MC. Both MC distributions were normalized
by the integral of data.

Figs. 150, 151 show the fractional uncertainty along with the nominal predictions.
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Figure 150: Systematic uncertainty of Beam-related background for the Proton Module samples
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Figure 151: Systematic uncertainty of Beam-related background for the WAGASCI samples
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K.2.13 Two-dimensional tracking

The efficiency of the track reconstruction is estimated using the reconstructed angle of the Baby-
MIND as described in Appnedix H. The efficiency is compared to data and the Monte Carlo
simulation to test the gap of the scintillators and physics processes such as multiple scattering of
muons and secondary interactions. The difference was taken into account to estimate the effect
of this uncertainty. The covariance element is calculated as follows.

Vij = differencei × differencej (K.11)

where differencei means the difference in the two-dimensional tracking efficiency between data
and MC, namely, it can be calculated by

differencei = efficiencyMC
i − efficiencyData

i (K.12)

As the efficiency was calculated as a function of angle, the uncertainties of this parameter for
momentum binning can’t be treated in the same way. Assuming this two-dimensional tracking
efficiency doesn’t depend on the particle momentum significantly compared to the angular de-
pendence, we can simply derive the binned efficiency as a function of momentum by the following
formula.

ϵimomentum =
n∑

j=0

wi
j × ϵangle,j (K.13)

where i runs over the momentum binning, j runs over the angle binning and ϵ refers to
the efficiency. wj means each weight from the angle distribution for each momentum slice for
binning i. Figure 152 shows the differences between data and MC for both Proton Module and
WAGASCI modules.
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Figure 152: Comparison of two-dimensional tracking efficiency as a function of momentum be-
tween Data and MC for Proton Module (left) and WAGASCI modules (right).

Figs. 153, 154 show the fractional uncertainty along with the nominal predictions.
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Figure 153: Systematic uncertainty of Two dimensional tracking efficinecy for the Proton Module
samples
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(b) θµ binning

Figure 154: Systematic uncertainty of Two dimensional tracking efficiency for the WAGASCI
samples
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K.2.14 Track matching between detectors

In order to take the difference between MC and data from other effects that were mentioned
so far into account, we added other error sources on threshold values which were used in the
reconstruction process. In the first step of finding a neutrino vertex, we required each track
satisfying with track matching thresholds depending on detectors. If there were no difference
between MC and data, there would be the same changes in both MC and data with different
threshold values. The ratio of the changes in the selected number of events to the number of
events at the nominal threshold is taken as the systematic uncertainty. The variation of the
thresholds is summarized in Table 52.

Table 52: Variation of the thresholds for trackmatching depending on detectors

Detector combination angle threshold (degree) distance threshold (cm)
Proton Module - WallMRDs 45 → 40 500 → 450

Proton Module - WAGASCI downstream 25 → 20 200 → 150
Proton Module - BabyMIND 35 → 30 300 → 250

WAGASCI upstream - WallMRDs 40 → 35 500 → 450
WAGASCI upstream - Proton Module 25 → 20 300 → 250
WAGASCI downstream - BabyMIND 30 → 25 250 → 200

The element of each covariance matrix is calculated as follows. It should be noted that
the calculation formula is modified compared to the detector-related systematics because for
reconstructed-related parameters, data and MC difference has to be taken into account.

Vij = differencei × differencej (K.14)

where differencei is the difference of the variation of the selected events in the i-th recon-
structed angle or momentum bin between the data and Monte Carlo, namely, it can be calculated
by

differencei =
NMC,nominal

i −NMC,variation
i

NMC,nominal
i

−
NData,nominal

i −NData,variation
i

NData,nominal
i

(K.15)

Nnominal
i refers to the nominal number of events in i bin.

The last three systematics parameters will not be used for the Proton Module sample because
they are relatively irrelevant to the sample whereas the first three parameters will not be used
for WAGASCI samples likewise.

Figs. 155 to 166 show the fractional uncertainty along with the nominal predictions.
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(b) θµ binning

Figure 155: Systematic uncertainty of Track matching between Proton Module to WallMRD for
the Proton Module samples
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(b) θµ binning

Figure 156: Systematic uncertainty of Track matching between Proton Module to WallMRD for
the WAGASCI samples
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(b) θµ binning

Figure 157: Systematic uncertainty of Track matching between Proton Module to Downstream
WAGASCI for the Proton Module samples
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(b) θµ binning

Figure 158: Systematic uncertainty of Track matching between Proton Module to Downstream
WAGASCI for the WAGASCI samples
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(a) Pµ binning
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(b) θµ binning

Figure 159: Systematic uncertainty of Track matching between Proton Module to BabyMIND
for the Proton Module samples
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(a) Pµ binning
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(b) θµ binning

Figure 160: Systematic uncertainty of Track matching between Proton Module to BabyMIND
for the WAGASCI samples
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(b) θµ binning

Figure 161: Systematic uncertainty of Track matching between WAGASCI upstream to Proton
Module for the Proton Module samples
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(a) Pµ binning
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(b) θµ binning

Figure 162: Systematic uncertainty of Track matching between WAGASCI upstream to Proton
Module for the WAGASCI samples
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(a) Pµ binning
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(b) θµ binning

Figure 163: Systematic uncertainty of Track matching between WAGASCI upstream to
WallMRD for the Proton Module samples
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(a) Pµ binning
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(b) θµ binning

Figure 164: Systematic uncertainty of Track matching between WAGASCI upstream to
WallMRD for the WAGASCI samples
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(a) Pµ binning
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Figure 165: Systematic uncertainty of Track matching between WAGASCI downstream to Baby-
MIND for the Proton Module samples
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(b) θµ binning

Figure 166: Systematic uncertainty of Track matching between WAGASCI downstream to Baby-
MIND for the WAGASCI samples
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K.2.15 Vertexing

Analogous to the systematic uncertainty of track matching, the threshold of vertexing which
might affect the number of tracks in each event. As we applied the maximum tolerance of XY
and Z differences for each track, corresponding thresholds vary in order to estimate the effect.
The variation is summarized in Table 53.

Table 53: Variation of the thresholds for vertexing depending on detectors

Detector XY difference (cm) Z difference (cm)
Proton Module 110 → 80 110 → 80

WAGASCI modules 125 → 95 125 → 95

The element of each covariance matrix is calculated as follows.

Vij = differencei × differencej (K.16)

where differencei is the difference of the variation of the selected events in the i-th recon-
structed angle or momentum bin between the data and Monte Carlo, namely, it can be calculated
by

differencei =
NMC,nominal

i −NMC,variation
i

NMC,nominal
i

−
NData,nominal

i −NData,variation
i

NData,nominal
i

(K.17)

Figs. 167, 168 show the fractional uncertainty along with the nominal predictions.
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Figure 167: Systematic uncertainty of Vertexing for the Proton Module samples
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Figure 168: Systematic uncertainty of Vertexing for the WAGASCI samples
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K.2.16 Three-dimensional tracking

After finding a candidate for neutrino vertex, the algorithm tries to find a combination of both
two-dimensional tracks. In this searching process, the maximum tolerance of the start Z position
and stop Z position is defined, which should be considered to be one of systematic uncertainty
because it could affect the number of selected events. The threshold values were different depend-
ing on the MRDs, so they vary accordingly for the stop position. The variation is summarized
in Table 54.

Table 54: Variation of the thresholds for three-dimensional tracking depending on MRDs

MRD start difference (cm) stop difference (cm)
WallMRDs 150 → 100 200 → 150
BabyMIND 150 → 100 350 → 300

The element of each covariance matrix is calculated as follows.

Vij = differencei × differencej (K.18)

where differencei is the difference of the variation of the selected events in the i-th recon-
structed angle or momentum bin between the data and Monte Carlo, namely, it can be calculated
by

differencei =
NMC,nominal

i −NMC,variation
i

NMC,nominal
i

−
NData,nominal

i −NData,variation
i

NData,nominal
i

(K.19)

Figs. 169, 170 show the fractional uncertainty along with the nominal predictions.
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Figure 169: Systematic uncertainty of Three-dimensional tracking for the Proton Module samples
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Figure 170: Systematic uncertainty of Three-dimensional tracking for the WAGASCI samples
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K.2.17 Fiducial volume cut

Along with the systematic uncertainties in the track reconstruction, we also studied systematic
uncertainties for each selection criteria. The calculation formula to estimate the effect of each
uncertainty is the same as the one used for reconstruction-related parameters. The tentative
threshold values are defined for each selection cut to calculate the ratio of change in the number
of selected events for both data and MC. Then the difference between data and MC is considered
for each systematic uncertainty. The selection cut applied first is the fiducial volume cut. The
variations of fiducial volume cut are summarized in Table 55 depending on the vertex module.
Each variation along with X, Y, and Z axis corresponds to the distance of one scintillator plane (in
Proton Module) or one scintillator block of plane and grid scintillators (in WAGASCI module).

Table 55: Variation of the thresholds for fiducial volume cut

Selection cut Proton Module WAGASCI modules
nominal variation nominal variation

Fiducial Volume (Lower) (mm) (-500, -500, 2nd pln) (-450, -450, 3rd pln) (-380, -385, -105) (-330, -335, -80)
Fiducial Volume (Upper) (mm) (500, 500, 15th pln) (450, 450, 14th pln) (400, 400, 115) (350, 350, 90)

The element of the covariance matrix is calculated as follows.

Vij = differencei × differencej (K.20)

where differencei is the difference of the variation of the selected events in the i-th recon-
structed angle or momentum bin between the data and Monte Carlo, namely, it can be calculated
by

differencei =
NMC,nominal

i −NMC,variation
i

NMC,nominal
i

−
NData,nominal

i −NData,variation
i

NData,nominal
i

(K.21)

Figs. 171, 172 show the fractional uncertainty along with the nominal predictions.
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Figure 171: Systematic uncertainty of Fiducial Volume for the Proton Module samples
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(b) θµ binning

Figure 172: Systematic uncertainty of Fiducial Volume for the WAGASCI samples
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K.2.18 Contained volume cut

For the momentum measurement, we use the range method to estimate momentum, which re-
quires a contained volume cut. In order to minimize the background contamination from escaping
muons while studying this uncertainty, only the narrower tentative volume is defined. The vari-
ations are summarized in Table 56 depending on the type of MRD. The variations for the X and
Z axis correspond to the one scintillator bar distance for both WallMRD and BabyMIND. The
variation for the Y axis doesn’t correspond to one scintillator bar distance yet three scintillator
bar distances to see the effect of reduced volumes. As the contained volume cut was only applied
to momentum binning, there is no impact on angle binning.

Table 56: Variation of the thresholds for contained volume cut

Selection cut WallMRDs BabyMIND
nominal variation nominal variation

Contained Volume (Lower) (mm) (-170, –, -750) (140, –, -550) (-1300, -900, 2nd pln) (-1100, -850, 3rd pln)
Contained Volume (Upper) (mm) (170, –, 750) (140, –, 550) (1300, 900, 17th pln) (1100, 850, 16th pln)

The element of the covariance matrix is calculated as follows.

Vij = differencei × differencej (K.22)

where differencei is the difference of the variation of the selected events in the i-th recon-
structed angle or momentum bin between the data and Monte Carlo, namely, it can be calculated
by

differencei =
NMC,nominal

i −NMC,variation
i

NMC,nominal
i

−
NData,nominal

i −NData,variation
i

NData,nominal
i

(K.23)

Figs. 173, 174 show the fractional uncertainty along with the nominal predictions.
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(b) θµ binning

Figure 173: Systematic uncertainty of Contained Volume for the Proton Module samples
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(b) θµ binning

Figure 174: Systematic uncertainty of Contained Volume for the WAGASCI samples
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K.2.19 MUon Confidence Level (MUCL) cut

MUCL cut was applied to discriminate the CC0π± sample from the CC1π± sample by selecting
a proton-like particle except for the first track. As the performance of the particle ID is different
between Proton Module and WAGASCI modules, different thresholds are applied in this analysis.
In order to estimate the effect of this uncertainty, the tentative MUCL thresholds are defined,
which are found in Table 57.

Table 57: Variation of the thresholds for muon confidence level cut

Selection cut Proton Module WAGASCI modules
nominal variation nominal variation

MUCL threshold (+ variation) 0.2 0.3 0.7 0.8
MUCL threshold (- variation) 0.2 0.1 0.7 0.6

The element of the covariance matrix is calculated as follows.

Vij =
∑
k

differenceki × differencekj (K.24)

where k runs through the type of variation and differencei is the difference of the variation
of the selected events in the i-th reconstructed angle or momentum bin between the data and
Monte Carlo, namely, it can be calculated by

differencei =
NMC,nominal

i −NMC,variation
i

NMC,nominal
i

−
NData,nominal

i −NData,variation
i

NData,nominal
i

(K.25)

Figs. 175, 176 show the fractional uncertainty along with the nominal predictions.
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(a) Pµ binning
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(b) θµ binning

Figure 175: Systematic uncertainty of Particle ID for the Proton Module samples
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(b) θµ binning

Figure 176: Systematic uncertainty of Particle ID for the WAGASCI samples

269



K.2.20 Charge ID cut

Charge ID cut was applied to select νµ interactions by using the log-likelihood ratio based on
the curvature of a track in BabyMIND. The performance of charge ID depends on only tracking
in BabyMIND regardless of the vertex position. So the same nominal value and tentative value
are used for Proton Module and WAGASCI modules. The variation is found in Table 58.

Table 58: Variation of the thresholds for charge ID cut

Selection cut Proton Module WAGASCI modules
nominal variation nominal variation

Threshold on log-likelihood ratio (+ variation) (-99999, 4) (-99999, 8) (-99999, 4) (-99999, 8)
Threshold on log-likelihood ratio (- variation) (-99999, 4) (-99999, 0) (-99999, 4) (-99999, 0)

The element of the covariance matrix is calculated as follows.

Vij =
∑
k

differenceki × differencekj (K.26)

where k runs through the type of variation and differencei is the difference of the variation
of the selected events in the i-th reconstructed angle or momentum bin between the data and
Monte Carlo, namely, it can be calculated by

differencei =
NMC,nominal

i −NMC,variation
i

NMC,nominal
i

−
NData,nominal

i −NData,variation
i

NData,nominal
i

(K.27)

Figs. 177, 178 show the fractional uncertainty along with the nominal predictions.
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Figure 177: Systematic uncertainty of Charge ID for the Proton Module samples
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(b) θµ binning

Figure 178: Systematic uncertainty of Charge ID for the WAGASCI samples
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K.2.21 Track/Cluster ratio cut

The track/cluster ratio cut was applied to reject the background contamination from Wall in-
teractions. The distribution of track/cluster ratio depends on the detector configuration in the
experimental place. So the threshold values differ depending on vertex modules. The variation
is summarized in Table 59.

Table 59: Variation of the thresholds for the track/cluster ratio cut

Selection cut Proton Module WAGASCI modules
nominal variation nominal variation

Threshold on track/cluster ratio (+ variation) – – 0.6 0.7
Threshold on track/cluster ratio (- variation) – – 0.6 0.4

The element of the covariance matrix is calculated as follows.

Vij =
∑
k

differenceki × differencekj (K.28)

where k runs through the type of variation and differencei is the difference of the variation
of the selected events in the i-th reconstructed angle or momentum bin between the data and
Monte Carlo, namely, it can be calculated by

differencei =
NMC,nominal

i −NMC,variation
i

NMC,nominal
i

−
NData,nominal

i −NData,variation
i

NData,nominal
i

(K.29)

Figs. 179, 180 show the fractional uncertainty along with the nominal predictions.
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Figure 179: Systematic uncertainty of Track cluster ratio for the Proton Module samples
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(b) θµ binning

Figure 180: Systematic uncertainty of Track cluster ratio for the WAGASCI samples
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K.2.22 Michel electron cut

Michel electron tagging is applied to have additional power to reject CC1π± sample. The most
significant parameter to estimate the effect of this uncertainty is the number of hits in delayed
timebins for each event. The nominal threshold is set to 4. The comparison between data and MC
related to the performance of Michel electron tagging was already discussed in Appendix J. And
the result says that if the number of hits is less than 3 in the delayed timebins, the comparison
between data and MC is much worse. So the tentative threshold to estimate the effect is set
to only a higher value, namely 5. Then the element of the covariance matrix is calculated as
follows.

Vij = differencei × differencej (K.30)

where differencei is the difference of the variation of the selected events in the i-th recon-
structed angle or momentum bin between the data and Monte Carlo, namely, it can be calculated
by

differencei =
NMC,nominal

i −NMC,variation
i

NMC,nominal
i

−
NData,nominal

i −NData,variation
i

NData,nominal
i

(K.31)

Figs. 181, 182 show the fractional uncertainty along with the nominal predictions.
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(b) θµ binning

Figure 181: Systematic uncertainty of Michel Electron for the Proton Module samples
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(b) θµ binning

Figure 182: Systematic uncertainty of Michel Electron for the WAGASCI samples
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K.2.23 beam timing cut

There is a probability that some neutrino events are lost with the timing selection because of
the finite resolution of beam timing. The beam timing cut in this analysis was applied for only
Proton Module data. Hits falling in the outside region of ±250 ns of bunch timing were initially
removed from data construction. In order to estimate this uncertainty, the number of selected
events is compared with and without the beam timing cut. And the element of the covariance
matrix is calculated as follows. We expect the contribution from this uncertainty to be very
trivial considering how the cut works.

Vij = differencei × differencej (K.32)

where differencei is the difference of the variation of the selected events in the i-th recon-
structed angle or momentum bin between data with timing cut and data without timing cut,
namely, it can be calculated by

differencei =
N

wo/timingcut
i −N

w/timingcut
i

N
w/timingcut
i

(K.33)

Figs. 183, 184 show the fractional uncertainty along with the nominal predictions.
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Figure 183: Systematic uncertainty of Timing Cut for the Proton Module samples
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(b) θµ binning

Figure 184: Systematic uncertainty of Timing Cut for the WAGASCI samples
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K.2.24 The effect of resolution for angle and momentum measurements

It is in practice impossible to either perfectly understand detector performance or implement
every single property in the analysis framework at 100% accuracy. This results in the uncertainty
of measurement for each kinematic variable such as momentum and angle. Thus, each variable
includes the effect of detector resolution. The resolution can be estimated by Monte Carlo
simulation, which is propagated into the measurement with data suppose the resolution wouldn’t
be different as far as the same analysis method is used and detector properties are reasonably
reflected in the simulation. The effect of resolution matters if some resolutions estimated in the
simulation can’t be valid in data. Here in this section, we focus on the resolution for angle and
momentum. The direct impact of the resolution will be seen in the binning migration for the
selection outputs. As we have introduced many detector systematic parameters to account for
the effect of binning migration related to the angle and momentum, these parameters can cover
the effect of angle or momentum resolution to large extent unless we’re missing the unexpected
or unknown parameters to have an impact on the resolutions. Thus, we shouldn’t take care of
additional parameters stemming from the resolutions of kinematic variables unless the estimated
resolutions are far from those for measurement in data.

In order to check the difference in resolution between MC and data, we took the CC inclusive
sample having an interaction point in Proton Module as the control sample. Then the following
method is applied.

1. Choose events where the muon candidate pass through both Proton Module and Down-
stream WAGASCI detectors.

2. Reconstruct angle from hits in Proton Module (θpm) and angle from hits in Downstream
WAGASCI (θdwg). And this step is done for MC and data.

3. Compare θpm - θdwg in MC with the one in data.

In this study, θpm - θdwg is supposed to correspond to resolution, and then it makes the
comparison of the "resolutions" in MC and data possible. Figure 185 shows the results of each
distribution of θpm - θdwg. When the width of those distributions is evaluated by their RMS
values, they are 4.69 degrees in MC and 4.52 degrees in data respectively. This result indicates
that there wouldn’t be significant discrepancies in resolution between MC and data. In addition,
we checked the effect of resolution discrepancy in the usual techniques applied to other systematic
parameters when smearing is applied to the reconstructed angle. In this case, the smearing factor
is chosen to be 2.0 degrees which corresponds to the angle resolution on average (Figure 105).
Figure 186 shows the fractional uncertainties for this angular smearing, which also ensures the
effect is not significant.

On the other hand, with the current data set, it is challenging to collect a reasonable control
sample to check the consistency of the resolution of momentum measurement between MC and
data 60. Analogous to the logic applied to the angle measurement, it is likely that the discrepancy
in momentum resolutions between MC and data should not be larger than the current detector

60If we had conducted the beam test to check the momentum resolution with monochromatic beam, or we
had other detectors to measure the momentum at good precision (of the order of 5%), it’s possible to check
the consistency. In fact, we did neither of them. One possible way to do this is to measure the momentum for
the events where the muon candidate stops on the same detector plane in BabyMIND. The problem is that the
momentum spread would be the same or larger than the expected resolution, which could paper over the difference
in resolution between MC and data.
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systematics can cover. Just in case, we checked the impact of a potential difference in momentum
resolution by simply applying the gaussian smearing to each momentum based on the momentum
resolution on average (7%, Figure 107) and evaluating the systematics. This corresponds to
the assumption that the resolution estimated by the simulation is smaller by one-second than
that in data, which could be an over-conservative choice. Even though the smearing to the
reconstructed momentum can be over-conservative, the result (Figure 187) shows they will not
have a significant impact on the binning migration compared to other systematic uncertainties.
Thus, we determined to assume that the potential effect of the difference in resolution between
MC and data is negligible, which is not considered as one of the detector’s systematic parameters.
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Figure 185: The residual distributions for both MC and data. The horizontal axis represents the
angle difference between the two vertex detectors, θpm - θdwg

, W
M

R
D

, b
in

0
µθ, π

C
C

0

, W
M

R
D

, b
in

1
µθ, π

C
C

0

, W
M

R
D

, b
in

2
µθ, π

C
C

0

, W
M

R
D

, b
in

3
µθ, π

C
C

0

, B
M

, b
in

0
µθ, π

C
C

0

, B
M

, b
in

1
µθ, π

C
C

0

, B
M

, b
in

2
µθ, π

C
C

0

, B
M

, b
in

3
µθ, π

C
C

0

, B
M

, b
in

4
µθ, π

C
C

0

, b
in

0
µθ, π

C
C

1

, b
in

1
µθ, π

C
C

1

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18
0.2

Fr
ac

tio
na

l u
nc

er
ta

in
tie

s 
(r

at
io

)

0

100

200

300

400

500

600

700
 P

O
T

)
20

10×
N

o
m

in
al

 P
re

d
ic

ti
o

n
 (

ev
en

ts
 / 

3.
3

Figure 186: The effect of angle smearing for Proton Module sample in θµ binning
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Figure 187: The effect of momentum smearing for Proton Module sample in Pµ binning
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K.2.25 Summary of detector systematics

Figure 188 shows the results of total covariance matrices. Also, total correlation matrices are
shown in Figure 189.
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Figure 188: Total covariance matrices for the detector systematic uncertainties on the number
of selected events.
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Figure 189: Total correlation matrices for the detector systematic uncertainties on the number
of selected events.
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Fractional errors are also calculated based on the diagonal elements in corresponding covari-
ance matrices. Figs. 190 to 195 show the fractional systematic errors due to detector systematics.
All detector systematic parameters are categorized into three groups, detector performance-
related parameters, track reconstruction-related parameters and event selection-related parame-
ters. Table 60 shows how those parameters are divided. Figs. 196, 197 show the total fractional
uncertainties along with the one of each category of systematic parameters.

Table 60: Three categories depending on the type of detector systematic parameters

Parameter Category
targetmass Detector performance

magnet Detector performance
localalignment Detector performance

mppcnoise Detector performance
scintillatordistortion Detector performance

lightyield Detector performance
hitthreshold Detector performance

crosstalk Detector performance
signal lost (WG) Detector performance

Pion SI interaction Detector performance
two-dimensional-trackeff Track reconstruction

trackmatching-PM-to-WM Track reconstruction
trackmatching-PM-to-DWG Track reconstruction
trackmatching-PM-to-BM Track reconstruction

trackmatching-UWG-to-WM Track reconstruction
trackmatching-UWG-to-PM Track reconstruction
trackmatching-DWG-to-BM Track reconstruction

vertexing-PM Track reconstruction
vertexing-WG Track reconstruction

3dtracking Track reconstruction
timingcut Event Selection

fiducialvolume Event Selection
containedvolume Event Selection

particleid Event Selection
chargeid Event Selection

trackclusterratio Event Selection
michelelectron Event Selection

pileup Event Selection
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Figure 190: The fractional errors for the detector simulation category in the Pµ binning with
Proton Module samples
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Figure 191: The fractional errors for the reconstruction category in the Pµ binning with Proton
Module samples
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Figure 192: The fractional errors for the selection category in the Pµ binning with Proton Module
samples
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Figure 193: The fractional errors for the detector simulation category in the Pµ binning with
WAGASCI detectors samples
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Figure 194: The fractional errors for the reconstruction category in the Pµ binning with WA-
GASCI detectors samples
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Figure 195: The fractional errors for the selection category in the Pµ binning with WAGASCI
detectors samples
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Figure 196: Fractional errors due to the detector systematic uncertainties on the number of
selected events for the Proton Module samples.
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Figure 197: Fractional errors due to the detector systematic uncertainties on the number of
selected events for the WAGASCI detectors samples.
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L PartIII: Error propagation for the cross sections

It is difficult to mathematically formulate the errors on a cross section in general because there
are too many parameters having correlations with each other. A useful technique to estimate
error distributions is to throw a lot of toy experiments based on a covariance matrix with the
Cholesky decomposition [168]. Each toy experiment from the Cholesky decomposition preserves
the original parameter correlations. A fair amount of toy throws (typically 10,000 throws) can
statistically take into account the effect of systematic parameters. The procedure of the Cholesky
decomposition is described in the following. As the covariance matrix is symmetric and positive-
definite 61, the matrix can be decomposed in

Σ = LL∗ = LLT (L.1)

where L is a lower triangular matrix (L∗ is a corresponding conjugate matrix), which preserves
all correlations included in the original matrix (Σ) [168]. The second equation is valid only if the
matrix Σ is real, which is the case here. Assuming the systematic variations follow the Gaussian
distributions, matrix (L) multiplied by a random value vector following the Gaussian distribution
with µ = 0, σ = 1 gives random fluctuations around the best-fit values according to the post-fit
covariance matrix (Σ). Then each thrown value (

−→
θt ) is defined as

−→
θt =

−→
θf + (L×−→rt ), (L.2)

where
−→
θf is the best-fit parameters. Once each toy throw (

−→
θt ) is obtained, all the events are

reweighted according to each systematic parameter, giving the corresponding cross section for
the toy throw. Assuming the best-fit differential cross section is expressed by xi and the variant
cross section in each toy throw (t) is xi,t in a template bin i, the resulting covariance matrix (V )
based on many toy throws (N throws) is given by

Vij =
1

N

∑
t

(xit − xi)(xjt − xj). (L.3)

It should be noted that the errors related to flux integral, signal efficiency, and the number
of target nucleons are also varied in each toy throw, which in turn the matrix (V ) includes
those kinds of uncertainties. The matrix contains all posterior uncertainties for the relevant
parameters.

61All the eigenvalues are positive. In practice, if the eigenvalues are negative but extremely small, adding a
small value such as O(10−7) to the diagonal element is acceptable as far as it has little impact on the analysis.
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M PartIII: The number of target nucleons and flux integral

The cross section extraction in this analysis requires accurate constants for the number of target
nucleons and the flux integral. This section provides the process to calculate these values.

M.1 The number of target nucleons

Since we required fiducial volume events in the selection, the total number of target nucleons
inside a fiducial volume is to be calculated. Proton Module and WAGASCI detectors, which are
vertex detectors in the WAGASCI project, have their own fiducial volumes. They are defined in
each view of XZ or YZ, which is shown in Figure 198.
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(b) Proton Module, YZ view
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(c) WAGASCI detectors, XZ view
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(d) WAGASCI detectors, YZ view

Figure 198: The definition of a fiducial volume in each detector in each view. A black solid line
represents the border of fiducial volume. Circles in red point to the center of the scintillator
bars. The exact border lines for WAGASCI detectors are a bit deviated from these illustrations.
They are defined by the length between the most upstream (upper) position of the scintillator
bars and the most downstream (lower) position of the scintillator bars inside the fiducial volume.
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For the Proton Module case, the target nucleus in the air is neglected. Therefore, the number
of nucleons inside scintillator bars is taken into account. On the other hand, scintillator bars in
the WAGASCI detectors are filled in water. Materials inside both scintillator bars and water
have to be taken into account. In this calculation, the length of the fiducial volume in each axis
for the WAGASCI detectors is defined as the length between the most upstream (upper) position
of the scintillator bars and the most downstream (lower) position of the scintillator bars.

Each vertex detector has different fractions of elements. Proton Module predominantly con-
tains CH as a target material, while the WAGASCI detectors contains H2O and CH by the mass
fraction of 4:1. As a reminder, both detectors consist of two kinds of scintillator bars. It is
necessary to examine the accurate fraction of the nucleus in each scintillator bar. Table 61 shows
the elemental compositions of each scintillator bar and water. The multiplication of the num-
ber of scintillator bars (water volume), the weight per scintillator bar (water density) and each
fraction of the target materials provide the measured value for target nucleons. Every number
is summarized in Table 62.

Table 61: Elemental compositions of each scintillator bar and water. Hydrogen and Oxygen
atoms are differentiated from each of them in a H2O molecule. The column of "Mean weight
(Error)" shows the weight for each scintillator bar or water per litre (g/L). The error refers to
the 1σ fluctuation of each measurement.

Scintillator bar Mean weight (Error) H C N O Ti Si H2O

PM scintillator (INGRID) 601.2 (1.21) g 7.59% 90.74% 0.07% 0.69% 0.91% 0.00% 0.00%
scintillator (Scibar) 392.2 (2.02) g 7.63% 91.22% 0.07% 0.48% 0.59% 0.00% 0.00%

UWG
scintillator (plane) 77.56 (0.435) g 7.40% 88.3% 0.3% 2.7% 1.2% 0.2% 0.00%
scintillator (grid) 74.55 (0.526) g 7.40% 88.0% 0.4% 2.9% 1.1% 0.1% 0.00%

water 998.3 (0.00) (g/L) 0.00% 0.03% 0.02% 0.0% 0.0% 0.0% 99.95%

DWG
scintillator (plane) 79.25 (0.435) g 7.40% 87.9% 0.7% 2.7% 1.2% 0.1% 0.00%
scintillator (grid) 75.44 (0.526) g 7.30% 87.7% 0.7% 2.9% 1.1% 0.1% 0.00%

water 998.3 (0.00) (g/L) 0.00% 0.03% 0.02% 0.0% 0.0% 0.0% 99.95%

Table 62: The number of target nucleons inside the fiducial volume for each vertex detector.
Each number refers to the number of nucleons (proton and neutron) in a target material of CH
or H2O.

Target material Number of target nucleons
Mean (1028) Error (1028)

PM CH 18.66 0.045
H2O 0.00 0.00

UWG CH 1.76 0.0079
H2O 6.90 0.035

DWG CH 1.78 0.0078
H2O 6.87 0.034

WG total CH 3.64 0.011
H2O 13.77 0.048
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N PartIII: Validations of the cross section fitter

When we have all selection outputs and the fitter to analyze cross sections, it is important
to check the validity of the method and sanity of prepared inputs by feeding well-understood
simulated data (pseudo data) to the fitter. The pseudo data were chosen depending on what
kind of validations were necessary. For instance, the most fundamental one is the pseudo data
that are identical to the selection outputs based on the nominal model. The fitter outcome of
the fit can help us to check whether the level of uncertainty of each parameter is reasonable and
whether each input works as expected. The fit results can give the sensitivity of our analysis.
Another example is the pseudo data that are created by tweaking a specific parameter (for
instance, MRES

A ), otherwise, unchanged. In this case, the number of events varies for the specific
interactions having the response to the tweaked parameter. Then we need to check whether the
fitter is able to recover the true value of the parameter.

In addition to the validation, we are motivated to test pseudo data by re-weighting events
based on the suggestion provided by an alternative model. This is the test to make sure that we
do not introduce a severe bias in the analysis. If there is no significant bias in the analysis, the
fitter is in principle able to recover the true cross-section value based on the fit to the selected
samples. In the final step of this simulated data study, we feed a full MC data set using an
alternative-based model in NEUT or a full MC data set using another neutrino generator such
as GENIE. The purpose of this fit is the same as the previous step, which is to check whether
the fit is able to find the true cross section from the alternative model within the error. These
items are further discussed in the next Appendix O.

Table 63 shows the list of simulated data studies that were performed in this analysis.

Table 63: The list of simulated data studies. The upper part of these studies is more like tests
to check whether the fitter performs the fit as expected based on all inputs. The lower part of
the studies is the tests to make sure whether we have not introduced severe selection bias into
this analysis.

Name of simulated data study Descriptions of pseudo data
AsimovFit Data set is based on the nominal selection, systematic parameters and NEUT models.

Altered signal events (overall) Alter all true signal events by +20%.
Altered signal events (individual) Alter all true signal events on CH (H2O) target by +20% (-20%).

Tweaked MaRES MaRES parameter is tweaked by +2 sigma (0.95 → 1.25).
Statistical fluctuation The same configuration in AsimovFit but statistical fluctuation is applied.

Systematic parameter variation All systematic parameters are thrown based on their covariance matrices.
Coverage Create 1000 toy experiments in systematic variations with statistical fluctuation

Alternate RPA model (BeRPA) Reweight CCQE events based on the BeRPA model.
Low Q2 suppression Reweight CCRES events based on Q2.

Alternate neutrino generator Run full GENIE MC (version 3.02).
post-BANFF tuned events Reweight all events based on the post-BANFF tune in OA2022
Alternative NEUT model Nieves 1p1h model without SF function (MQE

A = 1.05)

In each pseudo data fit shown in Figure 63, we check the systematic parameter constraints
from the fit, the post-fit and pre-fit event distribution for sample by sample and the difference of
post-fit cross section results with respect to the true cross section from the model. The difference
in event distribution between post-fit and pre-fit and that in cross section values between post-fit
and true should be assessed with some metrics to check the performance of the fit. We introduce
appropriate χ2 values for this purpose. For the difference in event distributions, χ2 is defined as
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χ2
evdis =

N∑
i=1

2

(
Nfit

i −Nobs
i +Nobs

i ln
Nobs

i

Nfit
i

)
, (N.1)

by taking only statistical contribution into account. Nfit
i are the expected number of events for

bin i from a fit result, which form a post-fit event distribution. Nobs
i are the observed number

of events (from pseudo data in the context of this validation) for bin i. On the other hand, the
difference in cross sections is evaluated by

χ2
xsec =

N∑
i=1

(
(σfit

i − σtrue
i )V −1

fit (σfit
i − σtrue

i )
)
, (N.2)

where σfit
i (σtrue

i ) are post-fit (true) cross sections for the true bin i, and V is a covariance matrix
that is obtained by the error propagation.

N.1 AsimovFit

AsimovFit is defined as the fit with the pseudo data where all the systematic parameters are
set to their nominal values returning to the weight of 1. In other words, the fit is done against
the nominal data set based on the underlying model adopted in this analysis. The outcome of
AsimovFit provides a sensitivity result in terms of the parameter constraints because the data
is not subject to statistical uncertainty unlike the real data fit. Considering these features, we
expect the fit to recover the nominal value for all the nuisance parameters including the template
parameters.

The results are shown in Figures 199, 200 in the momentum distribution and Figures 201, 202
in the angle distribution. Figure 199 shows all the post-fit parameters are overlaid on the pre-fit
parameters, which means the fitter is able to recover the expected values in the fit. With respect
to the parameter constraints in particular for the interaction parameters, we do not see a lot of
improvements except for the normalization parameters. The current sensitivity is limited by the
smaller statistics that result in a relatively coarser binning scheme in one dimension. Figure 200
presents two kinds of comparisons for the bin-by-bin event distributions and cross sections along
with the true cross sections from the pseudo data and nominal data set. The post-fit event
distribution is identical to the pre-fit distribution, which can be confirmed by our metrics. In
terms of cross section, the bottom plot in Figure 200 confirms the fitter is able to find expected
differential cross section, which is supported by χ2

xsec. Since the pseudo data is identical to the
nominal data set, both true cross sections are exactly overlaid. The error bars correspond to the
1σ region of the cross section distribution from 1000 toy experiments.
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Figure 199: The parameter constraints from the FDS of AsimovFit in the momentum distri-
bution. Each posterior result is presented by a best-fit point and error bar (blue dot and line)
against its prior parameter in orange rectangular. The error is calculated based on the gaussian
assumption of each parameter distribution.

292



0 5 10 15 20 25

Bin index

0

100

200

300

400

500

600

700

N
um

be
r 

of
 e

ve
nt

s

data

prefit

postfit

 = 0.00
evtdis
2χTo prefit: 

 = 0.00
evtdis
2χTo data: 

(a) Comparison of event distributions

C
H

 b
in

0

C
H

 b
in

1

C
H

 b
in

2

C
H

 b
in

3

C
H

 b
in

4

C
H

 b
in

5

O
 b

in
0

2
H

O
 b

in
1

2
H

O
 b

in
2

2
H

O
 b

in
3

2
H

O
 b

in
4

2
H

O
 b

in
5

2
H

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

239
 1

0
× 

nu
cl

eo
n 

G
eV

/c
2

cm
 µ

dP
σd

PeudoData

Postfit

Nominal MC

 = 0.00
xsec
2χTo data: 

 = 0.00
xsec
2χTo nominal : 

(b) Comparison of cross section fit results

Figure 200: Comparisons of bin-by-bin event distributions between post-fit and pre-fit (top) and
the post-fit cross sections overlaid on the true cross sections from pseudo data and nominal data
set (bottom) as results of the FDS of AsimovFit in the momentum distribution. Both plots
include corresponding χ2 values as metrics defined in Equations N.1, N.2.
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Figure 201: The parameter constraints from the FDS of AsimovFit in the angle distribution.
Each posterior result is presented by a best-fit point and error bar (blue dot and line) against its
prior parameter in orange rectangular. The error is calculated based on the gaussian assumption
of each parameter distribution.
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(b) Comparison of cross section fit results

Figure 202: Comparisons of bin-by-bin event distributions between post-fit and pre-fit (top) and
the post-fit cross sections overlaid on the true cross sections from pseudo data and nominal data
set (bottom) as results of the FDS of AsimovFit in the angle distribution. Both plots include
corresponding χ2 values as metrics defined in Equations N.1, N.2.
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N.2 Altered signal events (overall)

We change the number of signal events in both selected and true events by +20% overall to
create this pseudo data. The change acts as a normalization of signal events. Since template
parameters are capable of catching up with the normalization of signal events and have no penalty
term unlike the other nuisance parameters, the expected performance would be that the fitter
is able to minimize χ2 by moving only the template parameters by the exact same amount of
original change.

The results are shown in Figures 203, 204 in the momentum distribution and Figures 205, 206
in the angle distribution. The left top plot in Figure 203 presents the best-fit (posterior) values
and constraints of the template parameters. All posterior values move by exactly 20% in the
"right" direction with respect to the pseudo data set, while other parameters are unchanged
from their prior values. The top plot in Figure 204 shows the comparison of event distribution
between post-fit and pre-fit. The χ2 metric getting exactly 0 with respect to data confirms the
shift of the template parameters recovers the event distribution in pseudo data. Post-fit cross
sections are compared in the bottom plot in Figure 204. It confirms the fitter is able to find out
the true cross section parameters precisely.
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Figure 203: The parameter constraints from the FDS of Altered signal events (overall) in the
momentum distribution. Each posterior result is presented by a best-fit point and error bar (blue
dot and line) against its prior parameter in orange rectangular. The error is calculated based on
the gaussian assumption of each parameter distribution.
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(b) Comparison of cross section fit results

Figure 204: Comparisons of bin-by-bin event distributions between post-fit and pre-fit (top)
and the post-fit cross sections overlaid on the true cross sections from pseudo data and nominal
data set (bottom) as results of the FDS of Altered signal events (overall) in the momentum
distribution. Both plots include corresponding χ2 values as metrics defined in Equations N.1, N.2.
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Figure 205: The parameter constraints from the FDS of Altered signal events (overall) in the
angle distribution. Each posterior result is presented by a best-fit point and error bar (blue dot
and line) against its prior parameter in orange rectangular. The error is calculated based on the
gaussian assumption of each parameter distribution.
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(b) Comparison of cross section fit results

Figure 206: Comparisons of bin-by-bin event distributions between post-fit and pre-fit (top) and
the post-fit cross sections overlaid on the true cross sections from pseudo data and nominal data
set (bottom) as results of the FDS of Altered signal events (overall) in the angle distribution.
Both plots include corresponding χ2 values as metrics defined in Equations N.1, N.2.
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N.3 Altered signal events (individual)

Similar to the previous altered signal events, the pseudo data was produced with the signal events
on CH target increased by 20%, but with those on H2O target decreased by 20%. We then check
whether the fitter is able to recover the true value by moving template parameters individually
for CH and H2O target events.

The results are shown in Figures 207, 208. Figures 209, 210. As expected, the template
parameters for the CH target decreases by -20% and those for the H2O target increases by +20%
as in the left top plot in Figure 207. Similar to the previous study, the fit was able to minimize χ2

by moving only the template parameters, other parameters remain pre-fit values. Figure 207 also
shows the expected fitter performance where we can see the same change in event distributions
and cross sections as we expect from the pseudo data.
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Figure 207: The parameter constraints from the FDS of Altered signal events (individual) in
the momentum distribution. Each posterior result is presented by a best-fit point and error bar
(blue dot and line) against its prior parameter in orange rectangular. The error is calculated
based on the gaussian assumption of each parameter distribution.
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(b) Comparison of cross section fit results

Figure 208: Comparisons of bin-by-bin event distributions between post-fit and pre-fit (top)
and the post-fit cross sections overlaid on the true cross sections from pseudo data and nominal
data set (bottom) as results of the FDS of Altered signal events (individual) in the momentum
distribution. Both plots include corresponding χ2 values as metrics defined in Equations N.1, N.2.
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(d) interaction parameters

Figure 209: The parameter constraints from the FDS of Altered signal events (individual) in the
angle distribution. Each posterior result is presented by a best-fit point and error bar (blue dot
and line) against its prior parameter in orange rectangular. The error is calculated based on the
gaussian assumption of each parameter distribution.
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(b) Comparison of cross section fit results

Figure 210: Comparisons of bin-by-bin event distributions between post-fit and pre-fit (top) and
the post-fit cross sections overlaid on the true cross sections from pseudo data and nominal data
set (bottom) as results of the FDS of Altered signal events (individual) in the angle distribution.
Both plots include corresponding χ2 values as metrics defined in Equations N.1, N.2.
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N.4 Tweaked MaRES

The pseudo data for this study was created with the MRES
A tweaked by +2σ (0.95 → 1.25),

otherwise unchanged compared to nominal. This parameter has a response to single-pion pro-
duction. The fraction of the interaction in the number of selected events is inflated. The results
are shown in Figures 211, 212 in the momentum distribution and Figures 213, 214 in the angle
distribution. The primary point of this study is how the fitter finds the best-fit values.

Focusing on the interaction parameters, we see increases in the resonant interaction related
parameters (MRES

A , C5
A). As this analysis adopts a relatively coarser one-dimensional binning

scheme, resonant parameters act more like "normalization" than like changing "shape". There-
fore, both resonant parameters (MRES

A , C5
A) have a similar response to a change in the event

distributions. Consequently, these parameters are shifted in a synonymous fashion. In addition,
the normalization parameters for the multi-pion production and DIS (deep inelastic scattering)
interactions are subject to being shifted to higher values. This behaviour is understandable
considering the true resonant events are sometimes reconstructed as signal events, which may
inflate (at least change) the background distribution. Those normalization parameters could
have compensated for this change. When we take a look at the template parameters in the left
top plot in Figure 211, a noticeable change is seen in the low momentum bins "300 MeV to 500
MeV" for both samples. This is due in large part to the background contamination from resonant
interactions being large in low momentum bins, where muons pass through WallMRD instead
of BabyMIND. This change in template parameters dilutes the shift in the resonant interaction
parameters.

The post-fit event distributions (shown in the top plot in Figure 212) are in line with the
distribution based on the pseudo data, which is supported by the drastic improvement of χ2

metric. The comparison of cross sections (shown in the bottom plot in Figure 212) shows that
there is a good agreement between post-fit cross sections and cross sections from the pseudo
data. A little deviation in the low-momentum bins reflects the change in template parameters
mentioned above, which does not have a significant impact on the χ2 value.
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Figure 211: The parameter constraints from the FDS of Tweaked MaRES in the momentum
distribution. Each posterior result is presented by a best-fit point and error bar (blue dot and
line) against its prior parameter in orange rectangular. The error is calculated based on the
gaussian assumption of each parameter distribution.
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(b) Comparison of cross section fit results

Figure 212: Comparisons of bin-by-bin event distributions between post-fit and pre-fit (top) and
the post-fit cross sections overlaid on the true cross sections from pseudo data and nominal data
set (bottom) as results of the FDS of Tweaked MaRES in the momentum distribution. Both
plots include corresponding χ2 values as metrics defined in Equations N.1, N.2.
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Figure 213: The parameter constraints from the FDS of Tweaked MaRES in the angle distri-
bution. Each posterior result is presented by a best-fit point and error bar (blue dot and line)
against its prior parameter in orange rectangular. The error is calculated based on the gaussian
assumption of each parameter distribution.
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(b) Comparison of cross section fit results

Figure 214: Comparisons of bin-by-bin event distributions between post-fit and pre-fit (top) and
the post-fit cross sections overlaid on the true cross sections from pseudo data and nominal data
set (bottom) as results of the FDS of Tweaked MaRES in the angle distribution. Both plots
include corresponding χ2 values as metrics defined in Equations N.1, N.2.
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N.5 Statistical fluctuation

The base data set for this study is the same as AsimovFit (all systematic parameters are set to
their nominal values). The bin-by-bin statistical fluctuations are applied to the base data based
on the Poisson distribution with the mean value of the number of events in each bin. The pseudo
data, therefore, is not identical to the nominal one. As the statistical fluctuation changes the
true cross section value unpredictably, the post-fit χ2 results in a non-zero yet minimized value
if the fit is converged.

The results are presented in Figures 215, 216. The statistical fluctuation makes the true values
of nuisance parameters unknown. It is not so important how each parameter behaves during this
fit. That being mentioned, Figure 215 shows the post-fit parameters stay within their 1σ error
of prior values, which confirms no unexpected behaviour is observed from the fit. The important
point in this study is to check the fitter performance to obtain posterior event distributions and
see the impact of the fluctuations on the extracted cross sections. The top plot in Figure 216
shows the χ2 is considerably improved after the fit. The fact that the value is not getting close to
0 compared to other fits is due in large part to the statistical fluctuation. We can see a relatively
large impact on bin0 for the CH target, which should stem from the lower statistics. Otherwise,
the deviation is at the expected level.
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Figure 215: The parameter constraints from the FDS of Statistical fluctuation in the momentum
distribution. Each posterior result is presented by a best-fit point and error bar (blue dot and
line) against its prior parameter in orange rectangular. The error is calculated based on the
gaussian assumption of each parameter distribution.
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(b) Comparison of cross section fit results

Figure 216: Comparisons of bin-by-bin event distributions between post-fit and pre-fit (top)
and the post-fit cross sections overlaid on the true cross sections from pseudo data and nominal
data set (bottom) as results of the FDS of Statistical fluctuation in the momentum distribution.
Both plots include corresponding χ2 values as metrics defined in Equations N.1, N.2. As we lose
information on statistical fluctuation in the calculation of cross section, the bottom plot shows
only true cross section from nominal MC and corresponding χ2 metric.
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Figure 217: The parameter constraints from the FDS of Statistical fluctuation in the angle
distribution. Each posterior result is presented by a best-fit point and error bar (blue dot and
line) against its prior parameter in orange rectangular. The error is calculated based on the
gaussian assumption of each parameter distribution.
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(b) Comparison of cross section fit results

Figure 218: Comparisons of bin-by-bin event distributions between post-fit and pre-fit (top) and
the post-fit cross sections overlaid on the true cross sections from pseudo data and nominal data
set (bottom) as results of the FDS of Statistical fluctuation in the angle distribution. Both plots
include corresponding χ2 values as metrics defined in Equations N.1, N.2. As we lose information
on statistical fluctuation in the calculation of cross section, the bottom plot shows only true cross
section from nominal MC and corresponding χ2 metric.
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N.6 Systematic variation (with statistical fluctuation)

In addition to the statistical fluctuation, we applied a systematic variation to the nominal data
set in order to create the pseudo data in this study. Each systematic parameter is described by
its covariance matrix (flux, interaction or detector). Each covariance matrix is decomposed and
the resulting lower triangular matrix is multiplied by a random value vector following Gaussian
distribution with µ = 0, σ = 1, which gives a set of thrown parameters reflecting their correla-
tions. The fitter re-weights all selected and true events based on this particular set of parameters
as well as statistical fluctuations before the fit. It then performs the fit against the pseudo data.
As the statistical fluctuations are applied in this study, the effect of systematic parameters on
the number of events would not be directly reflected in the fit result. The primary purpose of
this fit is to check whether the post-fit event distributions (and resulting post-fit cross section)
are matched with that from the pseudo data compared to the nominal data set within their error
bars.

The results are shown in Figures 219, 220 in the momentum distribution and Figures 221, 222
in the angle distribution. Although the importance of parameters having responses to changes is
not that significant compared to the studies up to the altered signal events or a certain tweaked
interaction parameter, the detector systematic parameters and interaction parameters move at
least in the "right direction" with respect to the true parameters set in this study. Most of the
2p2h shape parameters ("TwkDial") remained unchanged in this fit due in part to the smaller
responses compared to the norm parameters. 62 On the other hand, most flux parameters do
not have correct responses to the true values. The effect of flux parameters is less competitive
with the template parameters or the detector systematic parameters. Therefore, the changes in
event distributions coming from the flux parameters are compensated by other normalization
parameters.

The more important thing to check in this study is the post-fit event distributions shown
in the top plot in Figure 220. Unlike the other studies without statistical fluctuations, the χ2

values are not very excellent. The post-fit distribution, however, sufficiently agrees with the
distribution from the pseudo data. The bottom plot in Figure 220 is the comparison of cross
section. It should be mentioned that the pseudo data line (black solid line) does not correspond
to the cross section from the true values of systematic variations. Since true events include all
neutrino interactions (even events without tracks), it is not, in principle, possible to apply the
detector parameters to all true events. Moreover, the information on statistical fluctuation is
lost after the fit. As a result, the pseudo data reflects variations for only flux and interaction
parameters. Nevertheless, the post-fit cross section is closer to the pseudo data compared to
nominal MC in the sense of χ2 metric.

62This is again, related to the coarser binning of this analysis, which in turn makes the shape parameters act
as more normalization. Therefore, the effect is not as apparent as that of those normalization parameters.
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Figure 219: The parameter constraints from the FDS of Systematic variation in the momentum
distribution. Each posterior result is presented by a best-fit point and error bar (blue dot and
line) against its prior parameter in orange rectangular. The error is calculated based on the
gaussian assumption of each parameter distribution. Green dots represent the true values in the
systematic variations of a certain toy.
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(b) Comparison of cross section fit results

Figure 220: Comparisons of bin-by-bin event distributions between post-fit and pre-fit (top) and
the post-fit cross sections overlaid on the true cross sections from pseudo data and nominal data
set (bottom) as results of the FDS of Systematic variation in the momentum distribution. Both
plots include corresponding χ2 values as metrics defined in Equations N.1, N.2. "Fake Data" line
corresponds to the true cross section reflecting variations only for flux and interaction parameters
because detector systematic parameters cannot be applied to the true events and the information
of statistical fluctuation is no longer available after the fit. In order to show the improvement of
the fitter, two kinds of χ2 were given with respect to the pseudo data and nominal MC.
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Figure 221: The parameter constraints from the FDS of Systematic variation in the angle dis-
tribution. Each posterior result is presented by a best-fit point and error bar (blue dot and
line) against its prior parameter in orange rectangular. The error is calculated based on the
gaussian assumption of each parameter distribution. Green dots represent the true values in the
systematic variations of a certain toy.
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(b) Comparison of cross section fit results

Figure 222: Comparisons of bin-by-bin event distributions between post-fit and pre-fit (top)
and the post-fit cross sections overlaid on the true cross sections from pseudo data and nominal
data set (bottom) as results of the FDS of Systematic variation in the angle distribution. Both
plots include corresponding χ2 values as metrics defined in Equations N.1, N.2. "Fake Data" line
corresponds to the true cross section reflecting variations only for flux and interaction parameters
because detector systematic parameters cannot be applied to the true events and the information
of statistical fluctuation is no longer available after the fit. In order to show the improvement of
the fitter, two kinds of χ2 were given with respect to the pseudo data and nominal MC.
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N.7 Coverage

The coverage test aims to confirm the plausible range of event distributions and cross section
by varying systematic parameters based on their prior uncertainties and by applying statistical
fluctuations. If the underlying model is compatible with the data fit, the χ2 in the data-fit would
fall inside the range obtained in this test. We make use of the same technique as in the study
for the systematic variations, but using 1000 sets of toy throws. Each fit against a pseudo data
corresponding to each throw gives its χ2 considering both systematic and statistical contributions.
We then fill the value in a histogram and compare it to the theoretical χ2 probability distribution.
The behaviour χ2 probability distribution (PDF) depends on the degree of freedom (DOF) in
the fit. It is calculated by subtraction of the number of all data bins (26 in our case) from the
number of free parameters (i.e. template parameters, 12 in this case). Therefore, we use the χ2

PDF with DOF of 14.
The result of the χ2 distribution is shown in Figure 223. The χ2 distributions have a great

agreement with the theoretical probability functions. Therefore, we confirm the fitter properly
performs the fit in terms of getting posterior distributions in an expected manner.

We utilize the same 1000 toy throws to examine the plausible range of cross sections and their
relative errors. These results are summarized in candle plots as in Figures 224, 225. A good
sign of the cross section candle plot is that each mean value is more or less matched with the
median. As we calculate a relative error of cross section assuming the cross section distribution
from toy experiments follows the gaussian distribution, the gaussianity should be validated. The
mean value being matched with the median indicates the assumption is reasonable. The number
of outliers in the top plot is moderate for all the bins except for the low-momentum bin (bin0
for both templates). A similar tendency is found in the bottom plot, where, in addition to the
number of outliers being larger, the spread of the distribution is relatively larger too. Moreover,
for H2O target cross section results, the higher momentum bin (WG bin4) has a similar tendency
to bin0. This tendency reflects the lower statistics for these bins, which causes a wider spread of
cross section from toy experiments originally stemming from statistical fluctuation.
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(a) Momentum distribution
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(b) Angle distribution

Figure 223: χ2 distributions (black line) from the 1000 toy throws for the FDS of systematic
parameters’ variation with statistical fluctuation in the momentum distribution (top) and the
angle distribution (bottom) compared to the theoretical χ2 probability function (red line) with
DOF of 14 for momentum distribution and 15 for angle distribution. The χ2 includes both
statistical and systematic contributions.
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(a) Differential cross section as a function of momentum in momentum
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(b) Relative error of differential cross section in momentum distribution

Figure 224: Candle plots for the differential cross sections as a function of momentum (top)
and its error (bottom). Each "box" represents 25% quantile for lower and upper directions with
respect to the medium value (a solid vertical line in the box). A circle in a box refers to the mean
value in each bin. A whisker is then extended to a 1.5 times larger range of the inner quantile.
The data points that are not covered by the whiskers are described as outliers (cross points).
Besides, all data points (dotted points) are plotted in these plots.
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(b) Relative error of differential cross section in angle distirbution

Figure 225: Candle plots for differential cross section as a function of angle (top) and its error
(bottom). Each "box" represents 25% quantile for lower and upper directions with respect to
the medium value (a solid vertical line in the box). A circle in a box refers to the mean value in
each bin. A whisker is then extended to a 1.5 times larger range of the inner quantile. The data
points that are not covered by the whiskers are described as outliers (cross points). Besides, all
data points (dotted points) are plotted in these plots.
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N.8 Alternative CCQE model (BeRPA)

We tested several kinds of scenarios before the previous sections while keeping the based NEUT
model to create each pseudo data. Now that we confirm the fitter shows the expected performance
for those artificially created pseudo data, it is then necessary to see how the fitter is able to handle
a change in true signal events based on a physically motivated re-weight factor. As our signal
consists of mainly CCQE interactions, an alternative CCQE model is used to create pseudo
data. The model is Nieves et al. model with RPA correction [177]. Instead of running a full
MC simulation, we take an approach to re-weight CCQE events to mimic the shape of the cross
section predicted by this model. The re-weight factor is parametrized by

w(Q2) =

{
A(1− x′)3 + 3B(1− x′)2x′ + 3C(1− x′)x′2 +Dx′3 if x < U

1 + (D − 1) exp(−E(x− U)) if x ≥ U
(N.3)

C = D +
1

3
U × E × (D − 1), (N.4)

where A,B,C,D,E,U are coefficients to vary the shape of the distribution and x = Q2, x′ =
Q2/U . 63 This alternative model mostly affects the true CCQE events. Besides, it can also have
an impact on the background distributions via FSI effects. The re-weight behaviour is visualized
in Figure 226. The lower Q2 region (corresponds to muons having a lower angle with respect to
the incident neutrino direction) is subject to the suppression from this factor.
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Figure 226: The re-weight function of BeRPA model based on the formula written in Equa-
tion N.3.

63This parametrization is called "BeRPA" model, which comes from the Bernstein polynomials to construct
the polynomial form used for the x < U case. Each coefficient is defined as

A = 0.59, B = 1.05, D = 1.13, E = 0.88, U = 1.20. (N.5)

These values are the same ones used in the T2K oscillation analysis in 2020.
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The results of the fit are shown in Figures 227, 228 and Figures 229, 230. Template parameters
are more or less decreased by 20% with respect to their nominal values (in the left top plot in
Figure 227), which are associated with the changes in the number of events in particular for
BabyMIND sample where Q2 is lower because muons are scattered at a lower angle (in the top
plot in Figure 228). As the WallMRD samples have events having rather higher Q2 values, it is
predictable that the event distribution is close to the nominal one. Other parameters are more
or less unchanged except for high Q2 parameters. They are shifted to higher values, which makes
the number of events in high Q2 regions inflate. This is the expected behaviour of the fitter to
counteract the changes in template parameters for those regions. Taking a look at the bottom
plot in Figure 228, we see a large improvement of the χ2 (1.24 from 4.64) after the post-fit. The
post-fit cross section agrees with the true cross section suggested from this alternative model
within its error bar.
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Figure 227: The parameter constraints from the FDS of Alternative CCQE model (BeRPA
reweight) in the momentum distribution. Each posterior result is presented by a best-fit point
and error bar (blue dot and line) against its prior parameter in orange rectangular. The error is
calculated based on the gaussian assumption of each parameter distribution.
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(b) Comparison of cross section fit results

Figure 228: Comparisons of bin-by-bin event distributions between post-fit and pre-fit (top)
and the post-fit cross sections overlaid on the true cross sections from pseudo data and nominal
data set (bottom) as results of the FDS of Alternative CCQE model (BeRPA reweight) in
the momentum distribution. Both plots include corresponding χ2 values as metrics defined in
Equations N.1, N.2.
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(d) interaction parameters

Figure 229: The parameter constraints from the FDS of Alternative CCQE model (BeRPA
reweight) in the angle distribution. Each posterior result is presented by a best-fit point and
error bar (blue dot and line) against its prior parameter in orange rectangular. The error is
calculated based on the gaussian assumption of each parameter distribution.
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(b) Comparison of cross section fit results

Figure 230: Comparisons of bin-by-bin event distributions between post-fit and pre-fit (top) and
the post-fit cross sections overlaid on the true cross sections from pseudo data and nominal data
set (bottom) as results of the FDS of Alternative CCQE model (BeRPA reweight) in the angle
distribution. Both plots include corresponding χ2 values as metrics defined in Equations N.1, N.2.
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N.9 CCRES low Q2 suppression

We need to test the flexibility of the fitter about whether it can cope with a change in the
background distributions. One of the main backgrounds in this analysis is events coming from
charged current pion production via ∆++(1232) resonance. Therefore, we decided to perform
the fit with pseudo data where we change true resonant events based on an alternative model.
The alternative model is motivated to account for the difference between data and MC reported
by the MINERvA experiment [178] and MINOS experiment [179]. The difference emerges in the
low-energy transfer region (sub-GeV), where the data was smaller than the MC prediction. In
order to take this effect into account, we make use of the formula provided by [179] to re-weight
each resonant event. The formula is written by

w(Q2) =
1.01

1 + exp
(
1−

√
Q2/0.156

) if Q2 < 0.7 GeV2/c4, (N.6)

where Q2 is energy transfer. This re-reweight factor acts as the suppression of resonant events.
The corresponding function is plotted in Figures 231, 232.
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Figure 231: The re-weight function of Low Q2 suppression based on the formula written in
Equation N.6, where CC1π± distribution in the CH sideband (left) and in the H2O sideband in
momentum distribution are overlaid.
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Figure 232: The re-weight function of Low Q2 suppression based on the formula written in
Equation N.6, where CC1π± distribution in the CH sideband (left) and in the H2O sideband in
the angle distribution are overlaid.

The results are presented in Figures 233, 234 and Figures 235, 236. All results of parameter
constraints, event distributions and post-fit cross section are not drastically changed with respect
to their nominal values. Noticeable changes are seen only in CC resonant-related parameters
and distributions. MRES

A , C5
A parameters move to lower values (in the right bottom plot in

Figure 233) in response to the decrease in the event distribution (see bin11 and bin24 in the top
plot in Figure 234). These changes are expected when we consider the pseudo data is subject to
suppression of resonant events (ending up with suppression of CC1π± sample). In the bottom
plot in Figure 234, a slight improvement is seen in post-fit cross section with respect to true
cross section from the pseudo data. This pettiness is due in large part to the fact that true cross
section from the pseudo data is not much deviated from the true cross section from the nominal
MC.
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Figure 233: The parameter constraints from the FDS of Low Q2 suppression in the momentum
distribution. Each posterior result is presented by a best-fit point and error bar (blue dot and
line) against its prior parameter in orange rectangular. The error is calculated based on the
gaussian assumption of each parameter distribution.
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(b) Comparison of cross section fit results

Figure 234: Comparisons of bin-by-bin event distributions between post-fit and pre-fit (top) and
the post-fit cross sections overlaid on the true cross sections from pseudo data and nominal data
set (bottom) as results of the FDS of Low Q2 suppression in the momentum distribution. Both
plots include corresponding χ2 values as metrics defined in Equations N.1, N.2.
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Figure 235: The parameter constraints from the FDS of Low Q2 suppression in the angle distri-
bution. Each posterior result is presented by a best-fit point and error bar (blue dot and line)
against its prior parameter in orange rectangular. The error is calculated based on the gaussian
assumption of each parameter distribution.
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(b) Comparison of cross section fit results

Figure 236: Comparisons of bin-by-bin event distributions between post-fit and pre-fit (top) and
the post-fit cross sections overlaid on the true cross sections from pseudo data and nominal data
set (bottom) as results of the FDS of Low Q2 suppression in the angle distribution. Both plots
include corresponding χ2 values as metrics defined in Equations N.1, N.2.
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O PartIII: Simulated data studies for the cross section measure-
ments

This appendix is the extension of another one describing the fitter validation, yet, deals with
investigations of whether the analysis introduces a potential bias, which might come from the
process of our simulation, track reconstruction, or event selections. The procedure is the same
as the one written in "fitter validation". We substitute the alternative signal model provided
by GENIE [111] or another based model from NEUT. Given there is no significant bias, when
we start from the NEUT simulation as a nominal data set and feed the simulated data set, the
fit should be able to recover the true cross section from the alternative model. The goal of this
study is to verify this expectation.

O.1 GENIE signal + NEUT background

We alternatively use the GENIE neutrino generator which has been on market since 2003. As
GENIE provides many options for users to choose appropriate underlying models, we need to
choose a specific one. The combination of interaction models that we have chosen is summarized
in Table 64.

Table 64: Combination of interaction models used in GENIE for main interaction channels for
the T2K experiment.

Object Model

Interaction

Quasi elastic scattering Llewellyn-Smith formalism, with dipole form factor (MQE
A = 0.99 GeV )

2p2h Dytman model [180]
resonance Rein Segal model (2020 tuned)

DIS Bodek Yang model (2020 tuned)

Others FSI effective model [181]
Ground state Relativistic Fermi Gas model

In comparison with the NEUT base model that we use, the CCQE model is the same but
with a different nominal value (0.99 v.s.1.21). This would end up with a 20% decrease in CCQE
events if there were no other difference between GENIE and NEUT. The base models for 2p2h
interactions are different. NEUT adopted Nieves et al. model [116] whereas Dytman model was
implemented in this version of GENIE. Both models are tuned to be matched with MINERvA
data [99]. For resonance and DIS, there are no significant differences between GENIE and NEUT
as their base models but GENIE updated them based on the 2020 tune results. With respect to
FSI, Figure 237 compares both implementations of π+ cross section on carbon target. Although
both generators use different models, underlying cross section values for π+-carbon is similar
to each other. The treatment of the ground state of a nucleus is also different. The nominal
NEUT utilizes the Benher spectral function model, whereas, on the other hand, the GENIE
adopts a relativistic fermi gas model. The difference in missing energy and missing momentum
distributions are shown in Figure 238.
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NEUT FSI GENIE FSI
Figure 237: Comparison of the sum of non-elastic interaction cross section for π+-carbon inter-
action between NEUT (left) and GENIE (right) from [181]. In the left plot, the black solid line
represents the best-fit cross section with the red band referring to the 1σ errors. (The blue band
represents the 1σ errors obtained in the previous analysis.) In the right plot, green dotted points
show the FSI model that is used in this analysis while red dotted one refers to the alternative
model in GENIE. (Black dotted points represent experimental data.) It should be noted that
the horizontal labels are different between them. (pion momentum in the left plot and pion
kinematic energy in the right plot.)

Figure 238: The reconstructed missing energy and missing momentum distributions for the three
initial-state nuclear models implemented for the CCQE interaction in NEUT (Benhar Spectral
Function in red, Local Fermi Gas model in blue and Global Relativistic Fermi Gas model in
green).
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We compared the selection outputs for true CC0π± events obtained from our nominal NEUT
and GENIE as in Figures 239, 240. In the current study, true CC0π± events in the signal region
were replaced by GENIE events whilst all events in the sideband region remained the same as in
nominal MC.
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Figure 239: Comparisons of the true CC0π± momentum distributions between nominal NEUT
and the GENIE for the only signal region. The distributions from NEUT are broken down by
their interaction type, while the total number of signal events from GENIE is plotted as red
dotted points. Error bars represent Poisson statistical fluctuation for 1σ.
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Figure 240: Comparisons of the true CC0π± momentum distributions between nominal NEUT
and the GENIE the only control region of CC1π±. The event distribution from NEUT is broken
down by its interaction type, while the total number of signal events from GENIE is plotted as
red dotted points. Error bars represent Poisson statistical fluctuation for 1σ.

The fit results are shown in Figures 241, 242 in the momentum distribution and in Fig-
ures 243, 244 in the angle distribution. The results for parameter constraints seen in Fig-
ures 241, 243 show normalization parameters such as template parameters and detector sys-
tematic parameters have a larger response in particular for PM samples to these changes whilst
cross section parameters are mostly unaltered. This behavior is expected from the selection out-
puts from GENIE in Figure 239, where we can see similar shapes between NEUT and GENIE
but a slight decrease in PM samples from GENIE MC compared to NEUT nominal.

With respect to the post-fit event distribution shown in the top in Figure 241, although the
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χ2 is a bit away from 0, it is improved significantly compared to the pre-fit event distribution.
Moreover, the resulting post-fit cross section is in good agreement with true cross section from
the GENIE data set.
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Figure 241: The parameter constraints from the FDS of GENIE in the momentum distribution.
Each posterior result is presented by a best-fit point and error bar (blue dot and line) against its
prior parameter in orange rectangular. The error is calculated based on the gaussian assumption
of each parameter distribution.
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(b) Comparison of cross section fit results

Figure 242: Comparisons of bin-by-bin event distributions between post-fit and pre-fit (top) and
the post-fit cross sections overlaid on the true cross sections from pseudo data and nominal data
set (bottom) as results of the FDS of GENIE in the momentum distribution. Both plots include
corresponding χ2 values as metrics defined in Equations N.1, N.2.
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Figure 243: The parameter constraints from the FDS of GENIE in the angle distribution. Each
posterior result is presented by a best-fit point and error bar (blue dot and line) against its prior
parameter in orange rectangular. The error is calculated based on the gaussian assumption of
each parameter distribution.
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(b) Comparison of cross section fit results

Figure 244: Comparisons of bin-by-bin event distributions between post-fit and pre-fit (top)
and the post-fit cross sections overlaid on the true cross sections from pseudo data and nominal
data set (bottom) as results of the FDS of GENIE in the angle distribution. Both plots include
corresponding χ2 values as metrics defined in Equations N.1, N.2.
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O.2 Alternative NEUT model (without Spectral Function, Nieves 1p1h model)

We alternatively use another model implemented in NEUT. This model adopts the simple Fermi
gas model proposed by Smith-Moniz with the correction from BBBA(05) parametrization, which
is the same as the nominal version that this analysis relies on. The distinct part is the treatment
for the nuclear ground state. The alternative model does not introduce Spectral Function (SF)
but treats it in the global Fermi gas model. The CCQE model is the Nieves 1p1h model without
RPA correction, with MQE

A being set to 1.05. As the nominal NEUT model in this analysis
set the parameter value to 1.21, the expected number of CCQE events would naively decrease
by about 15% level, which ends up being smaller cross section. If the fitter works as expected
without introducing any bias, it is expected to find relatively smaller cross section compared
to the nominal cross section. Figure 245 presents the comparison between nominal prediction
and that from the alternative version of NEUT. The predicted number of selected events in the
alternative NEUT seems lower than that in the nominal configuration, which is expected.
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(c) CC1π±, CH target
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(d) CC1π±, H2O target

Figure 245: Comparison of selected event distributions on CH (left) and H2O (right) target in
the momentum distribution between nominal NEUT and the alternative NEUT (MQE

A = 1.05)
in the signal region (top) and control region of CC1π± (bottom). The event distribution from
NEUT is broken down by its interaction type, while the total number of signal events from
the alternative NEUT is plotted as red dotted points. Error bars represent Poisson statistical
fluctuation for 1σ.

The fit results are presented in Figures 246, 247 in the momentum distribution and Fig-
ures 248, 249 in the angle distribution.
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Figure 246: The parameter constraints from the FDS of Alternative version of NEUT in the
momentum distribution. Each posterior result is presented by a best-fit point and error bar
(blue dot and line) against its prior parameter in orange rectangular. The error is calculated
based on the gaussian assumption of each parameter distribution.
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(b) Comparison of cross section fit results

Figure 247: Comparisons of bin-by-bin event distributions between post-fit and pre-fit (top) and
the post-fit cross sections overlaid on the true cross sections from pseudo data and nominal data
set (bottom) as results of the FDS of Alternative version of NEUT in the momentum distribution.
Both plots include corresponding χ2 values as metrics defined in Equations N.1, N.2.
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Figure 248: The parameter constraints from the FDS of Alternative version of NEUT in the
angle distribution. Each posterior result is presented by a best-fit point and error bar (blue dot
and line) against its prior parameter in orange rectangular. The error is calculated based on the
gaussian assumption of each parameter distribution.
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(b) Comparison of cross section fit results

Figure 249: Comparisons of bin-by-bin event distributions between post-fit and pre-fit (top) and
the post-fit cross sections overlaid on the true cross sections from pseudo data and nominal data
set (bottom) as results of the FDS of Alternative version of NEUT in the angle distribution.
Both plots include corresponding χ2 values as metrics defined in Equations N.1, N.2.
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O.3 Reweight events based on Post-BANFF tuned in OA2022

The T2K Near detector (ND280) has performed the fit to provide parameter constraints for
neutrino interaction-related systematic parameters. The post-fit results by the NDfit are referred
to as "Post-BANFF" tuned parameters. In order to check the compatibility of this analysis with
the Post-BANFF parameters, we perform the fit with the pseudo data where all events are
re-weighted by those best-fit parameters given by Post-BANFF. The post-fit parameter values
are presented in Table 65. The hallmark of ND280 parameter constraints is to pull up the
CC0π events and pull down the CC1π events. As in Table 65, CCQE related parameters and
2p2h parameters are increased with respect to the pre-fit values while resonant parameters (C5

A,
MRES

A , RS Delta Decay) are decreased. This feature is visible in the comparison of selected event
distributions as in Figure 250. The number of CC0π± events on both targets is clearly inflated
while that of CC1π± is decreased.

Table 65: Parameter constraints from T2K ND fit in OA2022 compared to the pre-fit values for
the cross section parameters

Parameter Pre-fit Post-fit

CCQE

MQE
A 1.03 1.11136

Q2 norm 5 1 1.18253
Q2 norm 6 1 1.01229
Q2 norm 7 1 1.34333

Optical Potential 12C 0 0.342335
Optical Potential 16O 0 0.0431339

2p2h

2p2h norm ν 1 1.22216
2p2h norm ν̄ 1 1.09123

2p2h norm others 1 0.977541
2p2h shape 12C np 0 -1.47095
2p2h shape 12C NN 0 -1.00136
2p2h shape 12O np 0 -0.99571
2p2h shape 12O NN 0 -0.433141

FSI

FEFQE 1.069 1.0004
FEFQEH 1.824 1.71212
FEFINEL 1.002 1.11281
FEFABS 1.404 1.04038
FEFCX 0.697 0.572102

FEFCXH 1.8 1.94583

RES

C5
A 1.06 0.850416

MRES
A 0.91 0.843586

RES Eb 12C νµ 25 1.24115
RES Eb 16O νµ 25 4.61816
RS Delta Decay 1 0.970967
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(b) CC0π±, H2O target
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Figure 250: Comparisons of selected event distributions on CH (left) and H2O (right) target in
the momentum distribution between nominal NEUT and postBANFF tune in the signal region
(top) and control region of CC1π± (bottom). The event distributions from NEUT are broken
down by their interaction type, while the total number of signal events from the postBANFF
tune is plotted as red dotted points. Error bars represent Poisson statistical fluctuation for 1σ.

The fit results are presented in Figures 251, 252 in momentum distribution and Figures 253, 254
in the angle distribution.
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Figure 251: The parameter constraints from the FDS of Post-BANFF tune in the momentum
distribution. Each posterior result is presented by a best-fit point and error bar (blue dot and
line) against its prior parameter in orange rectangular. The error is calculated based on the
gaussian assumption of each parameter distribution.
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(b) Comparison of cross section fit results

Figure 252: Comparisons of bin-by-bin event distributions between post-fit and pre-fit (top) and
the post-fit cross sections overlaid on the true cross sections from pseudo data and nominal data
set (bottom) as results of the FDS of Post-BANFF tune in the momentum distribution. Both
plots include corresponding χ2 values as metrics defined in Equations N.1, N.2.
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Figure 253: The parameter constraints from the FDS of Post-BANFF tune in the angle distri-
bution. Each posterior result is presented by a best-fit point and error bar (blue dot and line)
against its prior parameter in orange rectangular. The error is calculated based on the gaussian
assumption of each parameter distribution.
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(b) Comparison of cross section fit results

Figure 254: Comparisons of bin-by-bin event distributions between post-fit and pre-fit (top) and
the post-fit cross sections overlaid on the true cross sections from pseudo data and nominal data
set (bottom) as results of the FDS of Post-BANFF tune in the angle distribution. Both plots
include corresponding χ2 values as metrics defined in Equations N.1, N.2.
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P PartIII: Constraints on fitting parameters in the data fit

P.1 χ2 metric to asses the fit results

We present the comparisons of post-fit and pre-fit event distributions for sample by sample as
one of the results. The differences in event distributions between post-fit and pre-fit should be
assessed with some metrics to check the performance of the fit. We introduce appropriate χ2 for
this purpose, which is defined as

χ2
evdis =

N∑
i=1

2

(
Nfit

i −Nobs
i +Nobs

i ln
Nobs

i

Nfit
i

)
, (P.1)

by taking only statistical contribution into account. Nfit
i is the expected number of events for

bin i from a fit result, which form a post-fit event distribution. Nobs
i is the observed number of

events (from pseudo data in the context of this validation) for bin i. The χ2 is presented on the
plots for the comparisons between post-fit and pre-fit event distributions.

P.2 Results of the parameter constraints

The fit results are presented in Figs 255, 256, 257 for the momentum distribution and Figs 258, 259, 260
for the angle distribution. The parameter constraints are presented in Figures 255, 258. The
detector parameters in the CC1π± region particularly move away from the nominal value. This
is due in part to the anti-correlation between the template and detector parameters as in Fig-
ures 256, 259. The size of the movement in template parameters is larger for WAGASCI samples
than that for Proton Module samples. This behavior should reflect the size of data-MC differ-
ences shown in Figures 68, 69. The post-fit distributions are shown in Figures 257, 260. The
χ2 to the data distributions get much less than that to the nominal distributions, which means
the post-fit parameters work well. The p-values for both results (0.047 for the momentum distir-
bution and 0.11 for the angle distribution) are higher than the threshold (0.01). This indicates
that our MC models describe the data well.
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Figure 255: The parameter constraints from the Data fit in the momentum distribution. Each
posterior result is presented by a best-fit point and error bar (blue dot and line) against its prior
parameter in orange rectangular. The error is calculated based on the gaussian assumption of
each parameter distribution.
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(b) Correlation matrix

Figure 256: Post-fit covariance and correlation matrices for the momentum distribution. The
horizontal and vertical axis refers to fitting parameter ID; "T", "F", "X", "D" refer to "Tem-
plate", "Flux systematic", "Xsec systematic", "Detector systematic" parameters.
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Figure 257: Comparisons of bin-by-bin event distributions between post-fit and pre-fit (top) and
the coverage plot along with the total χ2 for the data fit in the momentum distribution. The
upper plot includes the corresponding χ2 as metrics defined in Equation P.1. For the coverage
plot, the data χ2 is overlaid in the vertical red line.
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(b) Correlation matrix

Figure 259: Post-fit covariance and correlation matrices for the angle distribution. The horizontal
and vertical axis refers to fitting parameter ID; "T", "F", "X", "D" refer to "Template", "Flux
systematic", "Xsec systematic", "Detector systematic" parameters.
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