修士論文

CMB 観測実験 Ground BIRD の焦点面検出器アライメントと 長期運用に向けた角度データ取得システムの最適化

京都大学 理学研究科 物理学・宇宙物理学専攻 物理学第二教室 高エネルギー物理学研究室

片岡 敬涼

2025年1月24日

宇宙マイクロ波背景放射 (CMB) の温度異方性の観測によって、宇宙の進化を記述する標 準理論が構築されてきた。現在では CMB の偏光観測が大きなテーマとなっており、偏光を 通してインフレーション理論やニュートリノ質量和、宇宙の再電離といった課題に迫ること ができる。

GroundBIRD はスペイン領テネリフェ島の標高 2,400 m に位置する大角度スケールの観 測に特化した地上 CMB 望遠鏡である。望遠鏡を 1 分間で 20 回転させる高速スキャンによっ て大気揺らぎの影響を抑制した観測を行う。高速スキャンがもたらす効果を最大限に発揮す るために、時間応答性の良い超伝導検出器 MKID を焦点面検出器として採用し、2023 年 5 月から本格的な観測を開始した。大角度スケールでの偏光 E モードを観測することで、宇 宙再電離期を特徴付け、さらにニュートリノ質量和と縮退したパラメータである光学的厚み τ を誤差 $\sigma_{\tau} \sim 0.01$ で測定することを目指している。

観測を続けてデータを蓄積する段階にある現在、安定して長期運用をすること、そして質 の良いデータを取得することが要求される。しかし、本研究の開始前の観測システムにおい て2つの未解決課題があった。1つは望遠鏡仰角データ取得システムが硬直的であること、 もう1つは天球上での検出器配置がスキャン軸から傾いていることである。本論文ではこれ らの課題に対する改善と最適化を行なった。

仰角データの取得に FPGA ボードを使用しているが、人手を必要とするメンテナンスを 高頻度で要し、システム運用をリモート主体で行えないことが、長期運用に対する障壁と なっていた。本論文ではボード内の FPGA チップに PYNQ と呼ばれる OS システムを搭載 し、OS 上からソフトウェアを動かすことでデータ取得の操作性向上とアクセス性の向上を 図ることにした。本研究でこのシステムを開発し、望遠鏡にインストールし、信号処理の確 認と安定動作を確認した。

焦点面に搭載した多数の MKID によって CMB の偏光信号を検出する。ここで、無偏光な 大気放射ノイズを抑制するためにスキャン軸上の異なる MKID 間で信号の差分をとる。し かし、スキャン軸と MKID の配置軸に傾きがあると差分をとっても大気放射ノイズを十分 に差し引けない。本研究では、月の観測データからこの問題を定量的に洗い出した。具体的 には、MKID の配置軸が望遠鏡のスキャン軸に対して約 6°傾いていることを見積もった。 そして、この結果をもとに、焦点面を含む望遠鏡の構造体を回転させることで天球上での MKID の配置軸を改善した。本研究ではさらに月と木星の観測データからこの改善の確認 も行なった。加えて、スキャン軸上に配置されている MKID 間で信号差分をとり、各入射 信号の相関の強さを示す指標に焼き直し、回転の前後で比較することで観測する大気の揺ら ぎを抑制する結果を得た。

以上 2 点の改善と最適化を通して GroundBIRD が持つ運用、観測性能の向上を成功させた。

目 次

第1章	序論	1
1.1	CMB の温度異方性と現代宇宙論	1
	1.1.1 CMB の温度異方性	1
	1.1.2 Λ-CDM モデル	3
	1.1.3 地平線問題	5
1.2	CMB の偏光とインフレーション理論	5
	1.2.1 インフレーション理論	5
	1.2.2 CMB の偏光モード	6
	1.2.3 偏光 B モードの探索状況	9
1.3	CMB の偏光とニュートリノ質量和 1	1
	1.3.1 宇宙の再電離と光学的厚み <i>τ</i>	1
	1.3.2 ニュートリノ質量和との縮退 1	1
	1.3.3 偏光 E モードと τ	3
1.4	本論文の構成	3
第2章	GroundBIRD 実験 14	4
2.1	実験概要	4
	2.1.1 GroundBIRD 望遠鏡とスキャン戦略 1	4
	2.1.2 超伝導検出器 MKID	5
	2.1.3観測する周波数帯域1	7
	2.1.4 物理ターゲット 1	8
2.2	現在の観測状況	8
	2.2.1 焦点面検出器	8
	2.2.2 リモート観測システム 2	0
笋3音	仰角データ取得システムの改善??	າ
710	 「「「「」」 「「」」 「「」」 「「」」 「」 「」 「」 「」 「」 「」 「」 「」	2
0.1	 3.1.1 角度情報データ取得の概要 2 3.1.1 角度情報データ取得の概要 	$\frac{2}{2}$
	3.1.1 月及時報/ ノ取得の規算 2 3.1.9 仰角データ取得における問題占 9	5
	3.1.2 所内/ $/$ $/$ \sqrt{K} $/$	2
	3.1.5 TINQを用いた例 $(2, 1, 1)$ (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	0
2.0		9 0
0.4	王巫虹、シス衣・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	0
	$3.2.1$ η_{1} · · · · · · · · · · · · · · · · · · ·	U 1
	3.2.2 同期信号取得の確認	1

	3.2.3 同期信号の分配と仰角データ取得の確認	32
3.3	メンテナンスと安定運用	32
	3.3.1 動作の不安定性	32
	3.3.2 電源供給方法の見直し	34
	3.3.3 Zynq 温度のモニター	36
第4章	焦点面検出器アライメントが抱える課題とその定量化	38
4.1	検出器アライメントの問題点..............................	38
	4.1.1 スキャン軸に対する傾きと差分解析	38
	4.1.2 要求される理想的なアライメント	39
	4.1.3 視線軸方向まわりの回転による較正	40
4.2	月を用いた回転角の算出...............................	40
	4.2.1 月を用いた理由	40
	4.2.2 検出器の TOD	42
	4.2.3 必要な回転角	44
第5章	アライメント較正に向けた取り組みと較正結果の確認	50
5.1	ジグの設計と現地インストール	50
	5.1.1 回転する上でのジグの必要性	50
	5.1.2 固定用ジグの作成	51
	5.1.3 望遠鏡への実装	52
5.2	天体を用いた較正結果の確認....................................	53
	5.2.1 月データによる確認	53
	5.2.2 木星データによる追確認	54
第6章	検出器アライメントに伴う大気揺らぎの評価	60
6.1	検出器間差分で見る大気揺らぎの抑制..................	60
	6.1.1 TOD の差分と PSD	60
	6.1.2 PSD と自己相関関数	62
	6.1.3 timing offset の算出	64
	6.1.4 回転前後での比較と大気揺らぎ抑制の確認	65
第7章	今後の展望	70
7.1	大気揺らぎに由来するノイズのモデリング	70
7.2	両偏波アンテナを搭載した焦点面検出器のアップデート........	72
第8章	まとめ	74
第9章	謝辞	75
	参考文献	76

第1章 序論

宇宙マイクロ波背景放射 (Cosmic Microwave Background; CMB) は我々が観測できる宇 宙最古の光であり、宇宙初期を知る重要な手がかりとなっている。CMB が持つ温度異方性 の観測を基に現代宇宙論の基礎が作られた。しかし、現在の宇宙論には課題があり、地平線 問題を始めとする未解決問題が残されている。これらの問題を解決する有力な理論として インフレーション理論が提唱されている。CMB の偏光にインフレーションの痕跡が残ると 考えられており、様々な CMB 観測実験が始動している。また、CMB の偏光観測はニュー トリノ質量和に対する制限を与えられ、素粒子物理学にも大きな影響を持つ。この章では、 CMB とそれを取り巻く宇宙論の関係について述べる。

1.1 CMBの温度異方性と現代宇宙論

1.1.1 CMB の温度異方性

ビッグバン理論は宇宙初期が高温高密度であり、膨張しながら星や銀河を作り、今に至る という宇宙のシナリオを予言した。ビッグバンの証拠には宇宙膨張を示すハッブルの法則や ビッグバン元素合成 (Big Bang Nucleosynthesis; BBN[1]) と呼ばれる初期宇宙の軽元素の生 成過程が挙げられる。そしてもう1つの証拠は CMB の周波数スペクトルが 2.725 K の黒体 放射のスペクトルと一致するという観測事実 [2] である。このことで宇宙初期は熱平衡状態 だったことが証明された。

宇宙初期は高温高密度であり、原子が電子と原子核に電離していた。そのため光子は電子 と頻繁に散乱される不透明な状況であった。宇宙が膨張して冷えていくにつれてイオンの中 性化が進み、電子の個数密度も減少していく。宇宙の温度がおよそ 2970 K、宇宙年齢にし ておよそ 37 万年 で光子と電子の散乱率がハッブルパラメータ (宇宙の膨張率) よりも小さく なり、光は散乱されずに真っすぐ進むようになる。この時期を"宇宙の晴れ上がり"または "最終散乱時刻"と呼ぶ¹。我々観測者は最終散乱時刻に対応する"最終散乱面"に囲まれて おり、そこから散乱されることなく届く CMB 光子を観測することができる。

CMB がほぼ 2.725 K の黒体放射のスペクトルを持つと同時にわずかな温度異方性を持つ ことも発見された。ある空の1点での CMB 温度を $T(\theta, \phi)$ とする。全方向で平均した温度は

$$\langle T \rangle = \frac{1}{4\pi} \int T(\theta, \phi) \sin \theta d\theta d\phi = 2.725 \,\mathrm{K}$$
 (1.1)

¹宇宙の晴れ上がりは光子と電子の散乱率がハッブルパラメータより小さくなる時期、最終散乱時刻は CMB 光子が電子と最後に散乱する時刻として定義されるため厳密には異なる時刻を表すが、ほぼ同時刻とみなして もよい。

である。この空の $1 \, \mathrm{k} \left(\theta, \phi \right)$ における温度揺らぎを

$$\frac{\Delta T}{T}(\theta,\phi) \equiv \frac{T(\theta,\phi) - \langle T \rangle}{\langle T \rangle}$$
(1.2)

と定義する。Planck 衛星によって観測された温度揺らぎ [3] は ~ $100 \,\mu\text{K}$ であり、わずかな 温度異方性を示している (図 1.1)。

図 1.1: Planck 衛星によって観測された CMB の温度異方性のマップ。

CMB 実験では CMB の観測データと望遠鏡の角度データを用いて図 1.1 で示すような CMB の異方性を表す "マップ (強度分布図)" を作成する。このマップを球面調和関数 $Y_{\ell}^{m}(\theta,\phi)$ で 展開してパワースペクトル (C_{ℓ}) 作成することで、宇宙論パラメータを求めることができる。 空 (天球面上) の (θ,ϕ)(図 1.2) に対して単位ベクトル \hat{n} を

$$\hat{n} \equiv (\sin\theta\cos\phi, \sin\theta\sin\phi, \cos\theta) \tag{1.3}$$

と定義する。この時、CMB の温度異方性 $\Delta T(\hat{n}) \equiv T(\hat{n}) - \langle T \rangle$ を球面調和関数で

図 1.2: 天球面の座標。

$$\Delta T(\hat{n}) = \sum_{\ell=1}^{\infty} \sum_{m=-\ell}^{\ell} a_{\ell m} Y_{\ell}^{m}(\hat{n})$$
(1.4)

と展開する。ここで、 $a_{\ell m}$ は展開係数である。また、mは揺らぎの方向を決め、 ℓ は揺らぎのスケールの大きさを表す。 ℓ と角度スケール ($\delta \theta$)の関係は

$$\delta\theta = 180^{\circ}/\ell \tag{1.5}$$

と表せる。しかし、展開係数 $a_{\ell m}$ は添字mによる座標依存性があるため、パワースペクト νC_{ℓ} は展開係数 $a_{\ell m}$ に対して

$$C_{\ell} \equiv \frac{1}{2\ell + 1} \sum_{m = -\ell}^{\ell} a_{\ell m} a_{\ell m}^{*}$$
(1.6)

と定義することで、座標に依らない物理量として扱うことができる。

1.1.2 Λ-CDM モデル

CMB のパワースペクトルの測定により、Λ-CDM モデルと呼ばれる宇宙の進化を記述す る標準理論が構築された (図 1.3)。Λ-CDM モデルは、6 つのパラメータのみで宇宙を記述 するもので、Λ はダークエネルギーに対応するアインシュタインの宇宙定数を表し、CDM は "Cold Dark Matter"を意味する。現在での Λ-CDM モデルのパラメータを表 1.1 にまと

図 1.3: Planck の観測から計算された CMB の温度パワースペクトル [**3**]。縦軸の \mathcal{D}_{ℓ}^{TT} は $\mathcal{D}_{\ell}^{TT} = \frac{\ell(\ell+1)C_{\ell}}{2\pi}$ を表す。青の線は Λ -CDM モデルのベストフィットを表す。

める。 現在では我々の知っているバリオン物質はエネルギー密度でたったの5%で、ダー

表 1.1: Planck の観測から得られた Λ-CDM モデルの宇宙論パラメータ [3]。これらの値の 推定には CMB の偏光、lensing のパワースペクトル、バリオン音響振動も用いる。

$\Omega_b h^2$ (バリオン密度)	0.02242 ± 0.00014
$\Omega_c h^2$ (CDM 密度)	0.11933 ± 0.00091
$100 heta_{MC}$ (最終散乱面の見込み角度)	1.04101 ± 0.00029
τ (再電離期における光学的厚み)	0.0561 ± 0.0071
<i>ln</i> (10 ¹⁰ <i>A_s</i>) (スカラー型の原始揺らぎの振幅)	3.047 ± 0.014
n _s (スカラー型の原始揺らぎのべき係数)	0.9665 ± 0.0038

クエネルギーが約 70 %、CDM が 25 % を占めている。一方で、宇宙初期では異なるエネル ギー密度の組成を持っている。

Λ-CDM モデルにおける一様等方な宇宙では、エネルギー密度 $\epsilon(t)$ 、圧力 P(t)、スケール ファクター²a(t) の関係は、フリードマン方程式³

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\epsilon - \frac{K}{a^2} + \frac{\Lambda}{3} \tag{1.7}$$

と、流体方程式

$$\dot{\epsilon} + 3\frac{\dot{a}}{a}(\epsilon + P) = 0 \tag{1.8}$$

と、状態方程式

$$P = \omega \epsilon \tag{1.9}$$

で表せる [4]。ここで G はニュートンの重力定数である。また、K は空間曲率を表し、K = 0 で平坦宇宙を表す。 ω は宇宙を占める成分ごとに異なるパラメータであり、成分は

- 放射 (相対論的粒子、 $\omega = \frac{1}{3}$)
- 物質 (非相対論的粒子、 $\omega = 0$)
- ダークエネルギー ($\omega = -1$)

に分けられる。各成分ごとに方程式が成り立つとすると、式 (1.8) と式 (1.9) から成分 *i* のエ ネルギー密度は

$$\epsilon_i(a) = \epsilon_{i,0} a^{-3(1+\omega_i)} \tag{1.10}$$

となる。ここで、*ϵ*_{*i*,0} は現在での値である。*a* は宇宙初期では0に近づくため、ωが大きい成 分ほど優勢になる。逆に宇宙の膨張するにつれてωが小さい成分ほど優勢になる。そのた め、現在ではダークエネルギー優勢であるが、宇宙の初期では放射や物質が優勢であった。

放射、物質優勢宇宙でのスケールファクターの時間依存性を見る。成分ωの1成分宇宙 でかつ平坦であると仮定すると式 (1.7) は以下の単純な形になる。

$$\dot{a}^2 = \frac{8\pi G\epsilon_0}{3} a^{-(1+3\omega)} \tag{1.11}$$

スケールファクターが a ∝ t^q の冪乗に従うと仮定すると

$$a(t) \propto t^{2/(3+3\omega)} \tag{1.12}$$

で表せる。したがって放射優勢期、物質優勢期では宇宙は減速膨張であったことが分かる (表 1.2)。

ダークエネルギー優勢宇宙では式 (1.10) から、エネルギー密度は一定であり、式 (1.7) を 解くことで

$$a(t) \propto e^{Ct} \ (C = \text{Const})$$
 (1.13)

を得られ、宇宙は加速膨張する。

²時刻 *t* での宇宙の広がりを表す膨張因子

³本論文では $\hbar = c = 1$ の自然単位系を用いる。

エネルギー成分	a(t)	$\ddot{a}(t)$
放射	$t^{1/2}$	< 0
物質	$t^{2/3}$	< 0
ダークエネルギー	e^{Ct}	> 0

表 1.2: エネルギー成分ごとのスケールファクターの時間依存性。

1.1.3 地平線問題

平坦な空間を動径 r 方向に進む光の経路は $ds^2 = -dt^2 + a^2(t)dr^2 = 0$ であり、これより 光子が到達できる共動距離 (宇宙の膨張に依らない距離) は

$$r = \int_0^r dr' = \int_0^t \frac{1}{a(t')} dt'$$
(1.14)

となる。これにスケールファクターをかけて物理的距離にすると

$$d_{\rm hor}(t) \equiv a(t)r = a(t)\int_0^t \frac{1}{a(t')}dt'$$
 (1.15)

を得る。この $d_{hor}(t)$ を"地平距離"と呼び、ある時刻tまでに光が到達できる距離、すなわちある時刻tで相関を持てる距離を表す。放射優勢期では、表 1.2 のスケールファクターを式 (1.15) に代入すると $d_{hor}(t) = 2t$ となる。物質優勢期でも同様にして $d_{hor}(t) = 3t$ を得られる。つまり、減速膨張宇宙では地平距離はtに比例して増加する。これは宇宙初期では地平距離が宇宙の膨張よりも速く広がることを意味する。CMB は最終散乱時刻での散乱光であるが、最終散乱時の地平距離は天球上の見込み角で約2°しかない。すなわち、2°以上離れた領域同士は地平距離より離れており、相関を持てない。一方で、CMB の温度異方性は図 1.1 のように 100 μ K の精度で等方的であり、相関を持たないはずの領域まで温度が一致している。既存の理論ではこの観測結果を説明することはできず、"地平線問題"と呼ばれる。この他にも宇宙初期で極端に平坦であったという"平坦性問題"や、モノポール(磁気単極子)が存在しない"モノポール問題"などが未解決な問題となっており、新たな理論による説明が求められる。

1.2 CMBの偏光とインフレーション理論

1.2.1 インフレーション理論

地平線問題をはじめとする現在の宇宙論が抱える問題を解決する有力な理論として"イン フレーション理論"が提唱されている。この理論はビッグバンより前の初期に宇宙が加速膨 張したとする理論である。加速膨張によって地平距離が大きく引き伸ばされ、最終散乱面全 体で相関を持てるようになり、CMB 温度異方性の観測結果を説明することができる。表 1.2 にあるように、ダークエネルギーのように働く機構があれば加速 (指数関数的)膨張を実現で きる。インフレーションではインフラトンと呼ばれるスカラー場を導入して加速膨張を説明 する。インフラトン φ が一様な空間でポテンシャル V を持つとすると、エネルギー密度は

$$\epsilon_{\phi} = \frac{1}{2}\dot{\phi}^2 + V(\phi) \tag{1.16}$$

となり、インフラトン場の圧力は

$$P_{\phi} = \frac{1}{2}\dot{\phi}^2 - V(\phi)$$
 (1.17)

で与えられる。インフラトン場が

$$\dot{\phi}^2 \ll V(\phi) \tag{1.18}$$

のようにゆっくり変化する時、インフラトン場はダークエネルギーのように振る舞う。すな わち、インフレーションを起こすための条件は

• $\epsilon_{\phi} \sim V(\phi)$ が大きく、優勢である

である。

初期宇宙でこの条件をどう満たすのかを見る。式 (1.8) より、インフラトン場の流体方程 式は

$$\dot{\epsilon}_{\phi} + 3H(t)(\epsilon_{\phi} + P_{\phi}) = 0 \quad (H(t) = \dot{a}/a)$$
 (1.19)

である。これに式 (1.16) と式 (1.17) を代入すると

$$\ddot{\phi} + 3H(t)\dot{\phi} + \frac{dV}{d\phi} = 0 \tag{1.20}$$

を得る。これは摩擦力を受ける粒子の運動方程式と同じであり、 $3H(t)\dot{\phi}$ が摩擦項に対応する。インフラトン場が"終端速度"に達した ($\ddot{\phi}=0$)時に

$$\dot{\phi} = -\frac{1}{3H}\frac{dV}{d\phi} \tag{1.21}$$

となる。これより、式 (1.18) の条件は

$$\left(\frac{dV}{d\phi}\right)^2 \ll 9H^2V \tag{1.22}$$

に置き換えられる。すなわち、インフラトンポテンシャルの勾配が十分小さく、摩擦項が 十分大きければインフラトン場は加速膨張を引き起こすことができる。この条件は "スロー ロール条件" と呼ばれる (図 1.4)。

1.2.2 CMBの偏光モード

インフレーション理論は宇宙の加速膨張を説明するが、その際に原始重力波が生成される と考えられている [5]。この原始重力波は CMB に空間非対称な "B モード"と呼ばれる偏光 パターンを残す。つまり、CMB の偏光 B モードを観測することでインフレーション理論の 検証が可能になる。

まず、CMB の偏光が生成される原理を説明する。CMB に偏光ができるには

図 1.4: インフレーションを起こせるポテンシャルの例。ポテンシャルの最小値は $\phi = \phi_0$ であり、 ϕ は ϕ_0 に向けてゆっくりと転がっていく。その間、インフラトン場は一定のエネルギー密度 $\epsilon_{\phi} \sim V_0$ として加速膨張に作用する。

- トムソン散乱
- 電子から見た四重極の温度異方性

の2つが鍵となる[6]。CMBの偏光は図1.5で示すように電子とのトムソン散乱によって生まれる。実際にはあらゆる方向から入射する光が電子と散乱されるため、光の温度が等しければ重ね合わせによって無偏光として観測される。しかし、CMBにはわずかな温度異方性があり、電子の静止系において四重極の温度異方性があれば偏光を観測できる(図1.6)。

CMB の偏光を表す観測量として、デカルト座標軸 (*x*, *y*) と、それに対して 45° 傾けた (*a*, *b*) 軸をとり、各軸での電場成分に対してストークスパラメータ *Q*, *U* を

$$Q \propto E_x^2 - E_y^2 \tag{1.23}$$

$$U \propto E_a^2 - E_b^2 \tag{1.24}$$

と定義する。しかし、この量は観測者の系の取り方によって変化するため、*Q*,*U* を組み合 わせて観測者の系に依存しない偏光成分としてEモードとBモードを定義する (図 1.7)。あ る波数ベクトルℓが作る偏光分布を考える時、Eモード偏光はℓに平行か垂直であり、空間 対称である。一方で、Bモード偏光はℓに対して 45°傾いており、空間非対称である。これ によって偏光成分を区別できる。

偏光 B モードは原始重力波と重力レンズ効果の 2 つの要因から生成される。CMB に異方 性をもたらすインフラトンの揺らぎは "スカラー型揺らぎ"と "テンソル型揺らぎ"に分けら れ、原始重力波はテンソル型揺らぎに対応する⁴。重力レンズでは、最終散乱時刻で生じた E モードが我々に届くまでに重力レンズ効果によってその偏光軸が回転し、B モードとして 観測されるものである。つまり、インフレーション理論の検証には原始重力波に由来する偏 光 B モードを観測することが必要である。

⁴一方で、スカラー揺らぎは偏光 E モードのみを生成する

観測者

図 1.5: 偏光が生じる原理。*x*軸方向に入射する無偏光であった光が*z*軸方向 (観測者のいる 方向) に散乱されると、*y*軸方向の直線偏光のみが残る。

図 1.6: 電子の静止系で四重極の温度異方性によって作られる直線偏光。高温領域と低温領 域が 90°ごとに分布する時、直線偏光を観測できる。

Bモード(空間非対称)

図 1.7: 波数ベクトルℓに対する偏光 E モードと B モード。線の長さがストークスパラメー タの大きさに対応する。

1.2.3 偏光 B モードの探索状況

Bモードの探索は、温度異方性と同様にして Bモードの CMB パワースペクトルを計算 し、スペクトルの振る舞いを見ることで行える (図 1.8)。原始重力波由来の Bモードと重力 レンズ由来の Bモードはスペクトルの ℓ 依存性の違いから区別できる。また、原始重力波由 来の Bモード探索は重力レンズの影響が少ない大角度スケールで行う必要がある。原始重 力波の振幅は慣例的にスカラー型揺らぎの振幅との比で表す。この比の値を"テンソル・ス カラー比" r と呼ぶ。波数 q に対して、原始重力波とスカラー型揺らぎのパワースペクトル をそれぞれ $P_{重力波}(q)$ 、 $P_{2,2,2,2,-}(q)$ とするとrは

$$r(q) = \frac{4P_{\pm j}(q)}{P_{z,j}}$$
(1.25)

と表せる。インフレーションの発見は偏光 B モードのパワースペクトルを得ること、すな わち 0 ではないテンソル・スカラー比の発見であり、多くの CMB 実験によってこの r に対 する制限が与えられている。現在では Planck 衛星の結果に BICEP/Keck 実験の観測結果を 加えたもので、r に対して

 $r(q = 0.05 \,\mathrm{Mpc}^{-1}) < 0.036 \ (95\% \ \mathrm{Confidence \ Level})$ (1.26)

という上限が与えられている [8]。

図 1.8: 偏光 B モードパワースペクトルの理論予想 [7]。横軸の Multipole は角度スケール *l* を表す。重力レンズ由来の B モードスペクトルは原始重力波由来のものと振る舞いが異なる。また、テンソル・スカラー比の値によってもスペクトルの大きさが異なる。

図 1.9: Planck 実験と BICEP/Keck 実験によって与えられた *r* と *n_s* 平面に付けられた制限 [8]。*n_s* はスカラー揺らぎを特徴付ける量で、この値が 1 からずれていることがインフレー ションを支持することを意味する。*N* はインフレーションによるスケールファクターの膨 張率を表す。また、実線でインフラトンのポテンシャルが φ の冪乗だと仮定した時の *r* と *n_s* の関係を示している。

1.3 CMBの偏光とニュートリノ質量和

1.3.1 宇宙の再電離と光学的厚み *τ*

宇宙の晴れ上がり以降 CMB 光子が一切散乱されないかといえばそうではない。晴れ上が りの後、赤方偏移⁵が *z* ~ 20 の時期になると、最初の天体が誕生し、天体から発せられる強 い紫外線によって宇宙に広がっていた中性水素原子が再び電離される。この現象を"宇宙の 再電離"と呼ぶ。再電離によって生じた自由電子によって CMB 光子は再び散乱される。こ の再電離期を特徴付けるパラメータとして光学的厚み *r* を

$$\tau \equiv \int_{t_{rs}}^{t_0} dt \bar{n}_e \sigma_\tau \tag{1.27}$$

と定義する。ここで、 t_{rs} は再電離が開始した時間、 t_0 は現在の時刻、 \bar{n}_e は自由電子の平均 個数密度、 σ_{τ} は CMB と自由電子の散乱断面積を表す。つまり、光学的厚みは CMB にとっ て電子がどれほど不透明であったかを示す量である。

再電離期の散乱は CMB の異方性に角度スケールに応じて 2 つの効果をもたらす。1 つは $\ell \gtrsim 10$ の角度スケールで CMB の異方性が散乱によってならされて、パワースペクトルが $e^{-2\tau}$ で減衰する効果である。もう 1 つは $\ell \le 10$ の大角度スケールで新しい偏光を作る効果 で、偏光の強度は $1 - e^{-\tau} \sim \tau$ に比例する。パワースペクトルにすると、 τ^2 に比例する。赤 方偏移 z で電子が見る四重極に寄与する波数が赤方偏移 z でのハッブル長に対応する波数と なる。z のハッブル長程度の波長より短波長の異方性はならされ、ハッブル長程度の波長で 偏光が生じる。そのため、再電離期のハッブル長に対応する $\ell \sim 10$ を境に 2 つの効果が生 まれ、ハッブル長より長波長な $\ell \le 10$ で新しく偏光が作られる。また、 $\ell \le 10$ での効果は 偏光 E モードと B モード、両方のパワースペクトルに対して現れる (図 2.8)。

1.3.2 ニュートリノ質量和との縮退

光学的厚み τ は宇宙の再電離期を特徴付ける他にもニュートリノ質量和 (Σm_{ν})の測定 にも役立つ。光学的厚み τ とニュートリノ質量和 (Σm_{ν})はともにそのとり得る値によって $\ell \sim 1000$ の小角度スケールで観測される重力レンズ由来の B モードパワースペクトルの振 幅を変える (図 1.10)。 τ の値が大きいほど、また Σm_{ν} が大きいほどスペクトルの振幅は小 さくなる。ニュートリノは速度分散が大きく、小角度スケールでは構造形成を抑制するよう に働く。そのため、重力レンズによる影響も抑制される。この効果が質量和に応じて異なる ため、スペクトルの振幅に違いが生まれる。このニュートリノの寄与は τ が CMB の異方性 をならす効果と同様な効果であるため両者は縮退したパラメータとなっている。そのため、 τ を精度良く測定することで Σm_{ν} との縮退を解くことができる (図 1.11)。ニュートリノの 質量和は素粒子物理学においても重要な課題であり、CMB の偏光観測からこの課題に迫れ ることは大きな意義がある。

⁵赤方偏移 z はスケールファクターに対して $1 + z = \frac{1}{a}$ の関係である。

図 1.10: *τ*、Σ*m_ν* によって変化する重力レンズ B モードパワースペクトル。2 つのパラメー タのパワースペクトルに対する寄与が縮退しており、両者の区別がつけられない。[22] より 引用。

図 1.11: 縮退した τ と $\Sigma m_{\nu \circ}$ τ の測定精度を向上させることで Σm_{ν} を精度よく決定できる。図の楕円は 1 σ の Confidence Level を表す。[9] より引用。

1.3.3 偏光 E モードと *τ*

重力レンズ由来のBモードでの縮退を解くためには 1.3.1 節でも述べたような、Eモードのパワースペクトルから τ の値を測定することが重要になる。再電離によって $\ell \leq 10$ の大角度スケールでEモードのパワースペクトルに τ^2 の依存性を生む。つまり、 τ が大きいほどスペクトルの振幅が大きくなる。一方でニュートリノの寄与は大角度スケールでは大きく影響しない。そのため、Eモードの観測から τ を精度良く測定することで Σm_{ν} との縮退を解くことができる。温度異方性のパワースペクトルも含めてニュートリノ質量和に迫る τ の測定方法をまとめると表 1.3 のようになる。これより、偏光モードと角度スケールに応じて

表 1.3: τの測定が可能なパワースペクトルのモードと角度スケール。

モード	角度スケール
温度異方性	小角度 (τ がスカラー型の原始揺らぎの振幅 As と縮退するため単独では難しい)
\mathbf{E}	大角度 (ℓ ≲ 10)
B(重力レンズ)	小角度 (ℓ ~ 1000、ニュートリノ質量和と縮退するため単独では難しい)

au、そして Σm_{ν} にアプローチすることができ、中でも大角度スケールでの E モードを観測 することが重要であることが分かる。

1.4 本論文の構成

本論文の構成を述べる。第1章では CMB に関わる理論的な背景を述べた。第2章で GroundBIRD 実験の概要を説明する。以降は第3章と第4章から第6章の2部構成になっ ており、第3章で GroundBIRD の角度データ取得システムの改善について述べる。第4章 で焦点面検出器のアライメントの課題の定量化とその較正方針について述べ、第5章で課題 に対する実際の取り組みと天体を用いた較正結果を述べる。そして、第6章で差分解析に よって確認した大気揺らぎの抑制について述べる。第7章で今後の展望を述べ、第8章でま とめを述べる。

第2章 GroundBIRD実験

CMB 観測実験には地上から観測する実験と衛星を用いて宇宙から観測する実験に分けられる。ここでは私が参加している GroundBIRD 実験 (図 2.1) について実験の概要と現在の 観測状況について説明する。

図 2.1: GroundBIRD 望遠鏡の外観。望遠鏡クライオスタットが方位角回転台の上に設置されており、回転台とともに最大で 20 RPM(1 分間で 20 回転)の速度で回転する。

2.1 実験概要

2.1.1 GroundBIRD 望遠鏡とスキャン戦略

GroundBIRD 望遠鏡はスペイン領カナリア諸島の1つであるテネリフェ島のテイデ観測 所 (高度 2,400 m) に位置する地上 CMB 望遠鏡である。地上からの観測において最も邪魔な のが大気からの放射であるが、テイデ観測所は大気中の積算水蒸気量 (Precipitable Water Vapor、以下 PWV と略す) がおよそ 3.5 mm[10] と低く、観測に適した場所である。

GroundBIRD はスキャン戦略に大きな特徴を持つ。地上からの観測では大気放射に由来 するノイズが本来見たい CMB に混入する。大気放射は無偏光であるが、観測装置の不完全 性などで誤って偽偏光として観測されるおそれがある。特に、大気は刻一刻と揺らいでいる ため、観測する空の領域ごとで観測される大気のノイズも揺らぎ、偽偏光を検出する影響は 無視できなくなる。その影響を回避するためには大気揺らぎを抑制する変調が必要になる。 GroundBIRD では、望遠鏡を最大で 20 RPM(3 秒で1回転) させる独自のスキャン戦略をと ることで大気揺らぎを抑制した CMB 観測を実現する。より具体的には望遠鏡の仰角を 70° に固定し、方位角方向に高速回転させることで、全天の広い領域を観測することができる。 望遠鏡の連続回転と地球の自転を組み合わせることで全天の約 45 % を観測することができ る (図 2.2)。

図 2.2: GroundBIRD のスキャン戦略。GroundBIRD は視野 (望遠鏡が観測できる視線中心 からの空での角度領域)±11°で観測する。望遠鏡の回転と地球の自転を組み合わせること で1日で全天の約半分をカバーできる。

GroundBIRD の内部構造の概略を図 2.3 に示す。光学系は放物面の主鏡と双曲面の副鏡か ら成り、CMB がバッフルから入り、光学系で 2 回反射させた後に、焦点面検出器ステージに入 る。クライオスタット内は真空かつ低温になっており、外側のチャンバー部 (300 K)、40 K シー ルド、4 K シールドの 3 層から構成されている。4 K シールドの冷却にはパルスチューブ冷凍機 を使用している。GroundBIRD では超伝導検出器 "MKID (Microwave Kinetic Inductance Detector)[12]"を採用しているため、焦点面の温度は極低温に保つ必要がある。焦点面の冷却 には He ソープション冷凍機 (CRC-GL10-008, CHASE RESEARCH CRYOGENICS LTD) を使用し、温度を 280 mK 付近に保持している。

2.1.2 超伝導検出器 MKID

CMB 観測実験で使われる超伝導検出器として MKID と "TES (Transition Edge Sensor)[11]" ボロメータがある。MKID は比較的新しい検出器であり、通常の CMB 実験では TES が使わ れている。GroundBIRD では高速な回転スキャンのもとで角度分解能を失わないように、検 出器の応答時間が < O(1) ms であることが要求される。しかし、CMB 実験で用いる TES の 応答時間はO(1) ms であり [11]、GroundBIRD の要求を満たしていない。一方で MKID の典

図 2.3: GroundBIRD 内部の概略図。バッフルを通って CMB が望遠鏡内に入り、主鏡と副 鏡で反射されて検出器ステージに入る。

型的な応答時間は < O(1) ms であり [12]、この要求を満たしている。そのため、GroundBIRD ではより時間応答性の良い MKID を採用している。

MKID の動作原理の概要を説明する。MKID は超伝導共振回路を応用した高感度な光検 出器である。入射する光子のエネルギーに応じて変化する回路内のインダクタンスを、数 GHz で読み出す。MKID の電子顕微鏡写真 [13] と、等価回路を図 2.4 に示す。MKID は読 み出し線、超伝導体からなる共振器回路、アンテナからなっている。アンテナから電磁波が 入射すると超伝導共振器の状態が変化し、そのインピーダンスの変化を読み出すことで入射 エネルギーを測定する。

具体的には、検出器の温度上昇やエネルギーが $h\nu > 2\Delta(\Delta$ は超伝導ギャップエネルギー) の光子との反応で、超伝導共振器内のクーパー対 (結合した電子対) が壊れる。対になって いた電子はエネルギーギャップより上の準位へと押し上げられる (図 2.5)。この過程で生成 される電子を準粒子という。 Δ と超伝導転移温度 (T_c) の関係は T=0 K の時に

$$2\Delta(T=0) = 3.52k_B T_c \tag{2.1}$$

と表すことができる [14]。ここで、*k_B* はボルツマン定数である。この式より、MKID の材 質として用いる超伝導体の転移温度とΔは1対1対応しており、転移温度を適切に設定す ることで CMB のエネルギー (~160 GHz) でクーパー対を壊すことができる。例えば、アル ミニウムであれば転移温度は 1.2 K であり、対応する光子の周波数の閾値は 90 GHz になる ため、CMB の検出が可能になる。また、MKID では入射信号によって生成される準粒子の 数に比例した応答が得られる。

準粒子によって共振器内の超伝導状態が変化し、可変インダクタンスの値が変化する。また、1つの読み出し線に複数の共振器が容量性カップリング (Capacitive coupling; C カップ リング) しており、1 対の読み出し配線を使って $\mathcal{O}(1000)$ 個の MKID を同時に読み出すこと ができる。

(a) MKID の電子顕微鏡写真 [13]。読み出し(b) MKID の等価回路。可変インダクタンス
 線、超伝導共振器、アンテナからなる。
 と可変抵抗をもつ RLC 共振回路になっている。

図 2.4: 超伝導検出器 MKID

図 2.5: 入射光子による準粒子生成の模式図。縦軸は電子のエネルギーを表し、横軸は状態 数を表す。*hν* > 2∆ のエネルギーを持つ光が超伝導共振器に入射すると、クーパー対が壊 されてエネルギー準位が押し上げられ、準粒子になる。

2.1.3 観測する周波数帯域

CMB の偏光を観測するためには CMB と、銀河などから来る CMB と同周波数帯の放射で ある"前景放射"とを分離する必要がある。これらの前景放射はそれぞれ異なる周波数依存 性を持つ (図 2.6)。主な前景放射には低周波側で卓越する"シンクロトロン放射"と高周波側 で卓越する"ダスト熱放射"があり、CMB にとって大きなノイズとなる。そのため、低周波 側 O(10) GHz から高周波側 O(100) GHz までの広い帯域での観測を行い前景放射を取り除 くことが求められる。2.2.1 節で述べるが、GroundBIRD は CMB に感度のある 145 GHz と、 ダスト放射に感度がある 220 GHz の 2 つの帯域で観測する。一方で、低周波側は QUIJOTE¹ のデータを使うことでカバーする。

¹QUIJOTE(Q-U-I JOint Tenerife Experiment) 実験は GroundBIRD から 20 m ほどしか離れていない隣 に位置する望遠鏡である。2 台の望遠鏡 (11, 13, 17, 19 GHz を観測する QT1 と 30, 40 GHz を観測する QT2) で構成される。

図 2.6: CMB と前景放射の偏光強度を周波数の関数として表した図。Planck[19] を参照。そ れぞれの前景放射は異なる周波数依存性を持ち、CMB とこれらを分離するためには広い帯 域での観測が必要になる。

2.1.4 物理ターゲット

GroundBIRD が探る物理ターゲットは 1.3.3 節で見た光学的厚み τ の地上からの再測定で ある。光学的厚み τ の測定は今までに WMAP や Planck といった衛星実験によって測定が されてきた。図 2.7 に測定された τ の値の変遷を示す。誤差が小さくなってきており、最新 の測定結果ではその誤差は~10% である。しかし、平均値は系統的に下がっている傾向に あり、独立した測定によってこの結果の妥当性を評価する必要がある。そのため、地上実験 (例えば CLASS[16] や QUIJOTE[17] など) からの τ の精密測定が始まっている。

特に Ground BIRD は独自のスキャン戦略を活かして τ の値に迫ることができる。高速ス キャンによって大角度スケール (6 < ℓ < 300) の CMB 偏光を測定することができる。大角 度スケールと τ の関係を図 2.8 に示す。偏光 E モードのパワースペクトルは大角度スケール (\geq 10°) で τ に応じて異なる振る舞いをする。Ground BIRD はこの振る舞いを観測するこ とができるため、 τ の測定に適している。3 年間の観測と、Ground BIRD と QUIJOTE の共 同解析によって τ を誤差 $\sigma_{\tau} \sim 0.01$ で測定することを目指す [20]。これによって疑問の残る τ の測定を再検証することができ、縮退したニュートリノ質量和の精密測定を達成できる。

2.2 現在の観測状況

2.2.1 焦点面検出器

GroundBIRD の現在の状況について説明する。2022 年 1 月から 2022 年 5 月まではプロ トタイプ検出器を用いたコミッショニング観測が行われた。コミッショニングデータを用い て望遠鏡の視線方向の較正 [21] や、偏光角較正、ノイズ特性の理解 [22] などがされてきた。

図 2.7: WMAP と Planck によって測定された光学的厚み τ の値 [15]。最新では誤差は ~ 10 % である。

図 2.8: パワースペクトルの過去の観測結果と E,B モードの理論線、そして GroundBIRD の 観測領域 [18] をオレンジで示す。青実線はテンソル · スカラー比を仮定した時の原始重力波 由来の偏光 B モード、赤点線は重力レンズ効果由来の B モードを表す。黒実線は E モード であり、大角度スケール (≥ 10°) で τ の値によってスペクトルに違いが生まれる。

並行して、2023年5月に全焦点面検出器のインストールが完了し、本格的な物理観測がス タートした。

インストールした焦点面検出器を図 2.9 に示す。23 個の MKID が1つのアレイに搭載さ れており、145 GHz 帯が6 アレイと 220 GHz 帯が1 アレイの全7 アレイからなる。中央に 220 GHz 帯アレイがあり、その周りを 145 GHz 帯アレイが囲むように並んでいる。アレイご とに読み出しを行う。アレイ内での MKID の配置は図 2.9b にようになっている。各 MKID は片偏波アンテナを持つため、1 方向の偏光方向に感度がある。また、偏光方向は 45° ずつ で 4 方向あり、異なる方向に感度のある MKID 同士で交互に配置されている。これにより、 第 4 章で述べるような検出器間で差分を取る解析によって偏光測定をすることができる。

(a) 焦点面検出器の全体写真。

(b) アレイ内の MKID が感度を持つ偏光方向。

図 2.9: フルアレイの焦点面検出器 MKID

145 GHz 帯, 220 GHz 帯のそれぞれの検出器と望遠鏡ビームの特性²を表 2.1 に示す。

|--|

	145 GHz 帯	220 GHz 帯
MKID 数	6 アレイ (138 ピクセル)	1アレイ (23 ピクセル)
ビーム幅 (FWHM)	$0.60^{\circ}(36')$	$0.42^{\circ}(25')$
ビーム楕円率	< 1 %	<2%

2.2.2 リモート観測システム

焦点面検出器のフルアレイインストール後、本格的な観測が始まっているが、基本的に全 ての操作 (ドームの開閉、望遠鏡の回転など)をリモートから行なっている。観測の手順は 以下のようにして行う。

²GroundBIRD のビーム開口は D = 220 mm であり、波長を λ とするとビーム幅は FWHM ~ $\frac{1.2\lambda}{D}$ となる [38] ため、220 GHz の方がビーム幅は細くなる。また、これらのビーム幅は大角度スケール ($\geq 10^{\circ}$) での観測 には十分な角度分解能である。

- 1. 天候等が観測に十分適しているか確認
- 2. 問題がなければドームを開き、望遠鏡の回転を開始
- 3. 検出器のデータ取得を開始し、観測状況をモニター

望遠鏡をダストや雨、直射日光から守るために観測時間以外はドームを閉めている。観測開 始前には天候状況 (PWV、湿度、風速等)を確認し、観測するか否かを判断する。また、日 光が望遠鏡の視野に入る日中や、冷却に使用する He の再凝縮にかかる時間以外は基本的に 観測を継続する。そのため、観測シフトを日本時間と現地時間で分けることで1日を通して 観測を続けている。また、Slack アプリケーションを導入し、アプリ内で対話的に観測状況 を把握できるようになっている (図 2.10)。

図 2.10: Slack アプリケーションを用いたモニター。Web カメラの映像から観測状況を確認 できる。他にも観測中の検出器データのチェックや、サウンドモニターによる異音検知な ど、様々なチェックをリモートで行うことが可能である。

検出器をフルアレイでインストールし、観測システムが整ったことで GroundBIRD 実験 としては観測を続けてデータを蓄積する段階にある。そのため、求められることは

- 安定して長期的な運用と観測を続けられる
- 質の良いデータを取得する

ことである。現在の望遠鏡システムではこれらの条件を満たす上では不十分な点も多く、観 測を続ける中でメンテナンスと改善が必要である。以降の第3章ではデータ取得の長期運用 のために仰角データ取得システムの改善を行い、第4章から第6章にかけては検出器アレイ としてのデータの質を向上させるために検出器のアライメント較正を行い、その改善を確認 した。

第3章 仰角データ取得システムの改善

CMB 観測においては、検出器の時系列データと望遠鏡の角度データを途切れることなく 連続的に取得し続けなければいけない。そのため、角度データ取得システムは安定的でかつ 操作性がよいものであることが求められる。本章では既存の望遠鏡の仰角データ取得システ ムを改善し、その動作確認を行なった。

3.1 望遠鏡仰角データ取得システムの改善

3.1.1 角度情報データ取得の概要

はじめに、GroundBIRD 全体でのデータ取得システムの概要を述べる。CMB 観測におい ては検出器の信号を時系列データ (以下、TOD と略す) として取得する。最終的なマップ作 成のためには、TOD と同期して望遠鏡の視線情報 (角度データ) を取得することが求められ る。GroundBIRD では望遠鏡の仰角方向と方位角方向で2つの角度データを取得している。 連続回転する回転台の上部と下部は回転継手 [24] によって電気的に接続されている (図 3.1)。

図 3.1: GroundBIRD の検出器データと角度データ取得系の概要。回転する回転台の上下での信号同期は "回転継手" が担っている。

仰角方向の角度データは、望遠鏡の側面に取り付けられたロータリーエンコーダー (Canon, R-1SL [26])を使用し、Digilent 製の FPGA ボード Zybo Z7-20 ([27]、以下では単に Zybo と 記す)で読み出す (図 3.2)。FPGA とは Field Programmable Gate Array の略で、様々な論 理回路がチップに搭載されており、使用者が配線を自由に組み合わせて論理回路を作ること ができるデバイスである。FPGA では特定の演算を行う回路を作成できるため、高速処理 を可能にする。また並列処理も得意である。エンコーダーは4秒角 (1.1 · 10⁻³ °) もの高い 角度分解能を持つ。

(a) ロータリーエンコーダー (Canon, R-1SL [26])

(b) FPGA ボード Zybo Z7-20 [27]

図 3.2: 仰角方向の角度データ読み出し

方位角方向の角度データは、回転台下部に取り付けられたロータリーエンコーダー (HEI-DENHAIN, ERM220 [28]) を使用し、Xilinx 製の FPGA ボード Spartan3E [29] で読み出 す (図 3.3)。エンコーダー自体の角度分解能は 2.6 分角 (4.4 · 10⁻² °) である。さらに、平 滑化フィルターを用いた方位角データの補完を行うことで、角度分解能を 5.7 · 10⁻² 分角 (9.5 · 10⁻⁴°) に向上させている [30]。

(a) ロータリーエンコーダー (HEIDENHAIN, (b) FPGA ボード Spartan3E [29] ERM220 [28])

図 3.3: 方位角方向の角度データ読み出し

次に検出器のデータと方位角データに求められる同期精度を見積もる。時刻同期の精度を Δt とする。GroundBIRDの方位角方向の回転速度は最大で 120°/s になる。方位角方向で の角度分解能 $\Delta \phi$ は

$$\Delta \phi = 120^{\circ} / \mathrm{s} \cdot \Delta t \tag{3.1}$$

になる。時刻同期による角度の決定精度がエンコーダーの角度分解能よりも十分小さいこと を課す。時刻同期による角度決定精度をデータ補完によって向上したエンコーダーの角度分 解能である 9.5 · 10⁻⁴ ° の1% 未満と要求すると、Δ*t* の上限は

$$\Delta t < \frac{9.5 \cdot 10^{-4} \circ \cdot 0.01}{120 \circ / \mathrm{s}} = 79 \,\mathrm{ns} \tag{3.2}$$

となる。この正確な時刻同期が必要になるため、仰角と方位角の角度データ読み出しで共に FPGA ボードを使用している。先行研究 [30] により、時刻同期精度を 55 ns に抑え、要求を 満たす精度を実現している。

図 3.4: GroundBIRD の同期信号の流れ。回転台下部の方位角 DAQ ボードで生成された同 期信号が回転継手を介して回転台上部の MKID の DAQ ボードに送信される。その際、仰 角 DAQ ボードで同期信号を分配している。

GroundBIRD での同期信号の流れを説明する (図 3.4)。望遠鏡が連続回転するため、回転 台の上下の電気的な接続に同軸ケーブルのような通常の信号線は使用できない。そのため、 回転継手を介して回転台上下での信号を共有している。また、回転台の上下のデータ取得系 でレートの遅い "同期信号"を回転継手を介して共有することで時刻の同期を図っている。

同期信号によるデータ同期を次のステップで行なっている。

- 1. 回転台下部の方位角 DAQ ボードから1秒に1回、基準となる同期信号を出力する。
- 2. 回転継手を介して回転台上部に届いた同期信号を仰角 DAQ ボードに入力する。
- 3. 回転台下部では、同期信号を出力した時刻情報を方位角のエンコーダーデータと共に 保存する。
- 4. 仰角 DAQ ボード同期信号を分配し、検出器の DAQ ボードに送る。
- 5. 同期信号の到達した時刻情報を検出器の TOD と共に保存する。
- 6. 2種類の TOD の時刻情報を用いて、各時刻での検出器信号と角度データの同期を行う。

3.1.2 仰角データ取得における問題点

本論文の研究対象である仰角のデータ取得に関して詳細に説明する。仰角のデータ取得系 が担う役割は以下の2つである。

- 仰角の角度データを取得する
- 同期信号の分配

図 3.5: 仰角データ取得システムの全体像。信号処理のほぼ全てを Zybo [27] が担う。信号 の電圧変換、Zybo、電源からなるコンパクトなデータ取得系は1つのボックス内に配置さ れている。

データ取得系は非常にコンパクトであり (図 3.5)、信号の処理は Zybo 内に搭載されてい る "Zynq [31]" と呼ばれるチップで行っている。Zynq は Xilinx が開発した、CPU、FPGA などが 1 チップに統合された System on Chip (SoC) の 1 つである。Zynq は CPU を搭載す る Processing System (PS) 部分と、FPGA を搭載する Programmable Logic (PL) 部分に大 きく分けられ、FPGA が得意とする並列処理や高速処理と、CPU が得意とする複雑な処理 とで役割を分担できるため、効率の良い処理が可能となる。先行研究で FPGA に搭載する ファームウェア¹の開発がなされており、実装されている。

FPGA 上でのファームウェアの設計には Vivado[25] という Xilinx 製の開発ソフトを用い る。様々な IP コア (機能ごとの回路のまとまり) を IP インテグレータという GUI 上で配線 し、全体のファームウェアを構成する。IP は自作の IP と、Xilinx 製の IP を組み合わせて 使用している。

Zynq 内での処理の模式図を図 3.6 に示す。仰角エンコーダーはインクリメンタル方式を 採用しており、エンコーダーからの出力信号は A 相、B 相、Z 相の3 相からなる。エンコー ダーからの出力パルス数で角度の変化量、A 相と B 相のパルスの立ち上がり順で回転方向が 分かる仕様になっている。また、Z 相信号は1 回転で1 度出力され、回転の原点として使用さ れる。3 相の信号は Zynq 内のデコーダー部分で角度情報として翻訳され、1 kSPS で "FIFO [32]" に充填される。FIFO とは first-in first-out メモリのことで、データを格納し、取り出

¹FPGA に組み込む機能を本論文ではファームウェアと呼ぶことにする。

図 3.6: Zynq 内での信号処理。エンコーダーからの角度データ処理と方位角 DAQ ボードからの同期信号の分配を1チップ内で行う。

す際は、格納した順番通りに先に格納したデータから取り出す構成になっている。FIFO に 格納されたデータは CPU のソフトウェアで読み出し、TCP 通信で PC へと送信される。ま た、デコーダー部分では測定開始時からの経過時間として 1 kHz でインクリメントする "タ イムスタンプ"を生成しており、エンコーダーのデータとタイムスタンプを合わせたデータ パケットを通信で送信している。

同期信号の通信方式は UART²を使用している。仰角データと同期信号の時刻関係を図 3.7 に示す。Zvng 内では 50 MHz でクロックカウンターが動いており、タイムスタンプをイン

図 3.7: 仰角データと同期信号のタイミング情報。

²UART 通信では、送信側と受信側で通信速度を決めておき、1 byte (8 bits) ずつ情報のやり取りを行う。 1 byte のまとまりでは、"start bit (1 bit)"、"data (8 bits)"、"parity bit (1 bit、情報の誤検知に使用)"、"stop bit (1 bit)" の 4 つで構成され、全 11 bits になる。

クリメントすると0にリセットされる。同期信号が1秒に1回方位角 DAQ から送られるが、 Zynq 側では同期信号パルスの先頭時刻を取得し、仰角データパケットの送信時刻との差を 記録する。この情報を同期パケットとして PC へと送信する。MKID の DAQ ボードでも同 様に同期信号の到達時刻との時間差を記録し、これらの情報から MKID データと角度デー タのサンプリング時刻のずれを補正し、データの同期を行う。また、MKID の DAQ は複数 のボードを使用するため、Zybo で同期信号を分配させ、送信している。

図 3.8: Zybo には SD カードスロットが付いている。システムを起動するために必要なファ イルを SD カードに書き込み、スロットに差し込んで電源を入れることで稼働が開始する。 ジャンパーピンは SD に設定しておく。

以上の構成で仰角 DAQ システムを稼働させていた (図 3.8) が、観測の長期運用を考えた 際に、問題点を抱えていた。Zynq でのデータ処理と PC への通信を OS のないベアメタル³ 環境でソフトウェアを動かすことで行っている。このことにより、システム全体が硬直的に なっており、その扱いにおいて柔軟性がない。柔軟性がないことで起きる問題として以下の ものが挙げられる。

- データ取得が異常終了した際のメンテナンスが難しい
- OS が介さない通信による信頼性の低下
- ソフトウェア、FPGA 面での改良が難しい

最も大きな問題はメンテナンス性である。観測の有無に問わず、望遠鏡の角度データは常 に取得し続けており、安定した仰角データ取得が必要不可欠である。しかし、仰角エンコー ダーから PC までのデータの流れが途切れてしまうことがある。それは、通信のエラーや停 電等による電源系統の不具合など様々な要因からくるもので、長期運用をする上ではある程 度避けられないものである。その際、エンコーダーと Zybo 間の通信が切れて、Zynq 内で のエンコーダー情報が失われる。加えて、エンコーダーの原点情報も失われるため、通信を 再開させた際に読み出した角度の値にオフセット値が乗ってしまう。Zynq 内で原点情報を

³本来は「剥き出しの金属」という意味だが、転じて OS がインストールされていないコンピュータのことを 指す。

記憶させるには望遠鏡の仰角を動かし、エンコーダーの Z 相信号を取得して値をリセットす ることが必要であり、手間のかかる工程になる。この一連のメンテナンスをまとめると以下 のステップに分けられる。

1. Zyboを再起動させて再度ソフトウェアを動かす

2. 望遠鏡の仰角を動かして Z 相信号を入力し、原点情報を記憶

3. 仰角を 70° まで動かして固定

この中で、Zyboの再起動と仰角を動かす際にケーブルに変な張力がかかっていないかの 目視に現地での作業を要する。リモートでの望遠鏡運用を進める上で、少しでも現地で必要 な作業を減らし、リモートでメンテナンスができることが望まれる。

また、ZyboとPCとのTCP 通信を行うために、ベアメタル環境ではTCP/IPのプロト コルスタックを独自で実装しなければいけない。今回は"lwIP (lightweight IP)"と呼ばれ るオープンソースのTCP/IP プロトコルスタックを使用してTCP 通信を実装している。そ のため、通信に関わるソフトウェアが複雑化する上、OS が通信を取り仕切るよりも信頼性 に欠ける。

加えて、システムに組み込まれたソフトウェアや FPGA のファームウェアは固定化され ており、今後の運用で変更点が生じた時に、SD カードに新しいファイルシステムを書き込 んで全面的にシステム更新しなければならず、労力を要する。システムのカスタマイズ性を 上げ、変更を容易にできるようになれば、運用に関わるコストを削減することができる。

3.1.3 PYNQ を用いた新システムの導入

上に述べた問題を改善するために、本研究では既存の Zynq システムに OS を搭載し、ソ フトウェアを OS 上で動かすことでシステム全体の柔軟性向上を試みた。これにより上記の 問題点に対して

- データ取得が異常終了した際のメンテナンスをリモート主体で行える
- OS が通信を介すことで信頼性が向上
- ソフトウェア、FPGA 面での改良をシステムを起動したまま行える

という改善が期待できる。一方でベアメタル環境に比べて OS をインストールすることで 実行時間と使用メモリが増えるが、FIFO へのデータ充填と FIFO からの読み出しはともに 1 kSPS であり、FIFO の容量も十分であるため、性能に問題は出ない。Zynq に搭載する OS は基本的に linux ベースであるが、今回は "PYNQ [33]" と呼ばれる Ubuntu⁴、Jupyter およ び Python をベースとしたフレームワークを搭載した。PYNQ を採用した理由として

ソフトウェアをPYNQ上のPythonスクリプトで動かせるため、通信スクリプトを簡潔に記述できる

⁴今回は Ubuntu 22.04 がベースになっている

- システム起動に必要なブートイメージファイルの作成が容易
- "Overlay"と呼ばれる機能を使用することで FPGA のファームウェアを Python で容易に変更できる

が挙げられる。

3.1.4 PYNQ イメージファイルの作成

PYNQ のイメージファイルを作成するにあたって、基本的な手順は [34] を参考にし、作 業環境は Docker 上の Ubuntu 20.04 で構築した。その際に使用した開発ツールとバージョ ンを表 3.1 にまとめる

表 3.1: PYNQ イメージ作成で使用したツールとバージョン

ツール	バージョン
Vivado	2022.1
PYNQ linux イメージ	3.0.1
PetaLinux	2022.1

PetaLinux とは Xilinx が提供する、Zynq をはじめとする SoC 用の linux システムをビルド するためのツールである。この環境のもとで以下のステップで PYNQ イメージを作成した。

1. ベースとなる FPGA ファームウェアの作成

FPGA ファームウェアは Overlay によって Zybo 起動時に変更できるため、この時点 では最も単純な回路を Vivado で準備してやれば良い。それをもとに Vivado 上でコン パイルをし、生成された 4 つの回路情報を持つファイル (.xsa ファイル、.bit ファイ ル、.hwh ファイル、.tcl ファイル) を取得する。

2. Zybo 用のスペックファイルの作成

スペックファイルは Zybo のスペック情報を.spec ファイルとして作成する。その後、 作成した全ファイルをビルド用のディレクトリに置く。

3. ビルド

最後に make を実行してビルドを行い、PYNQ イメージファイル (.img ファイル) を 生成して完了する。

4. イメージファイルの書き込みと PYNQ 起動

作成したイメージファイルを SD カードに dd コマンド等で書き込み、Zybo の SD カー ドスロットに差し込むことで PYNQ が起動する。起動後に、PYNQ のファイルシス テム内に図 3.6 で示したファームウェアのファイルをコピーして置いておく。こうす ることで、再起動時に Overlay スクリプトを走らせて図 3.6 で示したファームウェア で FPGA の回路を上書きするように設定できる。Overlay によって本来の回路情報が PYNQ 上で再現される。 Overlay を用いて FPGA のファームウェアを変更する仕組みを図 3.9 に示す。

図 3.9: PYNQ から FPGA のファームウェアを変更する模式図。Vivado で設計した新しい 回路ファイルを Overlay クラスに読み込ませることで容易に変更ができる。

Overlay に必要なファイルは Vivado でコンパイルをして生成される.bit ファイルと.hwh ファイルの 2 つである。これらは同じディレクトリに置いておく。Python で Overlay ク ラスをインポートし、.bit ファイルを読み込ませることで Overlay は実行される。その際、 Overlay クラスは同じディレクトリにある.hwh ファイルも読み込んでくれる。図で示した ように Overlay スクリプトはたった 2 行で書くことができ、ファームウェアの変更は非常に 容易に実行できる。

最後に、Zynq 内で動かすスクリプトを PYNQ 用に Python で再構築した。

3.2 望遠鏡への実装

3.2.1 新データ取得システムのインストール

新しく導入した仰角データ取得システムを、自分の手元でできる動作確認をした後に実際 の望遠鏡に実装、という流れでインストールした。

(b) セットアップの模式図

図 3.10: 新システムでの動作確認

動作確認を、図 3.10 に示したセットアップで行なった。ロータリーエンコーダーとは接続 せず、同期信号も送らない単純なものである。図 3.10 の左図にあるように、Zybo の電源を 入れ PYNQ が起動するとボード右側の "DONE" ランプが緑色に点灯する。自分の Mac PC をデータ取得 PC として、Micro-USB で Zybo への電源供給を行い、データ通信は Ethernet ケーブルで行った。PC 上でデータ読み出しのスクリプトを動かして、Zynq の挙動に問題 がないかをチェックした。期待される挙動は

- Zynq が正しく機能し、PC 側でデータを読み出せる
- エンコーダーデータは0として取得されている
- タイムスタンプは時間とともに加算されている

の3点である。データの通信が始まると Zybo の Ethernet コネクタ付近のランプが点滅し、 PC 側でのデータ読み出しが正常に動くことを確認した。PC に保存したデータファイルを チェックし、期待されるデータを取得できていることも確認した。取得したエンコーダー データとタイムスタンプデータのプロットを図 3.11 に示す。プロットの横軸はデータのサ ンプリングナンバー (1 kSPS) を表す。

図 3.11: 動作確認で取得したデータ

以上の結果から、期待される3点の挙動を確認することができたため、新システムに問題 はないと判断した。

次に実際の望遠鏡へのインストールを行なった。現地での作業は非常にシンプルで、インストールは SD カードを新システムのものに交換するだけで完了する。ボックス内で SD カードを動作確認で問題のなかった新システムのものに交換し、Zybo の電源を入れ、その後 PYNQ の起動を確認した (図 3.12)。

3.2.2 同期信号取得の確認

インストール後に実際の望遠鏡システムでデータを読み出せるかの動作確認を行なった。 まず、方位角 DAQ からの同期信号を正しく取得して仰角データとして保存できているのか を確認した。結果を図 3.13 に示す。同期信号は1秒に1回出力されるので、仰角データで は同期信号の番号 (図では "Sync.id" と記す) が1秒で1ずつ増加する形で見えるはずであ り、その結果を確認することができた。

(a) 現地でのインストール作業

(b) PYNQ の起動

図 3.12: 新システムのインストール

3.2.3 同期信号の分配と仰角データ取得の確認

次に、取得した同期信号を MKID DAQ に分配できていることと仰角データを正しく読み 出せているかを確認した。一度失ったエンコーダーの原点情報を再度取得するためにも、望 遠鏡の仰角を 90°と 70°の間で何度か動かして、さらに並行して MKID のデータも取得し た。それらのデータを使って確認を行なった。確認の手順は以下である。

1. テスト用として取った MKID データを読み出す

2. 正しく動作していれば MKID データに同期した時間情報と仰角データを取得できる

3. その仰角データが正しい値を読み出せているかを確認

結果を図 3.14 に示す。MKID データから同期情報を取得でき、読み出した仰角データが 90°と 70°の間で正しく動いていることも確認した。

以上から新システムが実際の望遠鏡で問題なく動作することを確認した。その後、動作が 安定して長期間行われるかをチェックした。

3.3 メンテナンスと安定運用

3.3.1 動作の不安定性

インストール後、動作の安定性に問題があり、データ取得が途切れることが何度か発生した。途切れる原因は Zybo の電源が一時的 (データ取得開始後数時間) に落ちることによるものであった。インストール時の動作確認で問題がなかったことから、Zynq 内でのデータ処理と通信自体に問題がある可能性はないと考えた。他に原因となりうるものは

- OS が搭載されたことで Zybo の消費電力が上がり、一時的に電源供給量が足りなく なる
- Zynq での消費電力も上がり、Zynq の温度が許容値よりも高くなってしまう

図 3.13: 仰角データからみた同期信号。方位角 DAQ からの同期信号を取得するごとに "Sync.id" が1ずつ加算される。

図 3.14: 読み出した仰角データ。横軸 (2024/3/13 の UTC 時間) の時間情報が実際の作業 時間とリンクしており、MKID データで同期信号が正しく取得できていることを反映して いる。

• そもそも Zybo のボード自体がどこかで劣化している

が挙げられる。3つ目に関しては、経年劣化や落雷による停電時にダメージを受けたことな どが考えられるが、リモートからボード自体の性能を評価することが難しいため、まずは1 つ目と2つ目の要因について調査した。結果として、1つ目の電源供給が原因である可能性 が高いことが分かった。

3.3.2 電源供給方法の見直し

Zybo への電源供給は図 3.12 の右図にあるように、Micro-USB 端子から行なっていた。 Zybo への電源供給方法は他にバレルジャックから (図 3.15) がある。

図 3.15: Zybo への電源供給方法。Micro-USB からとバレルジャックからの2通りがある。

この2種類の供給方法について比較すると表 3.2 のようになる。バレルジャックについて は標準的な AC アダプタの規格を参照する。

供給方法	定格電圧	定格電流	接続の安定性
Micro-USB	$5\mathrm{V}$	最大 0.5 A	やや不安定
バレルジャック	$5\mathrm{V}$	最大4A	安定

表 3.2: 各電源供給方法での定格値

これより、供給できる電力量や接続の安定性に関してバレルジャックの方が優れている ことが分かる。特に定格電流の値が大きく異なっており、従来のシステムでは Micro-USB からの給電で間に合っていたが、OS が搭載されたことで給電が足りなくなった可能性が考 えられる。スペックシート [35] でもバレルジャックによる電源供給が推奨されている (参考 として、電力を大量に消費する処理を Zynq に搭載した場合は 12.5 W 以上の出力が必要)。 そのため、Zybo への電源供給方法をバレルジャックに変更して十分な電力を供給すること で動作の安定性を図るのが良いと考えた。変更するにあたって新システムを稼働した際の Zybo の動作安定性を給電条件を変えてテストした。行なったテストの様子を図 3.16 に、給 電条件と結果を表 3.3 に示す。

(c) テスト 3

(b) テスト 2

(d) テスト 4

図 3.16: Zybo の安定稼働テスト

表	3.3:	安定稼働	テス	\mathbf{F}	の給電条件	=と	結果
---	------	------	----	--------------	-------	----	----

		動作の結果		
テスト1	従来と同じ USB	安定		
テスト2	バレルジャック (5 V、4 A の AC アダプタ)	安定		
テスト3	直流電源 (定電圧モード 5.0 V)	安定		
テスト4	直流電源 (定電圧モード 4.5 V)	不安定 (数時間で Zybo の電源が落ちる)		

基本的なセットアップは図 3.10 と同じで給電の条件のみが異なっている。テスト1では従 来と同じで Micro-USB からの給電でデータ取得を動かし、数日にわたって動作の安定性を 確認し、少なくとも3日以上は Zybo の電源が落ちることなく稼働する結果を得た。これは 現地で起きている問題と矛盾する結果となった。テスト2ではバレルジャックから給電し、 こちらも安定した稼働をすることを確認した。稼働が不安定である原因が特定できなかった ため、条件を変え、さらに検証を行なった。

テスト3と4では直流電源 (松定プレシジョン製)を使用し、与える電圧値を変えて稼働 の安定性を確認した。USBの定格電圧が5Vであることと、Zyboで推奨されている供給電 圧が4.5V~5.5Vであることから5.0Vと4.5Vを設定した。電源を定電圧モードにするこ とで電流値はZyboでデータ取得システムを動かすために必要な電流量になる。テスト3で は 5.0 V で行い、安定した稼働結果と電流値 ~ 0.36 A を得た。テスト4 では 4.5 V で行い、 データ取得開始後数時間で Zybo の電源が落ちる事象が複数回起き、現地での問題と同様の 挙動を確認した。また、稼働中の電流値は ~ 0.39 A であった。これより、データ取得シス テムの稼働に必要な電力量は比較的少ないことが分かるが、実際はエンコーダーデータと同 期信号を取得し処理しているため、消費電力がこれよりも少なからず増えると考えれば、シ ステムの稼働には Micro-USB の定格電流値の 0.5 A に近い電流量が必要になる。

テストの結果を踏まえると、Zyboへの供給電圧が定格通り5.0Vであればシステム稼働に 必要な電流量がUSBの定格電流値を下回り十分な電力を供給できるが、電圧値のふらつき で5.0Vより小さくなると、稼働に必要な電力量を保持するために電流量が増加し、定格電 流値に近づくためにUSBでの給電が一時的に不足して Zyboの電源が落ちる可能性がある と言える⁵。そのため、性能面に加えて、実際の問題への対処という意味でもバレルジャッ クに変更することの妥当性を検証することができた。

Zybo への電源供給を Micro-USB からバレルジャックに変更し (図 3.17)、システムを再 起動させた。その後、動作が安定することを確認した。再起動して以降、半年以上の安定動 作を続けている。

(a) 配線の変更

(b) PYNQ の再起動

図 3.17: 電源供給方法の変更

3.3.3 Zynq 温度のモニター

2つ目の要因についても調査し、問題がないことを確認した。Zyboの Zynq 部分にはヒートシンクが取り付けられており、ある程度の発熱は抑えられるはずだが、消費電力が高いと発熱量が増えて Zynq の動作温度の上限 (~ 85°C)を超えることは起きうる。しかし、3.3.2節で見たように新システムの消費電力が大きくなく、稼働中にヒートシンクを手で触っても熱くないため上限を超えるほどの発熱をしていることはまずない。そのことを Zynq 内の温度モニター機能を用いて確かめた。Zynq には "XADC (Xilinx Analog to Digital Converter) [36]"と呼ばれる ADC が内蔵されており、供給電圧と温度のモニタリング機能を有している。電圧と温度の値は OS システムの [/sys/bus/iio/devices/iio:devices0] ディレクトリに出力される。特に温度情報は

in_temp0_offset

⁵Zynq 内蔵の "XADC" で Zynq への供給電圧をモニターできるが、Zybo 全体への供給電圧をモニターで きるわけではないため、実際のデータ取得システムに供給される電圧、電流値を正確に知る手法は確立できな かった。

- in_temp0_raw
- in_temp0_scale

の3つの値で与えられ、Zynq 温度は

 $T_{Zvng}(^{\circ}C) = (in_temp0_raw + in_temp0_offset) \cdot in_temp0_scale/1000$ (3.3)

で求められる。定期的に Zynq の温度を読み出し、値を保存することで温度を確認できるようにした。読み出した温度のプロットを図 3.18 に示す。気温の影響もあるため Zynq 温度は夏季になると全体的に高くなるが、それでも動作温度の上限である 85°C よりも十分低い 温度で動作していることが分かる。

図 3.18: Zynq の温度モニター。2024/08 の 6 日分のデータをピックアップした。1 日の中 でも気温の影響を受けて Zynq の温度も変動する。そのため、夏季の温度は冬季よりも全体 的に高くなる。

今後は新しく導入したデータ取得システムの動作状況のモニターを継続して、安定的な運 用とメンテナンスを続けていく。

第4章 焦点面検出器アライメントが抱える課 題とその定量化

仰角のデータ取得が安定になったことで、次に取り組むべき課題が明らかになった。Ground-BIRD 実験での偏光測定のためには、検出器間での信号の差分を取ることが重要であり、そ れに伴って望遠鏡のスキャンに対して最適な検出器のアライメントが求められる。この章 では焦点面検出器アライメントが抱える課題についての詳細を述べ、課題の定量的な評価を 行った。

4.1 検出器アライメントの問題点

4.1.1 スキャン軸に対する傾きと差分解析

まず、GroundBIRD での解析手法の1つである差分解析と検出器アライメントの関係に ついて述べる。図 2.9b で示したように、焦点面検出器は異なる偏光方向に感度を持った検 出器が交互に配置されている。これらの検出器が検出する信号は空のある点からの放射が望 遠鏡内の光学系を経て焦点面へと届いたものである。つまり、焦点面での検出器の配置を空 へと射影した時にどう配置されているかが重要になる。各検出器は空のある点を見ており、 望遠鏡の方位角回転に伴って同じ仰角の空を回転しながら観測する (図 4.1)。検出器で観測

図 4.1: 検出器が空の領域をスキャンする概要図。ある仰角を高速回転しながらスキャン する。

する信号は大きく CMB の偏光信号とノイズに分けられる。さらにノイズの中でも寄与が大

きい成分に大気放射に由来するノイズがある。このノイズは刻一刻と変動する上に空の領域 によっても異なっている無偏光信号であるため、高速回転によるスキャンで異なる検出器が 同じ空の領域を観測することで抑制できる。具体的には、異なる偏光方向に感度のある検出 器が同じ仰角の空をスキャンする時、もう一方の検出器は片方の検出器が観測した空の領域 をわずかな時間差で観測することができる。つまり、スキャンの間に大気の情報は変動せず 観測される大気由来の無偏光ノイズも変動しないことになる。そのため、検出器間で信号の 差分をとることで、大気ノイズは共通していると考えれば取り除くことができ、偏光成分の みを残すことができる。しかし、検出器の配置がずれていて検出器間でスキャンする空の領 域が異なる場合、大気の情報も異なり、差分をとっても大気ノイズを取り除くことができな い (図 4.2)。

図 4.2: 空での理想的な検出器の配置とずれている場合の配置との比較。スキャン軸 (方位 角軸) に沿って検出器が並んでいないと観測する大気が検出器ごとに異なる。

以上から空での理想的な検出器の配置は "複数の検出器がスキャン軸に沿って並んでいる" ことである。

しかし、観測データから理想的な検出器の配置からずれていることが示唆されていた。ま た、そのずれはスキャン軸に対して無視できないほどに有意な角度で傾いているものだと考 えられていたが十分な検証と較正 (実際に何度傾いているのか、傾きがあることでどれ程大 気ノイズの影響が残ってしまうのか、など)がされていなかった。検出器アライメントの問 題を改善し、GroundBIRD が持つ観測性能を最大限に引き出すことは質の良いデータを取 得するためには不可欠である。

4.1.2 要求される理想的なアライメント

GroundBIRD における理想的な検出器の配置について詳細を見ていく。焦点面検出器は 図 2.9a のように7つの検出器アレイが平面的に取り付けられているが、この検出器が観測す る領域は平面のまま空に射影される訳ではない。観測する空の点は天球面上に張り付いた点 と考えられるため、球面として射影される。焦点面検出器が平面を見るときと空を見る時で の理想的な配置の違いを図 4.3 に示す。実際には球面から来る歪みの影響を受けた配置とし て空を観測することになり、望遠鏡の視線中心 (220 GHz アレイ) ではほぼ平面だが、中心か ら離れた検出器は歪みの影響が出る。歪みを考慮した上で複数の検出器をスキャン軸に沿っ て並べることは焦点面の設計上難しい。また、高周波になるほど大気放射の寄与が大きくな る [37] ことから、本論文では歪みの影響が少なく、大気放射の寄与も大きい中心の 220 GHz アレイに対して配置がスキャン軸に沿って並んでいること、中心以外の 145 GHz アレイに 対して配置が仰角軸に対称であることを理想的なアライメントとする。

図 4.3: 平面と空 (天球面) での理想的な検出器配置の違い。

4.1.3 視線軸方向まわりの回転による較正

スキャン軸に対して傾いた焦点面検出器を理想とする配置にするためには、検出器の視線 を回転させてスキャン軸に並べれば良いことになる。また、焦点面検出器は望遠鏡内部で固 定されているため望遠鏡全体の視線を回転することに対応する。つまり、望遠鏡のビーム中 心を望遠鏡の視線方向とし、視線方向軸周りに適当な角度回転させることで各検出器の視線 を回転させる(図 4.4)。

そのため、理想的なアライメントにするための回転角を見積もる必要がある。回転角を求 めるには各検出器の見ている点を知る必要があり、天体の観測データを解析することで算出 できる (天体の運動が分かっているので検出器データと角度データから各検出器の視線情報 を求められる)。

4.2 月を用いた回転角の算出

4.2.1 月を用いた理由

GroundBIRD で観測できる天体として月や惑星 (木星、金星) が挙げられる。しかし、月 と惑星ではデータの性質は大きく異なり、それぞれ観測上の長所と短所が存在する。月デー タと惑星データの特徴を表 4.1 に示す。検出器の視線情報を得るには点源として扱え、正確

図 4.4: 望遠鏡の視線方向軸と軸周りの回転。検出器の見ている点 (視線) も回転する。

表 4.1: 月データと惑星データの比較 [22]

	月	惑星
長所	S/N 比が高い	点源として扱える
	(1 度の観測で十分な信号を得られる)	(角直径がビーム幅に対して十分小さい)
短所	点源として扱えない	S/N 比が小さい
	(角直径がビーム幅に対して無視できない)	(データを蓄積しないとノイズに埋もれる)

に点として求められる惑星が適しているが、5.2.2節で見るように点源で最も明るい木星の観 測データでもノイズの影響をかなり受けてしまう。そのため、データを蓄積するか、PWV や湿度が十分低く観測条件が整った観測データを使用する必要がある。一方、月は高い S/N 比により1度の観測データで十分な信号を得られ、ゲイン変動の効果が加わることなく解析 ができる。点源として扱えないことによる視線の不定性¹や月齢による見え方の誤差²はある ものの、高い S/N 比がそれをカバーできると考えたため、月のデータを選択した。

4.2.2 検出器の TOD

GroundBIRD における観測データは 2.1.2 節で述べた超伝導検出器 MKID の共振状態の 変化を入射信号の大きさとして 1 kSPS で取得する TOD のことである。共振状態の変化と はすなわち共振周波数の変化であるが、これを読み出し RF 信号の透過率の変化として測定 する。透過率は散乱行列要素の S_{21} で表す。MKID の S_{21} は読み出し周波数 f に対して、共 振の鋭さを表す Q_r, Q_c と共振周波数 f_r を用いて

$$S_{21} = 1 - \frac{Q_r/Q_c}{1 + 2iQ_r \frac{\delta f}{f_r}} \ (\delta f = f - f_r)$$
(4.2)

と表せる。この式から *f* を消去すると

$$|S_{21} - x_c| = \frac{Q_r}{2Q_c} \left(x_c = 1 - \frac{Q_r}{2Q_c} \right)$$
(4.3)

を得られ [40]、*S*₂₁ の軌跡が円状になることが分かる。この円は"共振円"と呼ばれる。共振円と *S*₂₁ の例を図 4.5 に示す。共振周波数の周りで透過率が鋭いピークを持つことが分か

図 4.5: 共振円と共振周波数付近での透過率。[39] より引用。

る。共振円を動く S₂₁ は振幅 A と位相 θ によって特徴づけられる (図 4.6) が、これらの値は ______

$$\overline{T_{\text{MOON}}} = 225 \left\{ 1 + \frac{0.77}{\sqrt{1 + 2\delta + 2\delta^2}} \cos\left(\phi - \arctan\frac{\delta}{1 + \delta}\right) \right\}$$
(4.1)

と経験的に表せる [38]。

¹月の角直径はおよそ 30′ である。

²月齢によって月の輝度温度も大きく変動し、月齢を ϕ [deg]、波長 λ に対して $\delta = 0.3 \cdot \lambda$ [mm] とすると、 輝度温度 $\overline{T_{\text{MOON}}}$ は

図 4.6: 共振円の振幅 A と位相 θ_{\circ}

共振周波数の変化に対して敏感であるため、振幅の変化 (δA) と位相の変化 ($\delta \theta$) によって入 射信号の大きさを読み出せる。入射信号によって振幅と位相が変化する例を図 4.7 に示す。

図 4.7: 共振周波数付近での S₂₁の振幅と位相の変化。[22] より引用。

実際の TOD 取得時には図 4.7 のように各 MKID で固定した共振周波数で測定を行う。そ のため、TOD 取得前に各 MKID の共振周波数を知る必要がある。また、共振周波数は観測 条件によって変動するため、一定の値をとらない。そのため、1 観測を1 時間で区切ってお り、1 観測ごとに TOD 取得前に共振周波数を求めている (その間も望遠鏡は連続的に稼働 している)。共振周波数を知るために

1. 周波数スイープ

2. フィッティング

の手順で測定をする。周波数スイープとは、読み出し用の RF 信号の周波数を少しずつ変え ながら測定をする手法である。測定量は RF の透過率で、スイープで測定されたデータを透 過率の関数でフィットすることで共振周波数を求める。フィット関数は S₂₁ に補正項を入れたもので

$$T_{21}(f) = a_0 \exp(-2\pi i f \tau_0) \left(1 - \frac{Q_r/Q_c e^{i\phi}}{1 + 2iQ_r(f - f_r)/f_r} \right)$$
(4.4)

で表される [39]。ここで、 a_0 , τ_0 は読み出し回路による振幅の減衰と位相のずれを表す。 $e^{i\phi}$ は C カップリングでのインピーダンスを補正する項である。このフィットで共振周波数 f_r と共振の鋭さを表す Q_r , Q_c を得られる。得られた f_r に RF 周波数を固定し、TOD を取得 する。TOD での測定量は T_{21} であり、補正項の効果を差し引くことで S_{21} としての振幅 Aと位相 θ を取得できる。本論文ではより応答性の高い位相を TOD として使用する。また、 非線形効果を補正したものを最終的に使用する位相 TOD とした。非線形効果の補正は位相 の応答 (θ_{res}) に対して以下の式 [22] を用いた。

$$\theta = 2\tan(\theta_{\rm res}/2) \tag{4.5}$$

最終的に使用する位相 TOD の例 (1 観測) を図 4.8 に示す。

図 4.8: 非線形効果への補正を行なった位相 TOD。本論文ではこの TOD を用いる。

4.2.3 必要な回転角

月の信号は大きく1 観測の TOD で鮮明なマップを得ることができる。月を観測した時 (2023/12/02、1 時間)の位相 TOD を図 4.9 に示す。月は空を動いているが、望遠鏡が仰角 を 70°に固定してスキャンする間に月が望遠鏡の視野を通り過ぎる時に観測できる。つま り、1 日の間に月が "昇る" 時と"沈む" 時とで 2 回の観測ができる。また、月の角直径は 30′ であり GroundBIRD のビーム幅 (145 GHz で 36′、220 GHz で 25′) に対して点源とはみな せない。そのため図 4.9 にあるように、月の端を観測する時と中心を観測する時では入射す る信号の大きさが異なり、中心で最も強い信号を観測する。

月の運動はよく知られており、Python の "astropy[41]" パッケージを使うことで各時間で の月の位置 (仰角、方位角) を求めることができる。その情報と望遠鏡角度情報とのずれ (オ

図 4.9: 月観測時の TOD。月の中心を観測した時にピークを取る。

フセット)を考慮することで TOD を月中心座標で表すことができ、月中心マップを構成す ることができる。220 GHz アレイの 1 観測から構成した各検出器の月中心マップを図 4.10 に示す。

図 4.10: 各 MKID の月中心マップ。座標中心 (月中心) で位相が高くなる。

次にこの月中心のマップから各検出器が見ている空(視線)の情報を取得する。月中心マッ プでは検出器を個別に見ていたが、検出器全体としての視線情報を得るには望遠鏡の視線中 心、つまり光軸を中心とした時にどの位置で月を観測したかを知る必要がある。そのため、 220 GHz アレイの中心にある検出器 (kid17 とラベルした)を光軸中心と考え、この光軸中心 に対する月のマップを構成した。構成したマップの中で位相が最大となる位置を月の中心を 見ていた位置として視線の代表点とする。220 GHz アレイの光軸中心マップと視線のプロッ トを図 4.11 に示す。ここで図 4.11a では "healpy[42]"の gnomview を使って球面のマップ を平面射影している。また、図 4.11b には検出器のラベルとして各点に番号を記した。この

図 4.11: 光軸中心マップから取得した検出器の視線

図から検出器の配置がスキャン軸に対して傾いていることが見て取れる。また、中心アレイ では仰角 70°でも球面による歪みが少なく平面的に見えている。

加えて中心以外の 145 GHz アレイも含めた検出器全体での光軸中心マップを見て傾きを 確認した。TOD は同時刻帯の月を観測した時のものを使用した。

光軸中心マップは図 4.11 と同じ計算で求めた (図 4.12)。歪みの効果を補正するために仰 角を 70°から 0°に天球面上で回転させた全検出器の視線を図 4.13 に示す。回転角を見積も るにあたってはスキャン軸に対する検出器の傾きを直線的に扱える方が考えやすい。そのた め、平面的に見た時の傾き角を計算し、較正のための回転角とする。

回転角の算出には歪みの効果が少ない中心の 220 GHz アレイのみを使用する。また、中 心アレイはスキャン軸に対して 5 列で検出器が並んでいて理想的には全ての列が同じ角度で 傾いていることになる。それを踏まえて以下の手順で回転角を求めた。

- 1. 複数日での月観測データ (220 GHz アレイ) から検出器の視線を求める
- 2. アレイ内で5列に並ぶ検出器のそれぞれの列で位置を直線フィット(データの性質が 良くなかった1列目は省略した)
- 3. フィットの傾きをその列での回転角としてヒストグラムに詰めて、ヒストグラムをガ ウシアンでフィット
- 4. ガウシアン中心を最終的な回転角とする

角度決定における信頼性を高めるために複数の観測データを使用した。表 4.2 に使用した 220 GHz アレイの月観測データをまとめる。各観測データで検出器の列ごとに行った回転角 の直線フィットを図 4.14 に示す。アレイの1列目について、データの性質が良くなく視線 の再構成に失敗した検出器が複数の観測で見られたため、使用しなかった。そのため1 観測

Azimuth [deg] (scan axis)

図 4.12: フルアレイの光軸中心マップ。検出器全体がスキャン軸に対して傾いていることが 見て取れる。また、左右の 145 GHz アレイでは一部の検出器で月のマップが重なることが あり、それらを除いて示している。

図 4.13: 座標回転により平面的に見た光軸中心の視線。各点の番号は検出器のラベルとして 記しており、中心の 220 GHz アレイの kid17 を光軸中心としている。

観測日 (UTC)	観測時間 [min]	月の昇降 (rise or set)
2023/06/15 9:04 - 10:04	60	rise
2023/12/02 3:06 - 4:06	60	rise
2023/12/02 6:09 - 7:09	60	set
2023/12/04 4:59 - 5:59	60	rise
2023/12/047:06 - 8:06	60	set
2023/12/27 2:12 - 3:12	60	set
2024/02/21 21:34 - 22:34	60	rise
2024/02/22 0:37 - 1:37	60	set
2024/07/01 6:48 - 7:48	60	rise
2024/07/02 7:59 - 8:59	60	rise

表 4.2: 回転角の決定に使用した月観測データ

図 4.14: 検出器の各列での直線フィット。全5列の内、1列目は除外した。

で2~5列目までの4列でそれぞれ直線の傾きから回転角を算出した。また、10 観測分の 月データについて同様の手順を踏んだため、合計で40の回転角データを求めた。この回転 角の中で明らかな外れ値があったため除外し、最終的に38の回転角データを得た。回転角 ヒストグラムのガウシアンフィットの結果を図4.15に示す。ガウシアンの中心 μ = 6.00°

図 4.15: 回転角データのガウシアンフィット。

と分散 $\sigma^2 = 0.17$ を得た。これより、最終的な回転角を 6.00° と決定した。

第5章 アライメント較正に向けた取り組みと 較正結果の確認

この章では、アライメント較正に向けた取り組みと実際に現地で実施した作業について述 べる。さらに、天体を用いた解析によってその較正結果の確認を行なった。

5.1 ジグの設計と現地インストール

5.1.1 回転する上でのジグの必要性

決定した回転角分だけ望遠鏡を視線方向軸の周りに回転させれば理想とする検出器配置に なると考えられるが、回転にあたって望遠鏡の機構上の問題点があった。GroundBIRDの 視線方向軸周りの回転機構の概略を図 5.1 に示す。望遠鏡クライオスタットが外側の支持部

図 5.1: GroundBIRD の視線方向軸周りの回転機構。固定穴の角度間隔に対して理想的なア ライメントにするための回転角が小さい。

によって支えられているとともに、歯車で視線方向軸周りに回転できるようになっている。 また、クライオスタットと支持部は固定穴にボルトを締めることで固定されている。しか し、この穴は円周上に等間隔で 24 箇所しか空けられていない設計になっていた。つまり、 15°ずつの回転でしか固定ができないようになっていた。そのため、必要な回転角で回転を した後に固定ができず、安全性が担保できないという点で問題だった。 この問題に対処するために、回転後に望遠鏡のクライオスタットと支持部を固定するため の機構が必要であり、本論文では固定用のジグを新しく導入することを考えた。

5.1.2 固定用ジグの作成

望遠鏡クライオスタットと支持部の固定は図 5.2(左) にあるように支持部に取り付けられ た固定用プレートとクライオスタット部の固定穴にボルトを通すことで固定している。視線 方向軸周りに望遠鏡を回転させると固定穴が移動する。そのため、固定用プレートと移動後 の固定穴を繋ぎ止めるジグを作成することを考案した。設計したジグの CAD 図を図 5.2(右) に示す。設計する上で考慮した点は

- 回転に伴う固定穴の移動距離を正しく見積もり、ジグの穴を適切に設計する
- 望遠鏡の高速回転に対して安全であるように強度の高い固定ができる

の2点である。望遠鏡全体の寸法と回転角を参照して計算を行い、穴を設計した。安全性の 面では最大20RPMの望遠鏡の高速回転によって固定が緩むことのないよう、固定プレート を囲み、回転機構とフィットするような固定強度の高いジグのデザインを考案した。このデ

図 5.2: (左) 望遠鏡クライオスタットと支持部を繋ぎ止める固定用プレート。(右) 設計した ジグの CAD 図。

ザインのもと、実際に作成したジグと望遠鏡内の設置位置を図 5.3 に示す。本来の固定穴が あった位置と移動した後の固定穴の位置にそれぞれボルトで締めるための穴が空いている。 また、回転角に対して柔軟な設計にはなっていないため、回転角とジグは1対1対応になっ ている¹。

¹回転角の見積もりをジグの設計時には 8.25°と試算していたため、その角度の回転ができるジグをインス トールした。検出器の視線を光軸中心座標から取得する際、中心の 220 GHz アレイの kid17 が光軸中心にくる ように仰角と方位角の角度オフセットを加えて座標変換する必要があるが、そのオフセットの値の取り方にず れがあり、計算結果もずれてしまったことが原因である。以降で述べる実装は 8.25°の回転に伴っている。つ まり、4.2.3 節で求めた理想とする回転角 6.00°より 2.25°余分に回転させた配置となっている。これは理想と

図 5.3: 作成したジグと望遠鏡支持部での設置位置。固定穴は対角線上に2箇所あるため、 それに合わせたジグも2個必要になる。

5.1.3 望遠鏡への実装

設計したジグを実際の望遠鏡に実装した (2024/08/29)。望遠鏡を視線方向軸の周りに回転させ、その後設計したジグで固定した。固定後のジグの様子を図 5.4 に示す。ジグは設計

図 5.4: 視線方向軸周りの回転後にジグで固定した望遠鏡支持部とクライオスタット。

通りに望遠鏡支持部の回転機構に対してフィットするように取り付けることができ、固定の 強度は十分である。固定後は安全性の確認のために、望遠鏡の方位角回転をさせて稼働に問 題がないかをモニターした。連続運転を行なっても異常がないことを確認し、観測を再開さ せた。

する最適な配置ではないが、従来に比べてスキャン軸により沿った配置に是正されていることになる。実装後 に取得した観測データも 8.25°回転した検出器配置でのデータになる。より正確な 6.00°回転用のジグも設計 ・製作しており、今後インストールを行う予定である。

5.2 天体を用いた較正結果の確認

5.2.1 月データによる確認

視線方向軸周りによる検出器配置の変化を 4.2.3 節と同様にして月の観測データから確認 した。使用した観測データを表 5.1 に示す。ここで、145 GHz アレイの 1 つは DAQ の不調

表 5.1: 光軸中心マップの構成に使用した月観測データ (回転後)

観測日 (UTC)	観測時間 [min]	周波数 [GHz]	月の昇降 (rise or set)
2024/08/30 7:56 - 8:56	60	145	rise
2024/08/30 8:12 - 9:12	60	145	rise
2024/08/30 8:19 - 9:19	60	145	rise
2024/08/30 8:26 - 9:26	60	220	rise
2024/08/30 8:42 - 9:42	60	145	rise
2024/08/30 8:54 - 9:54	60	145	rise

により、データを取得できなかった。これらのデータを使って再構成した光軸中心マップを 図 5.5 に示す。

Azimuth [deg] (scan axis)

図 5.5: 視線方向軸周りの回転後の光軸中心マップ。

回転前の図 4.12 と比較することで検出器の配置がスキャン軸に沿った方向へと回転した ことが見て取れる。また、回転によって検出器全体の傾きが是正されたことも確認できる。 この図はあくまで仰角 70°中心の配置を平面射影したもので、位相の最大点をとった視線を 仰角 0°の球面で見たもの (図 5.6) に対応している。 次に、実際の仰角 70°の球面での視線を回転の前後で比較する。回転前の全検出器の視線 を図 5.7 に、回転後の全検出器の視線を図 5.8 に示す。 図 5.7 では検出器の配置が傾いてい

図 5.6: 座標変換により平面的に見た回転後の光軸中心の視線。

ることに加えて、球面による歪みの効果によって特に 145 GHz アレイで光軸中心に対する 非対称性が見られた。視線方向軸周りの回転でこの非対称性は大きく補正されたことが分か る²。

5.2.2 木星データによる追確認

次に 5.2.1 節で見た検出器アライメントの較正結果を木星の観測データでも確認した。木 星は表 4.1 にまとめたように点源として扱えるため検出器の視線を知る上ではより正確であ るが、信号が小さくノイズに埋もれやすいため、月より観測は難しい。そのため、月での結 果を再現して較正結果の妥当性を保証することを目的として行った。以下では 220 GHz ア レイでの結果のみを述べる。木星は望遠鏡のビーム幅に対してその角直径は十分小さい。こ の場合、木星観測時のアンテナ温度 *T*_{Jupiter} は

$$T_{\rm Jupiter} = \frac{T_{\rm B}\Omega_{\rm Jupiter}}{\Omega_{\rm A}} \tag{5.1}$$

と表せる。ここで、 Ω_A はビーム立体角、 $\Omega_{Jupiter}$ は地球から見た木星の立体角、 $\overline{T_B}$ は、木 星の平均輝度温度である。つまり、真の木星輝度温度よりも観測されるアンテナ温度は小さ

²前述の回転角評価のずれによって 2.25°逆方向に傾いた。図 4.11 と図 5.9 の比較で傾きの変化が見て取れ る。それでも図 5.7 と図 5.8 の比較で分かるように、全体のアレイで見ると傾きによる影響は大きく削減された。

図 5.7:回転前の全検出器の光軸中心の視線。中心以外の 145 GHz アレイでは球面に起因す る位置の歪みが現れる。

図 5.8: 回転後の全検出器の光軸中心の視線。球面による歪みによって生じる非対称性が回転によって是正された。

図 5.9: 光軸中心マップから取得した検出器の視線 (220 GHz、回転後)。中心アレイでは歪 みの影響が少ないため、回転による傾きの改善が最も視覚的に見て取れる。

くなる。木星の輝度温度は周波数依存性があるが、ミリ波帯での典型的な値 150 K とし、木 星の角直径 ~ 40"、220 GHz 検出器のビーム幅 25′からアンテナ温度を見積もると、おそよ *T*_{Jupiter} ~100 mK と小さいことが分かる。実際、木星観測時の TOD を見るとノイズに信号 が埋もれて木星のマップを再構成できないことがある。TOD には大気放射に由来するノイ ズが混入し、それは大気中の水蒸気量が多い時ほど顕著になって木星由来の信号の邪魔とな る。そのため、木星の観測データの中でも十分 PWV が小さいものを主な解析対象とした。 また、木星中心座標データから以下の処理

1. スキャンごとの位相を線形関数でフィットし、ベースラインを差し引く

2. 0.2°四方の角度領域でリビンし、領域内の位相の平均をとり、その値を代表値とする を行なった。まず、PWV が比較的高い観測の TOD と各検出器の木星中心マップを図 5.10 に示す。ここで、PWV の値は TOD の観測時間内の PWV データベースの平均値をとって

図 5.10: 高い PWV での木星観測データ (2023/07/27, PWV= 4.6 mm)。(左)1 観測での TOD。(右) ベースラインを引き、リビンした後の木星中心マップ。

いる。月中心マップ(図 4.10)では中心に月のマップが鮮明に見えたが、この木星データで

は木星のマップが見て取れない。

次に PWV が十分低い観測での木星中心データを図 5.11 に示す。木星中心座標の原点付 近で位相が高くなっており、これが木星の信号に対応している。この木星中心データをリビ ンしたマップを図 5.12 に示す。 月と同様にして鮮明な木星のマップを得られた。これより、

図 5.11: 十分低い PWV での木星観測データ (2023/07/28, PWV= 0.83 mm) の、ベースラ インを引いた後の木星中心座標での位相。

図 5.12: 十分低い PWV での木星観測データ (2023/07/28, PWV= 0.83 mm) の、ベースラ インを引き、リビンした後の木星中心マップ。

十分 PWV が低く観測条件が整っていれば 1 時間の TOD で木星を観測できることが分かった。一方で PWV が比較的高い時は 1 観測では木星を見ることはできず、データを蓄積する 必要がある³。

³十分に PWV が低く、かつ木星が通過する時間での観測データは現在時点では数観測しか確認できていない。そのため、十分ではないが比較的低い PWV での観測データを蓄積し、S/N 比を上げて木星を見るような解析手法が求められる。

得られた木星中心マップから月と同様にして、各検出器の視線を求めた。視線方向軸周り の回転前の光軸中心マップを図 5.13 に示す。月データから得た光軸中心マップに比べて信 号の広がりが小さく、視線を点として取得することができる。次に、回転後のデータから再 構成した木星中心マップを図 5.14 に示す。一部の検出器ではノイズに埋もれてしまい、木 星のマップを再構成できなかった。 以上の木星データから取得した 220 GHz アレイでの検

Gnomonic view

図 5.13: 木星データから取得した 220 GHz アレイの光軸中心マップ (回転前、2023/07/28, PWV= 0.83 mm)。月と比べて信号の広がりが小さい。

出器の視線を回転の前後で比較する (図 5.15)。回転前と回転後とで、スキャン軸に対する検 出器配置の傾きを再現でき、月での結果の妥当性を示している。一方で、回転後の十分低い PWV の観測データでも一部の検出器がノイズに埋もれてしまい、全検出器の視線を取得で きなかった。

図 5.14: 十分低い PWV での木星観測データ (回転後、2024/09/05, PWV= 0.81 mm) の、 ベースラインを引き、リビンした後の木星中心マップ。一部の検出器では木星のマップを再 構成できていない。

図 5.15: 木星データから得た回転前後での 220 GHz アレイの視線。

第6章 検出器アライメントに伴う大気揺らぎ の評価

最後に、検出器間で TOD の差分を取り、TOD 間の相関を回転の前後で比較することで 検出器アライメントの較正による大気揺らぎの抑制を確認した。

6.1 検出器間差分で見る大気揺らぎの抑制

6.1.1 TOD の差分と PSD

天体の観測データを用いて検出器の配置が回転し、スキャン軸に沿った向きへと較正さ れたことを見たが、4.1.1 節で述べたように検出器間での信号の差分をとり、同じ大気をス キャンできるようになっているかを、実際の観測データを用いて確認した。異なる検出器が スキャンする大気が同じであれば観測する TOD は強い相関を持つ。そのため、この章では スキャン軸に沿って並ぶ異なる 2 つの検出器の TOD 相関が配置の回転によってどう変化し たのか、に着目する。また、球面による歪みの影響が少なく、大気放射の寄与も大きい中心 の 220 GHz アレイに焦点を置いて議論する。使用した TOD を表 6.1 に示す。視線方向軸周

観測日 (UTC)	観測時間 [min]	観測対象	検出器配置	スキャン	PWV [mm]
2024/07/01 5:48 - 6:48	60	sky	回転前	9RPM	0.96
2024/09/03 17:49 - 18:49	60	sky	回転後	9RPM	1.1
2024/09/12 0:53 - 1:53	60	sky	回転後	9RPM	0.70

表 6.1: 検出器間差分に使用した 220 GHz アレイ観測データ

りの回転を行った前後で PWV の低く、条件が近い観測データを選択した。また、大気放射 ノイズを見るために 1 時間の TOD の中で月や木星といった光源となる天体を観測しなかっ たものを選択した (表中では観測対象が天体ではなく大気なので sky とした)。

次に同じアレイ内の検出器 TOD の性質を見ていく。1 アレイ内の検出器が観測する空の 領域は同じではないが、ある程度狭い角度領域で収まっているため観測する大気もある程度 は近いものである。それは検出器配置を回転させる前でも言えることである。そのため、検 出器の TOD が共通したトレンドを持ち、相関を持つ¹。回転前 TOD を実際の検出器配置 に沿って並べたものを図 6.1(上) に示す。TOD の位相は 1 観測での平均値でベースライン を引いて表している。一部の検出器以外では TOD の形状が非常に似ており、共通したトレ

¹見ている空の領域が近いことによるものと、1 アレイで読み出しを行なっていることによる生の TOD 以外 の要因もあると思われる。

図 6.1: (上) 実際の検出器配置で並べた各 kid の TOD。一部を除いて TOD は同じような形 状になり、共通したトレンドを持つ。(下) 同時刻の TOD ペアに対する相関係数。ピアソン の積率相関係数に従っている。対角線上の相関係数は同 kid 間での値で1になるため省略 した。 ンドを持っている。異なる検出器のペアごとに求めた TOD の相関係数を図 6.1(下) に示す。 TOD のペアが要素数 n に対して $[x_1, x_2, ..., x_n]$ と $[y_1, y_2, ..., y_n]$ である時、相関係数はピア ソンの積率相関係数に従って以下の式

$$r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}}$$
(6.1)

によって算出している。つまり、ここでの相関係数は同時刻での各 TOD についてのもので ある。一部の検出器 (ここでは kid0 と kid2) を除いては相関係数は 0.9 を超え、強い相関を 持っていることが見て取れる。このことからも、検出器間での TOD の差分を取ることで共 通した大気ノイズを差し引けることを示唆している。

しかし、差分を取るにあたっては同時刻の TOD 同士では不十分である。各検出器で同時 刻に見ている空は異なっており、厳密な相関を見るためには理想的に同じ空をスキャンした 時刻の TOD 同士で差分を取る必要がある。GroundBIRD は仰角を固定し方位角方向にス キャンをしているため、同一スキャン軸上の検出器は一定の時間差で同じ空を観測する。そ のため、TOD 間でスキャンに伴う時間差 (本論文では timing offset と呼ぶ)を考慮して差分 をとる。2つの TOD(TOD₁, TOD₂)の差分をとった TOD(TOD_{diff}) は timing offset(*δt*) を 用いて

$$TOD_{diff}(t, \delta t) = TOD_1(t) - TOD_2(t + \delta t)$$
(6.2)

と表すことができる [22]。

最終的には、差分をとった後のTOD_{diff}をフーリエ変換してPSD (Power Spectral Density) を計算し、この量を用いて評価する。PSD は単位周波数ごとのパワーの分布であるため、 TOD のノイズ成分を周波数空間で見ることができる。また、6.1.2 節で述べるように PSD は TOD の自己相関関数に対応する物理量であり、TOD 間の相関の強さを測る指標として 使用することができる。PSD の計算には scipy パッケージの "periodogram[43]" 関数を使用 した。計算した PSD(回転前、kid3) を図 6.2 に示す。PSD は周波数に応じて振る舞いが異 なる。主なノイズには低周波側で卓越する "1/f ノイズ"、スキャン周波数に同期した "scan synchronous ノイズ"、高周波側で残る周波数依存性のない "ホワイトノイズ" があり、スペ クトルの形状に顕著に現れる。

6.1.2 PSD と自己相関関数

PSD を用いて TOD 間の相関を測る指標とする量を定義する。まず、PSD と自己相関関数の関係性について述べる。時刻 t での TOD をx(t)、そこから時間 τ だけシフトした TOD を $x(t + \tau)$ とする時、TOD の自己相関関数は

$$R_{xx}(\tau) = \langle x(t)x(t+\tau) \rangle \tag{6.3}$$

$$= \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} x(t) x(t+\tau) dt$$
 (6.4)

図 6.2: 計算した1検出器の PSD。スキャン速度は9 RPM であり、対応するスキャン周波数は0.15 Hz になる。そのため、スキャン周波数の整数倍の周波数でスキャンに同期したノ イズのピークが生じる。

で定義される。また、*x*(*t*)のフーリエ変換を

$$F(f) = \mathcal{F}[x(t)] = \int_{-\infty}^{\infty} x(t)e^{-2\pi i f t}dt$$
(6.5)

とし、PSD(f)は

$$PSD(f) = \lim_{T \to \infty} \frac{|F(f)|^2}{T}$$
(6.6)

で与えられる。ここで、自己相関関数のフーリエ変換を考えると

$$\mathcal{F}[R_{xx}(\tau)] = \int_{-\infty}^{\infty} \left\{ \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} x(t) x(t+\tau) dt \right\} e^{-2\pi i f \tau} d\tau$$
(6.7)

$$= \lim_{T \to \infty} \frac{1}{T} \left\{ \int_{-T/2}^{T/2} x(t) dt \right\} \left\{ \int_{-\infty}^{\infty} x(t+\tau) e^{-2\pi i f \tau} d\tau \right\}$$
(6.8)

$$= \lim_{T \to \infty} \frac{1}{T} \left\{ \int_{-T/2}^{T/2} x(t) e^{2\pi i f t} dt \right\} \left\{ \int_{-\infty}^{\infty} x(s) e^{-2\pi i f s} ds \right\} \ (s = t + \tau) \tag{6.9}$$

$$=\lim_{T \to \infty} \frac{F(-f)F(f)}{T}$$
(6.10)

$$=\lim_{T \to \infty} \frac{|F(f)|^2}{T} \tag{6.11}$$

となり、自己相関関数のフーリエ変換が PSD になる。この関係をウィーナー=ヒンチンの定 理という。TOD、PSD、自己相関関数の関係の模式図を図 6.3 に示す。この関係から、TOD から計算した PSD はその自己相関関数と等価な量である。

この関係を用いて指標を定める。2つの異なる検出器の TOD をx(t)、y(t) とし、式 (6.2) で見たように timing offset を加えて差分を取った TOD_{diff} を $x(t) - y(t + \delta t)$ とする。これ

図 6.3: TOD と PSD、自己相関関数との関係。PSD と自己相関関数はフーリエ変換によって結びつき、等価な物理量を表す。

らの TOD の PSD に対して以下の式を考える

$$\frac{\text{PSD}_x + \text{PSD}_y - \text{PSD}_{\text{diff}}}{\text{PSD}_x + \text{PSD}_y} \tag{6.12}$$

$$=\frac{\mathcal{F}[R_{xx}(\tau)] + \mathcal{F}[R_{yy}(\tau)] - \mathcal{F}[R_{\text{diff}}(\tau, \delta t)]}{\mathcal{F}[R_{xx}(\tau)] + \mathcal{F}[R_{yy}(\tau)]}$$
(6.13)

$$=\frac{\mathcal{F}[\langle x(t)x(t+\tau)\rangle + \langle y(t)y(t+\tau)\rangle - \langle (x(t) - y(t+\delta t))(x(t+\tau) - y(t+\delta t+\tau))\rangle]}{\mathcal{F}[R_{xx}(\tau) + R_{yy}(\tau)]}$$
(6.14)

$$=\frac{\mathcal{F}[\langle x(t)y(t+\delta t+\tau)\rangle + \langle y(t+\delta t)x(t+\tau)\rangle]}{\mathcal{T}[\mathcal{B}_{-}(\tau) + \mathcal{B}_{-}(\tau)]}$$
(6.15)

$$= \frac{\mathcal{F}[R_{xy}(\tau + \delta t) + R_{yx}(\tau - \delta t)]}{\mathcal{F}[R_{xx}(\tau) + R_{yy}(\tau)]}$$
(6.16)

この時、分子に $x(t) \ge y(t + \delta t)$ の相関に当たる項 R_{xy} が残り、2つの TOD の相互相関関数 に対応する。つまり、2つの TOD が時間差 δt で相関が大きい時に、この値は大きくなる。逆 に相関が小さい時は0に近づく。また、分母で規格化されているため、相関が最大の時に値 は1をとり、完全に相関がなければ0になる。この性質から、式(6.12)を指標 (Correlation Index と呼ぶこととする) として TOD の相関を測ることとする。

6.1.3 timing offset の算出

次に、各検出器間で異なる timing offset(δt)を計算する。GroundBIRD は仰角を固定し て方位角方向にスキャンを行うため、検出器間での方位角のずれ (オフセット) をスキャ ン角速度で割った時間がスキャンにかかる timing offset になる。使用した観測データは 9 RPM=54 deg/s でのスキャン角速度に対応する。そのため、差分をとる 2 つの検出器の方 位角をそれぞれ Az_x、Az_y とすると timing offset は

$$\delta t \,[\mathrm{ms}] = (\mathrm{Az}_x - \mathrm{Az}_y)/54 \,[\mathrm{deg/s}] \cdot 10^3$$
(6.17)

で与えられる。検出器配置と方位角オフセットの対応を図 6.4 に示す。オフセットは仰角に 由来する球面での縮尺 (1/cos(El) で拡大される) の効果を受ける。そのため、仰角 70°を中

図 6.4: 検出器の配置と方位角オフセット。隣接する検出器間でおよそ 2.5°のオフセットがある。

心で観測すると隣接する検出器間での方位角オフセットは~2.5°になり、 $\delta t \sim 45 \text{ ms}$ になる。例として隣接する検出器 (kid8 と kid11) ペアについて、それぞれの PSD と timing offset を付けて差分を取った TOD に対する PSD の比較を図 6.5 に示す。TOD を差し引くことで ノイズ成分を落とせていることが、PSD の高さが特に低周波側で大きく下がっていること から見て取れる。一方で、高周波側ではランダムなホワイトノイズが卓越しているため、差 し引くことはできない。

次に timing offset の設定の妥当性を示すとともに適切な offset をとることの重要性を示 す。隣接した検出器では $\delta t \sim 45$ ms であるが、それと異なる値をとる (スキャンする空が異 なる)時、相関の性質も大きく変わる。kid8 と kid11 のペアについて、計算によって求まっ た $\delta t = 47$ ms で差分を取った時と異なる値で差分を取った時との比較を図 6.6 に示す。7.1 節で述べるように、大気放射に由来するノイズは周波数で ~ 10 Hz 付近に現れると考えら れている。timing offset の違いはどれほど大気ノイズを差し引けるかに直結するため、1 Hz ~ 10 Hz の範囲で大きく振る舞いが異なる。Correlation Index は相関が強いほど 1.0 に近づ く指標なので、 $\delta t = 47$ ms で最も相関が強い (同じ大気をスキャンしている) ことが分かる。 一方で、異なる値を適用すると相関は弱くなり、~ 20 ms の違いでも相関には顕著な差が出 る。同一スキャン軸上で離れた 2 つの検出器 (kid18 と kid14) ペアについても同様の結果が 得られた (図 6.7)。

6.1.4 回転前後での比較と大気揺らぎ抑制の確認

最後に検出器配置の回転前後での Correlation Index を比較し、検出器間の相関の違いを 確認した。まず、回転前と回転後 (PWV=1.1 mm)の比較を図 6.8 に示す。同一スキャン上 の検出器ペアの中から、検出器間でのゲインが近く、差分を取った時に PSD のノイズを十

図 6.5: 2 つの検出器のそれぞれの PSD と差分を取った TOD の PSD。特に低周波側でノイ ズを差し引けていることが分かる。

図 6.6: timing offset の違いによる PSD と相関の振る舞いの違い。(左)timing offset と PSD の関係。緑で示したものが計算で求めた適切な δt_{\circ} 1 Hz ~ 10 Hz にかけて顕著な違いが見 え、ノイズ成分が引けていることが分かる。(右)timing offset と Correlation Index の関係。 最大値の 1.0 から高周波側に行くにつれてランダムなホワイトノイズの寄与が大きくなり、 0 に近づく。timing offset を適切にとらないと相関が負に転じることもある。

図 6.7: スキャン軸上で最も離れた検出器ペアでの結果。δt = 200 ms であるが、大気が揺ら ぐ前にスキャンができるため、強い相関を保持できる。

分落とせたペアについての結果である²。全てのペアについて、回転後の Correlation Index が1Hz ~ 10Hz の周波数領域で回転前よりも大きく、強い相関を持っている結果を得た。 この結果は、スキャンによって2つの検出器が観測する大気が配置の回転により近くなり、 検出器間での大気の揺らぎが抑制されていることを示唆している。また、中心アレイではス キャン軸に沿って5列で検出器が並んでいるが、各列で1ペア以上でこの結果を得られ、全 ての列で検出器間の相関が向上していることも確認できた。

また、回転後で異なる観測日の TOD を用いた Correlation Index との比較も行なった。そ の結果を図 6.9 に示す。同様にして、回転後の Correlation Index が 1 Hz ~ 10 Hz の周波数 領域で大きくなり、強い相関を持つ結果を得た。

これらの結果から、視線方向軸周りの回転による検出器配置の補正によってスキャン軸上 の検出器が観測する大気の揺らぎは抑制され、より相関のある (共通した) 信号を取得でき る配置に改善されたことが分かる。今後のさらなる解析によって大気放射ノイズの理解を深 め、CMB の偏光観測につながる可能性を示している。

²片方の検出器の TOD ゲインが有意に高いペアでは差分をとっても信号を十分に差し引くことはできなかった。

図 6.8: 回転前と回転後 (PWV=1.1 mm) での Correlation Index の比較。

図 6.9: 回転前と回転後 (PWV=0.70 mm) での Correlation Index の比較。

第7章 今後の展望

最後に、本論文の研究に関して今後期待される展望と GroundBIRD の今後のアップデートの方針について述べる。

7.1 大気揺らぎに由来するノイズのモデリング

第6章でスキャン軸上の検出器がより高い相関を持つこと、すなわちより同じ大気を観測 するように改善されたことを見た。また、図6.8 や図6.9 にあるように、検出器間の相関の 違いが10 Hz 前後で顕著に出る結果を得た。この結果から大気放射ノイズは10 Hz 前後の周 波数で観測されていると考えられる。大気の揺らぎは非常に複雑であり、大気を何かしらの モデルによって単純化することが必要になる。本研究で、異なる検出器配置とその配置での 相関の差を得られたため、両者の結果を矛盾なく説明する大気のモデル (大気の揺らぐ時間 的、角度的スケール)を構築することができれば、GroundBIRD で観測する大気ノイズに対 する系統的な理解を深めることが期待できる。ノイズの性質をより理解できれば、観測デー タから適切にノイズを差し引くことができ、CMB の偏光をより高精度に観測することにつ ながる。

ここでは、[44] の大気モデルを参考に、大気の相関に関する簡易的な考察を行う。大気の モデルとして、図 7.1 のように平面的な大気の層が重なっているものを考える。

図 7.1: 平面の層を用いた大気のモデル。望遠鏡の視線方向に z 軸をとっている。また、全ての層は同じ風速の風を同じ方向に受けて動くと仮定している。

まず1層のみの場合で考える。層上の2つの検出器*i*,*j*があり、これらの座標の差を

$$\Delta \boldsymbol{x} = (x_i - x_j, y_i - y_j) = (\Delta x, \Delta y) \tag{7.1}$$

とする。この検出器間の相関を表す相関関数を

$$R(\Delta \boldsymbol{x}, \omega, z, v_w) = \frac{1}{2^{1/3} \Gamma(\frac{4}{3})} \exp\left(i\frac{\omega}{v_w} \Delta x\right) \left(\frac{\omega}{v_w} |\Delta y|\right)^{4/3} K_{4/3}\left(\frac{\omega}{v_w} |\Delta y|\right)$$
(7.2)

と記述できる。ここで、 ω は周波数、 v_w は風速、 $K_{4/3}$ は修正ベッセル関数を表す。

次に *n* 層の場合を考える。全ての層同士は相関を持たないと仮定するため、多層であって も 1 層の場合でそれぞれ計算し、和を取ることで表せる。*i* 番目の層までの距離を *z_i* とする と、*n* 層での相関関数は

$$R_n(\Delta \boldsymbol{\theta}, \omega, v_w) = \frac{\sum_{i=1}^n w(z_i)^2 R(z_i \Delta \boldsymbol{\theta}, \omega, z_i, v_w)}{\sum_{i=1}^n w(z_i)^2}$$
(7.3)

のように表せる。ここで、 $\Delta \theta = (\Delta x/z, \Delta y/z)$ であり、w(z)はzの重み関数である。この 相関関数は、風の方向に対して平行な向きを考えるとシンプルな表式になり、解析的に計算 ができる。風に平行な向き、ここではx方向のモデルを仮定して計算すると

$$R(\Delta \boldsymbol{\theta} = (\Delta \theta_x, 0), \omega, v_w) = \frac{\int_0^\infty dz \exp\left(-\frac{2z}{z_0}\right) \exp\left(i\frac{\omega}{v_w} z \Delta \theta_x\right)}{\int_0^\infty dz \exp\left(-\frac{2z}{z_0}\right)}$$
(7.4)

$$= \frac{(\Gamma_x/2)^2}{(\Delta\theta_x)^2 + (\Gamma_x/2)^2} + i \frac{(\Gamma_x/2)\Delta\theta_x}{(\Delta\theta_x)^2 + (\Gamma_x/2)^2}$$
(7.5)

となる。*z*₀ は重みのパラメータである。この時、相関関数の実部はローレンツ関数になり、 対応する FWHM は

$$\Gamma_x = \frac{4v_w}{z_0\omega} \tag{7.6}$$

になる。この Γ_x [rad] を角度相関長として定義することができる。相関関数の実部の振る舞 いを図 7.2 に示す。ここで、風速は観測所での典型的な値として、 $v_w = 20$ km/h とし、 z_0 と ω は [44] の値を参照した。この設定での角度相関長は 2.96°となり、この角度スケール で大気が相関を持つことになる。図 4.11b や図 5.9b で分かるように、同一スキャン軸上の 検出器で見ている空の領域の仰角方向のずれはこの角度相関長より十分小さく、この指標で は回転の前後での相関の差を十分には説明できない。

本論文では最も単純なモデルで考察を行ったが、実際には風の方向に対して平行ではない 状況もある他、風以外の条件を含める必要もあるため、大気ノイズの性質を説明するために はより正確なモデルを構築する必要があると考えられる。今後の研究によって大気の詳細な モデルが作られ、ノイズを取り除く手法が確立されることが期待される。

図 7.2: 風の向きに対して平行な向きでの相関関数の実部。半値全幅が角度相関長に対応する。横軸の $\Delta \theta_x$ は [deg] で表している。

7.2 両偏波アンテナを搭載した焦点面検出器のアップデート

GroundBIRD は将来計画として焦点面検出器を新たにアップデートすることを考えている。アップデートは主に次の2点からなる。

- 両偏波を観測できるアンテナを搭載
- 多周波数帯を観測できるフィルターを搭載

現在の焦点面検出器は図 2.9 にあるように、145 GHz アレイと 220 GHz アレイから構成され ている。また、感度のある偏光方向はそれぞれの MKID で 1 方向である。そのため、1 つの ピクセルは 1 つの周波数帯と 1 つの偏光方向を観測できる性能に留まっている。それに伴っ て、偏光を観測するには異なるピクセルとの差分を取る必要が生じる。第4章で見たように 差分をとり、ノイズを取り除くことで偏光を観測できるが、スキャンによる timing offset を 考慮する必要があり、TOD の処理が複雑になってしまう。この問題を解決するために、1 つ のピクセルで 2 偏波を観測できるような両偏波アンテナを搭載した MKID にアップデート する。これにより、同一ピクセルで同じ大気を同時に観測できるため、観測性能が大きく向 上する上、時間差を考慮する必要もない。

また、複数の周波数帯をカバーできるフィルターを搭載することで1つの検出器で145 GHz 帯と220 GHz 帯の両方を観測できるようになり、有効的な検出器数を大きく増やすことが できる。これによって統計量を稼ぐことが可能となる。現在は新しい検出器アレイのデザイ ンが考案されており (図 7.3)、製作に向けて準備が進んでいる。

図 7.3: 現在考案中の検出器アレイの模式図。実際は焦点面に 160 ピクセルの検出器を並べ るようなデザインとなっている。両方の周波数帯を観測できるため、アレイを区切って役割 を分担させる必要がない。

焦点面検出器をより高機能化、多機能化する上で、現在の検出器での観測から得た知見を 引き継ぐことが重要である。大気の観測やモデリングを通して、大気ノイズやその揺らぎの 性質を明らかにし、その情報を新しい検出器にも適用することで、精度の良い CMB 偏光観 測につながる。本研究によって将来のアップデートに向けた長期観測が進み、多くの理解を 深めた上で新検出器に引き継ぐことが期待される。

第8章 まとめ

CMB の偏光観測は宇宙の進化を説明するための鍵となっており、多くの観測実験が進め られている。特に $\ell \sim 10$ での大角度スケールの CMB 偏光パターンは宇宙の再電離期の情 報が刻まれ、その観測によってニュートリノ質量和の精密測定に寄与できる。GroundBIRD 実験は大角度スケールの CMB 偏光の観測に特化した地上 CMB 望遠鏡である。望遠鏡を最 大で 1 分間で 20 回転させる独自のスキャン戦略をとることで、地上実験にとって障壁とな る大気放射の揺らぎを抑制した観測を実現する。時間応答性の良い超伝導検出器 MKID を 焦点面検出器として採用し、高速スキャンに伴う高いサンプリングレートを可能にしてい る。2023 年 5 月から、GroundBIRD は本格的な観測を開始した。

目標とする光学的厚み τ の測定には3年間の観測を実施し、統計量を貯める必要があるため、望遠鏡の観測システムは安定して長期運用ができること、そして質の良いデータを取得し続けることが必要になる。しかし、本研究の開始前の観測システムにおいて2つの未解決 課題があった。1つは望遠鏡仰角データ取得システムが硬直的であること、もう1つは天球 上での検出器配置がスキャン軸から傾いていることである。本論文ではこれらの課題に対す る改善と最適化を行なった。

仰角データの取得に FPGA ボードを使用しており、FPGA チップ内でデータ処理を行っ ている。既存システムではその運用をリモート主体で行えず、現地でのメンテナンスを要す る点で長期運用の障壁となっていた。本論文ではボード内の FPGA チップに PYNQ と呼 ばれる OS システムを搭載し、アクセス性の向上と OS 上からソフトウェアを動かすことで データ取得システムの操作性向上を図った。また、信号処理の確認と安定動作の確認を行っ た後、望遠鏡システムへのインストールを完了させた。

検出器 MKID は CMB の偏光信号と大気放射由来のノイズを検出するが、スキャン軸上 の異なる検出器間で信号の差分をとることで、共通した大気ノイズを差し引くことができ る。しかし、配置が傾いていると検出器間で観測する大気が揺らぎ、差分をとってもノイズ が残ってしまうため、データの質が落ちてしまう。そこで、天球上での検出器配置が望遠鏡 のスキャン軸に対して約 6°と有意に傾いていることを月の観測データから見積もった。こ の結果をもとに、望遠鏡を視線方向軸の周りに回転させることで天球上での検出器配置の改 善を施し、さらに月と木星の観測データを用いて改善を確認した。加えて、スキャン軸上の 検出器間で信号の差分をとり、検出器間での相関の強さを示す指標に焼き直し、回転の前後 で比較することで観測する大気の揺らぎを抑制する結果を得た。

以上2点の改善と最適化を通して GroundBIRD が持つ観測、運用性能を向上させること に成功した。

第9章 謝辞

京都大学高エネルギー物理学研究室で過ごした2年間の研究生活は大変有意義なもので、 多くのことを学び、成長することができたと実感しています。本論文の執筆に至るまでご指 導・ご支援いただいた全ての方々に感謝を申し上げます。

田島治教授には CMB の研究を始める入り口を作っていただき、充実した研究をするきっ かけを与えてくださいました。また、ミーティングなどで的確なアドバイスをいただき、研 究に対する理解を深めることができました。そして、修士論文を執筆するまで計2回のテネ リフェへの出張をすることができたのは田島さんの多大なる協力のお陰です。ご多忙の中、 修士論文の添削に多くのお時間を割いていただきありがとうございました。

鈴木惇也助教とは1年間同室で過ごし、多くのご指導とアドバイスをいただきました。日 頃から気にかけていただき、基礎的なことから実験の詳細のことまで丁寧に教えていただき ました。修士一年目の研究が思うように進まなかった時期には、夜遅くまで付きっきりでご 指導していただき、心から感謝しています。毎日のランチコールを楽しみにしていました。

GroundBIRD 実験の皆様にも大変お世話になりました。末野慶徳氏には実験に関する全 ての面で多くのことを教えていただきました。テネリフェでの作業時にも通話を繋いで直接 アドバイスをいただきました。末野さんがグループを引っ張る姿を追いかけながら私自身も 成長することができました。武市宗一郎氏には解析面で多くの助言をいただきました。解析 手法を共有していただいたことで自分の理解をより深めることができました。筑波大学の 本多俊介助教には観測のレクチャーから始まり、多くの助言をいただきました。東北大学の 田中智永氏には京都で解析について基本的なことから丁寧に教えていただき、感謝していま す。東北大学の辻井未来氏と IAC の Alessandro Fasano 氏にはテネリフェでの作業や生活 面でも本当にお世話になりました。初海外で右も左も分からなかった私をサポートしていた だきました。ここには書ききれませんが、全ての GroundBIRD メンバーの方々へ、2 年間の びのびと研究できたのは皆様のご協力あってのことであり、感謝の気持ちでいっぱいです。

京都の CMB グループの皆様にも感謝申し上げます。中田嘉信氏、竹内広樹氏、武藤優真 氏には普段のミーティングで多くの助言をいただき、またゼミでは議論を深めることができ、 大いに成長することができました。安達俊介助教とは1年間同室で過ごし、実験グループは 違えどアドバイスをいただきました。また、地元トークができてとても楽しかったです。

研究室での生活は常に活気が溢れており、毎日を楽しく過ごせました。京都高エネの皆様 にも感謝を申し上げます。また、同期の大谷尚輝君、笠井優太郎君、中川徹郎君、埴村圭吾 君、星野大輝君にはいつも元気をもらっていました。普段の何気ない会話が私の大きな支え になっていました。こうして修士論文を執筆できているのはみんなの支えがあってこそだと 確信しています。

最後に、いつも私を気にかけて支えてくれた家族に感謝します。ありがとう。

参考文献

- Wagoner, Robert V.; Fowler, William A.; Hoyle, F., Astrophysical Journal, vol. 148, p.3 (1967) https://doi.org/10.1086/149126
- [2] J. C. Mather et al 1999 ApJ 512 511, https://doi.org/10.1086/306805
- [3] Planck Collaboration, A&A 641, A1 (2020), https://doi.org/10.1051/0004-6361/201833880
- [4] バーバラ・ライデン [著]. 牧野伸義 [訳]. 宇宙論入門. 森北出版
- [5] https://arxiv.org/abs/1605.01615
- [6] 小松英一郎. 宇宙マイクロ波背景放射. 日本評論社
- [7] Measurements od Degree-Scale B-mode Polarization with the BICEP/Keck Experiments at South Pole https://arxiv.org/pdf/1807.02199
- [8] https://arxiv.org/pdf/2110.00483
- [9] Byeonghee Yu, Robert Z. Knight, Blake D. Sherwin, Simone Ferraro, Lloyd Knox, and Marcel Schmittfull Phys. Rev. D 107, 123522 - Published 16 June 2023 https://doi.org/10.1103/PhysRevD.107.123522
- [10] Julio A. Castro-Almazán, Casiana Muñoz-Tuñón, Begoña García-Lorenzo, Gabriel Pérez-Jordán, Antonia M. Varela, and Ignacio Romero "Precipitable Water Vapour at the Canarian Observatories (Teide and Roque de los Muchachos) from routine GPS", Proc. SPIE 9910, Observatory Operations: Strategies, Processes, and Systems VI, 99100P (18 July 2016) https://doi.org/10.1117/12.2232646
- [11] P. A. R. Ade et al 2015 ApJ 812 176 https://doi.org/10.1088/0004-637X/812/2/176
- [12] P. K. Day, H. G. LeDuc, B. A. Mazin, A. Vayonakis, J. Zmuidzinas, Nature 425, 817-821 (2003) https://doi.org/10.1038/nature02037
- [13] R. M. J. Janssen, et al., High optical efficiency and photon noise limited sensitivity of microwave kinetic inductance detectors using phase readout. Appl. Phys. Lett. 103, 203503, 2013.
- [14] J. Bardeen, L. N. Cooper, and J. R. Schrieffer. Theory of superconductivity. Physical Review, 108:1175, 1957.

- [15] https://lambda.gsfc.nasa.gov/education/graphic_history/taureionzation.html
- [16] arXiv:2309.00675 [astro-ph.CO] https://doi.org/10.48550/arXiv.2309.00675
- [17] Monthly Notices of the Royal Astronomical Society, Volume 519, Issue 3, March 2023, Pages 3383-3431 https://doi.org/10.1093/mnras/stac3439
- [18] S.Honda, et al., On-site performance of GroundBIRD, a CMB polarization telescope for large angular scale observations. Proceedings Volume 11445, Ground-based and Airborne Telescopes VIII; 114457Q (2020)
- [19] Planck Collaboration, A&A 641, A4 (2020) https://doi.org/10.1051/0004-6361/201833881
- [20] K. Lee et al 2021 ApJ 915 88 https://doi.org/10.3847/1538-4357/ac024b
- [21] Y.Sueno, et al., Pointing Calibration of GroundBIRD Telescope Using Moon Observation Data
- [22] 末野慶徳. Development of calibration and noise characterization methods for a CMB telecope, GroundBIRD, using its commissioning observation data. 京都大学理学研究 科 博士論文 2024.
- [23] J. Choi, GroundBIRD: A Telescope for the Cosmic Microwave Background Polarization Measurement, ph.D thesis, Korea University (2015).
- [24] S. Oguri, et al., Rev. Sci. Instrum. 84, 055116 (2013) https://doi.org/10.1063/1.4807750
- [25] https://www.amd.com/ja/products/software/adaptive-socs-and-fpgas/vivado.html
- [26] https://canon.jp/biz/product/indtech/incremental-encoder/lineup/r1sl
- [27] https://digilent.com/reference/programmable-logic/zybo/start?redirect=1
- [28] https://www.heidenhain.co.jp/製品/角度エンコーダ/組込み型角度エンコーダ/erm-2000 シリーズ
- [29] https://japan.xilinx.com/support/documentation-navigation/silicondevices/mature-products/spartan-3e.html
- [30] 池満拓司. CMB 望遠鏡のデータ読み出しシステムの時刻同期と較正に関する開発研究. 京都大学理学研究科 修士論文 2020.
- [31] https://docs.amd.com/v/u/en-US/ds187-XC7Z010-XC7Z020-Data-Sheet
- [32] https://japan.xilinx.com/products/intellectual-property/axi_fifo.html
- [33] http://www.pynq.io

- [34] https://wasa-labo.com/wp/?p=1102
- [35] https://digilent.com/reference/programmable-logic/zybo-z7/referencemanual?redirect=1
- [36] http://www.kumikomi.net/fpga/sample/0008/FPGA08_042.pdf
- [37] M. A. Janssen, Atmospheric Remote Sensing by Microwave Radiometry (1993)
- [38] 中井直正、坪井昌人、福井康雄. シリーズ 現在の天文学. 宇宙の観測 II 電波天文学. 日本評論社
- [39] 末野慶徳. 超伝導検出器 MKID の評価系構築と TLS ノイズを抑制する研究. 京都大学 理学研究科 修士論文 2021.
- [40] 武藤優真. 超伝導検出器 MKID の薄膜純度向上及び高感度化を目指した製作と性能評価. 京都大学理学研究科 修士論文 2024.
- [41] https://www.astropy.org
- [42] https://healpy.readthedocs.io/en/latest/
- [43] https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.periodogram.html
- [44] 西ノ宮ゆめ. 宇宙マイクロ波背景放射の将来実験に向けた大気揺らぎとその相関の測定 とモデル化. 東京大学大学院理学系研究科物理学専攻 博士論文 2023.